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Abstract This paper presents a robust adaptive slid-
ing mode control strategy using radial basis function
(RBF) neural network (NN) for a class of time vary-
ing system in the presence of model uncertainties and
external disturbance. Adaptive RBF neural network
controller that can learn the unknown upper bound
of model uncertainties and external disturbances is
incorporated into the adaptive sliding mode control
system in the same Lyapunov framework. The pro-
posed adaptive sliding mode controller can on line up-
date the estimates of system dynamics. The asymp-
totical stability of the closed-loop system, the conver-
gence of the neural network weight-updating process,
and the boundedness of the neural network weight
estimation errors can be strictly guaranteed. Numer-
ical simulation for a MEMS triaxial angular veloc-
ity sensor is investigated to verify the effectiveness
of the proposed adaptive RBF sliding mode control
scheme.
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1 Introduction

Dynamic systems such as robot manipulators have un-
known and time varying. nonlinearities. Conventional
feedback controllers do not have good performance
and robustness when facing with the unknown non-
linearities and external disturbances. Adaptive con-
trol schemes have been applied to various dynamic
systems since adaptive control schemes can automat-
ically adjust parameters of the controller according to
the changing system dynamics. Sliding mode control
is a robust control technique which has many attrac-
tive features such as robustness to parameter varia-
tions and insensitivity to external disturbance. Adap-
tive sliding mode control has the advantages of com-
bining the robustness of sliding mode method with
the tracking capability of adaptive control strategies.
However, adaptive control depends on explicit model
structure, sliding mode control needs the information
of upper bound of model uncertainties and external
disturbances and has chattering in practical applica-
tions.

Model uncertainties require the controller to be ei-
ther adaptive or robust to these model uncertainties.
Intelligent control approaches such as neural network
and fuzzy control have ability to approximate nonlin-
ear systems. Therefore, intelligent control approaches
have been applied to represent complex plants and
construct advanced controllers. Adaptive fuzzy sliding
mode control schemes have been developed for robot
manipulators [1, 2]. Lewis et al. [3] proposed neural
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network methodologies for robot manipulator. Neural
network has the capability to approximate any non-
linear function over the compact input space. There-
fore,neural network’s learning ability to approximate
arbitrary nonlinear functions makes it a useful tool
for adaptive application. Neural adaptive sliding mode
control technologies have been applied to the non-
linear dynamic systems [4–7]. Adaptive neural slid-
ing mode controllers for robotic manipulators have
been proposed in [4–6]. Adaptive neural controllers
for robot manipulators and the magnetic levitation sys-
tem have been developed in [7] and [8], respectively.
Chien et al. [9] developed a robust adaptive controller
design for a class of uncertain nonlinear systems using
online T–S fuzzy-neural modeling approach, Dierks
and Jagannathan [10] designed neural network out-
put feedback controller for robot formation, Man et
al. [11, 12] derived adaptive tracking controllers using
neural networks for robot manipulator and a class of
nonlinear systems. Wen and Liu [13] developed adap-
tive fuzzy-neural tracking control for uncertain non-
linear discrete-time systems in the NARMAX form.
Wang et al. [14] developed a direct adaptive neural
control for strict-feedback stochastic nonlinear sys-
tems. Forouzantabar et al. [15] proposed adaptive neu-
ral network control of bilateral teleoperation with con-
stant time delay. Zhang and Ge [16] investigated adap-
tive neural network tracking control of MIMO nonlin-
ear systems with unknown dead zones. Fei [17] de-
rived robust adaptive vibration tracking control for a
MEMS vibratory gyroscope with bound estimation.
John and Vinay [18] presented an adaptive controller
for a MEMS triaxial gyroscope which drive both axes
of vibration and controls the entire operation.

This paper focuses on the design of a robust adap-
tive sliding mode control strategy using RBF neural
network. The information of the upper bound of the
model uncertainties and external disturbances does
not need be known in advance. The control scheme
integrates the adaptive sliding mode control and the
nonlinear mapping of neural network. A RBF neu-
ral network is used to adaptively learn the unknown
upper bound of model uncertainties and external dis-
turbances to eliminate the chattering of sliding mode
effectively. The control system can guarantee the con-
vergence of trajectory tracking error and robustness
for model uncertainties and external disturbances.
Meanwhile, the proposed adaptive sliding mode con-
troller can online update the unknown system dynam-
ics. A key property of this scheme is that the prior

knowledge of the upper bound of the system uncer-
tainties is not required but online estimated using RBF
network. The main motivations are highlighted as fol-
lows:

1. An adaptive neural sliding mode control is adopted
to approximate the unknown upper bound of the
uncertainties and external disturbances. The advan-
tage of using adaptive neural sliding mode control
is that we need not know the upper bound of un-
certainties and disturbances in advance. It will be
convenient for us to control the dynamic systems
since the upper bound of the uncertainties and ex-
ternal disturbances can be adaptively tuned. This is
the most important feature of the proposed control
as compared with the existing work.

2. A neural network control is incorporated into the
adaptive sliding control system to strengthen the
robustness of the control system. An adaptive slid-
ing mode controller is derived to identify unknown
system parameters and an adaptive RBF control
method based on the sliding-mode control is devel-
oped to estimate the optimal upper bound of model
uncertainties and external disturbances.

The paper is organized as follows. In Sect. 2, nomi-
nal sliding mode controller is designed. In Sect. 3, the
derivation and stability analysis of an adaptive sliding
mode controller using RBF neural network are given.
Simulation results are presented in Sect. 4 to verify the
effectiveness of the proposed adaptive neural sliding
mode control. Conclusions are provided in Sect. 5.

2 Nominal sliding mode control

Consider the system with multiple inputs with para-
metric uncertainties and external disturbances:

Ẋ(t) = AX(t) + Bu(t) + Bfm(t) (1)

where X(t) ∈ Rn, u(t) ∈ Rm and A ∈ Rn×n, B ∈
Rn×m are unknown constant matrices, fm(t) is an un-
known lumped model uncertainties and external dis-
turbances.

The reference model is given by

Ẋm(t) = AmXm(t) + Bmr(t) (2)

where Xm(t) ∈ Rn, r(t) ∈ Rm, Am ∈ Rn×n, Bm ∈
Rn×m are known constant parameter matrices.
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We make the following assumptions:

A1. All eigenvalues of Am are in the open left-half
complex plane, and r(t) is bounded and piece-
wise continuous;

A2. There exists a constant matrix K∗
1 ∈ Rn×mand

a non-zero constant matrix K∗
2 ∈ Rm×m such

that the following equations are satisfied A +
BK∗T

1 = Am,BK∗
2 = Bm;

A3. There is a known matrix Q ∈ Rm×m such that
K∗

2 Q is symmetric and positive definite:

M = K∗
2 Q = (

K∗
2 Q

)T = QT K∗T
2 > 0. (3)

A4. The matched lumped uncertainty and disturbance
fm is bounded by unknown positive parameter ρ̄,
‖fm‖ ≤ ρ̄.

The control task is to design a feedback control u(t)

for the plant (1), the plant state X(t) asymptotically
tracks a given state Xm(t)of the reference model.

The tracking error is defined as

e(t) = X(t) − Xm(t) (4)

the derivative of tracking error is

ė = Ame + (A − Am)X + Bu + Bfm − Bmr. (5)

The integral sliding surface is defined as

s(t) = λe −
∫ t

0
λAme dτ. (6)

The derivative of the sliding surface is

ṡ = λ(A − Am)X + λBu + λBfm − λBmr. (7)

Setting ṡ = 0 to solve equivalent control ueq gives

ueq = −(λB)−1λ(A − Am)X + (λB)−1λBmr − fm

= K∗T
1 X(t) + K∗

2 r(t) − fm, (8)

where K∗
1 = (λB)−1λ(Am − A), K∗

2 = (λB)−1λBm.
The nominal control signal u is proposed as

u(t) = K∗T
1 X(t) + K∗

2 r(t) − ρ
s

‖s‖ , (9)

where ρ is constant, ‖·‖ is the Euclidean norm, ρ s
‖s‖

is the unit sliding mode signal.

3 Adaptive sliding mode controller

In this section, we will address the design procedure
of RBF neural network based adaptive sliding mode
control. Because of the great advantages of neural net-
works in dealing with the nonlinear system, an adap-
tive neural sliding mode controller is designed and its
stability is analyzed. The block diagram of an adaptive
sliding mode control using RBF network is shown in
Fig. 1.

According to (9), the adaptive control signal u is
proposed as

u(t) = KT
1 (t)X(t) + K2(t)r(t) − ρ

s

‖s‖ , (10)

Fig. 1 Block diagram of
adaptive sliding mode
control using RBF network
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where K1(t) and K2(t) are the estimates of K∗
1 and

K∗
2 , respectively.
Define the parameter errors as

K̃1(t) = K1(t) − K∗
1 , (11)

K̃2(t) = K2(t) − K∗
2 . (12)

Substituting (10), (11), (12) into (1) obtains

Ẋ(t) = AX(t) + B
[
KT

1 (t)X(t) + K2(t)r(t)
]

+ Bfm − Bρ
s

‖s‖ ,

= AmX(t) + Bmr(t)

+ Bm

[
K∗−1

2 K̃T
1 (t)X(t) + K∗−1

2 K̃2(t)r(t)
]

+ Bfm − Bρ
s

‖s‖ . (13)

Substituting (13), (10) into (5), yields the tracking
error equation

ė(t) = Ame(t)

+ Bm

[
K∗−1

2 K̃T
1 (t)X(t) + K∗−1

2 K̃2(t)r(t)
]

+ Bfm − Bρ
s

‖s‖ (14)

and the derivative of s(t) becomes

ṡ(t) = λBm

[
K∗−1

2 K̃T
1 (t)X(t) + K∗−1

2 K̃2(t)r(t)
]

+ λBfm − λBρ
s

‖s‖ . (15)

Suppose ρ̄(t) is the upper bound of model uncer-
tainties and external disturbances. If the upper bound
value ρ̄(t) can not be measured properly and un-
known, RBF neural network can be used to adaptively
learn the upper bound ρ̄(t). The structure of RBF
neural network is a three-layer feedforward network
shown as in Fig. 2. The input layer is the set of source
nodes. The second layer is a hidden layer of high di-
mension. The output layer gives the response of the
network to the activation patterns applied to the input
layer. In this paper, the advantage of RBF neural net-
work is to adjust the value of the upper bound of model
uncertainties and external disturbances.

The estimate of the upper bound ρ̄(t) is

ˆ̄ρ(x,ω) = ω̂T φ(x), (16)

Fig. 2 The structure of RBF network

where x = [q q̇] is the input of RBF neural network,
ω̂T are weights of RBF neural network and φ(x) is
Gaussian function,

φi(x) = exp

(
−‖x − mi‖2

σ 2
i

)
, i = 1,2, . . . ,L (17)

where L is the number of output node, φ(x) =
[φ1, φ2, . . . , φL]T , φi(x) is ith Gaussian function, mi

is the ith center vector, and σi is ith standard devia-
tion.

We make the following assumptions:

Assumption 1 The optimal weights of RBF satisfy:

ω∗T φ(x) − ρ̄(t) = ε(x) and |ε(x)| < ε1. (18)

Assumption 2 The upper bound ρ̄(t) satisfies

ρ̄(t) − ‖fm‖ > ε0 > ε1. (19)

Define a Lyapunov function

V = 1

2
sT s + 1

2
tr
[
K̃1M

−1K̃T
1

]

+ 1

2
tr
[
K̃2M

−1K̃T
2

] + 1

2
η−1μω̃T ω̃, (20)

where ω̃ = ω∗ − ω̂, η = ε0 − ε1 > 0, M = MT > 0,
μ = ‖λB‖, M is positive definite matrix, tr[M] denot-
ing the trace of M .

The derivative of the Lyapunov function is

V̇ = sT ṡ + tr
[
K̃1M

−1 ˙̃
KT

1

] + tr
[
K̃2M

−1 ˙̃
KT

2

]

− η−1σ ω̃T ˙̂ω

= sT

{
λBm

[
K∗−1

2 K̃T
1 (t)X(t) + K∗−1

2 K̃2(t)r(t)
]

+ λBfm − λBρ
s

‖s‖ s

}
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+ tr
[
K̃1M

−1 ˙̃
KT

1

] + tr
[
K̃2M

−1 ˙̃
KT

2

]

− η−1μω̃T ˙̂ω

= sT

(
λBfm − λBρ

s

‖s‖
)

+ λBm

[
K∗−1

2 K̃T
1 (t)X(t) + K∗−1

2 K̃2(t)r(t)
]

+ tr
[
K̃1M

−1 ˙̃
KT

1

] + tr
[
K̃2M

−1 ˙̃
KT

2

]

− η−1μω̃T ˙̂ω

= sT

(
λBfm − λBρ

s

‖s‖
)

+ {
λBmK∗−1

2 K̃T
1 (t)X(t) + tr

[
K̃1M

−1 ˙̃
KT

1

]}

+ {
λBmK∗−1

2 K̃2(t)r(t) + tr
[
K̃2M

−1 ˙̃
KT

2

]}

− η−1μω̃T ˙̂ω, (21)

where we use the definition M = K∗
2 Q = MT > 0 and

the properties tr[N1N2] = tr[N2N1], tr[N3] = tr[NT
3 ]

for any matrices N1,N2 and N3.
To make V̇ ≤ 0, we choose the adaptive laws as

˙̃
KT

1 (t) = K̇T
1 (t) = −QT BT

mλT sT XT (22)

˙̃
K2(t) = K̇2(t) = −QT BT

mλT sT rT (23)

with Q satisfying assumption A3 and K1(0) and
K2(0) being arbitrary.

Substituting ˙̃
KT

1 (t), ˙̃
KT

2 (t) into V̇ yields

U̇ = sT

(
λBfm − λBρ

s

‖s‖
)

− η−1μω̃T ˙̂ω

= sT

(
λBfm + λBρ̄ − λBρ̄ − λBρ

s

‖s‖
)

− η−1μω̃T ˙̂ω

≤ ‖s‖
(

‖λB‖‖fm‖ + ‖λB‖ρ̄ − ‖λB‖ρ̄

− ‖λB‖ρ
∥∥∥∥

s

‖s‖
∥∥∥∥

)
− η−1μω̃T ˙̂ω

= ‖s‖‖λB‖(‖fm‖ + ρ̄ − ρ̄
) − ‖λB‖ρ‖s‖

− η−1μω̃T ˙̂ω
= +‖s‖‖λB‖(ρ̄ − ‖fm‖) + ‖λB‖‖s‖(ρ̄ − ρ)

− η−1μω̃T ˙̂ω
= −‖s‖‖λB‖(ρ̄ − ‖fm‖)

+ ‖λB‖‖s‖(ω∗T φ − ε − ω̂T φ
) − η−1μω̃T ˙̂ω

= −‖s‖‖λB‖(ρ̄ − ‖fm‖) − ‖λB‖‖s‖ε
+ [‖λB‖‖s‖ω̃φ − η−1μω̃T ˙̂ω]

. (24)

Using adaptive algorithm to adjust the weights on-
line

˙̂ω = η‖s‖φ(x). (25)

Substituting ˙̂ω into V̇ yields

V̇ = −‖s‖‖λB‖(ρ̄ − ‖fm‖) − ‖λB‖‖s‖ε
≤ −‖s‖‖λB‖(ρ̄ − ‖fm‖) + ‖λB‖‖s‖ε
= −‖s‖‖λB‖ε0 + ‖λB‖‖s‖ε
≤ −‖s‖‖λB‖ε0 + ‖λB‖‖s‖|ε|
≤ −‖s‖‖λB‖ε0 + ‖λB‖‖s‖ε1

= −‖s‖‖λB‖(ε0 − ε1) = −η‖s‖‖λB‖ ≤ 0. (26)

V̇ is negative definite implies that s, K̃1 and K̃2 con-
verge to zero. V̇ is negative semi-definite ensures that
V , s, K̃1 and K̃2 are all bounded. From (15) it can
be concluded that ṡ is also bounded, the inequal-
ity (26) implies that s is integrable as

∫ t

0 ‖s‖dt ≤
1
η
[V (0) − V (t)]. Since V (0) is bounded and V (t) is

nonincreasing and bounded, it can be concluded that
limt→∞

∫ t

0 ‖s‖dt is bounded. Since limt→∞
∫ t

0 ‖s‖dt

is bounded and ṡ is also bounded, according to Bar-
balat lemma, s(t) will asymptotically converge to
zero, limt→∞ s(t) = 0. From (6) e(t) also converges
to zero asymptotically. From the adaptive laws (22),
(23), according to the persistence excitation theory, if
X and Ẋ are persistent excitation signals, i.e., ω1 �=
ω2 �= ω3, then it can be guaranteed that K̃1 → 0, and
K̃2 → 0,K1 and K2 will converge to their true values
asymptotically.

4 A Case Study for MEMS Triaxial Gyroscope

As an illustrative example, we use the triaxial MEMS
gyroscope dynamic model for the study of RBF net-
work adaptive sliding mode control. The gyroscope
dynamic model [17, 18] is
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Ẋ =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

0 1 0 0 0 0
−1578.5241 −0.0251 −97.4659 −9.9975 −116.9591 −4.0025

0 0 0 1 0 0
−97.4659 −10.004 −1396.1121 −0.0402 −136.4522 −5.9948

0 0 0 0 0 1
−116.9591 −3.996 −136.4522 −6.0052 1184.9889 −0.0523

⎤

⎥
⎥⎥⎥⎥⎥
⎦

X +

⎡

⎢
⎢⎢⎢⎢⎢
⎣

0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

⎤

⎥
⎥⎥⎥⎥⎥
⎦

⎡

⎣
ux

uy

uz

⎤

⎦ .

The control target for MEMS gyroscope is to main-

tain the proof mass to oscillate in the x, y and z

direction at given frequency and amplitude xm =
A1 sin(w1t), ym = A2 sin(w2t), zm = A3 sin(w3t).The

desired motion trajectories are: xm = sin(ω1t), ym =
1.2 sin(ω2t), zm = 1.5 sin(ω3t). The reference model

for the triaxial gyroscope is

Ẋm =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 1 0 0 0 0
−45.0241 0 0 0 0 0

0 0 0 1 0 0
0 0 −26.1121 0 0 0
0 0 0 0 0 1
0 0 0 0 −17.3889 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

× Xm,

where Xm = [xm ẋm ym ẏm zm żm]T .

In (6), the sliding parameters are chosen as: λ =
diag[40, 40, 40, 40, 40, 40]. The initial value of ω is

[0.1 0.1 0.1]T , the initial value of m is always chosen

between −1 and +1, we choose

m =
[−0.1639 0.7487 0.5359
−0.3900 −0.9700 0.9417

]
and

σ = [0.2 0.2 0.2]T .

Initial value of system states is [0.5 0], external
disturbance fm(t) = 5 sin(2πt). The initial value of
K1(t) is

K1 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1380.15 87.7193 105.2632
87.7193 1233 122.8070
105.2632 122.8070 1050.84

0.0226 8.9978 3.6023
9.0036 0.0362 5.3953
3.5964 5.4047 0.0471

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

Within the simulation, the system dynamic function
are assumed completely unknown and the adaptive
fuzzy controller does not need the information of the
dynamic model as in convention model-based adaptive
controller, Actually, the dynamic model of the MEMS
gyroscope system is only required for the purpose of
simulation.

Fig. 3 Property of the
trajectory tracking
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Fig. 4 Property of the
tracking error e(t)

Fig. 5 Property of the
sliding surface s(t)

Figure 3 is position tracking and Fig. 4 depicts the
convergence of the tracking errors. It can be seen that
tracking errors converge to zero asymptotically. It can
be observed that the desired and actual trajectories al-
most overlap with each other; the position of x, y, and
z can track the position of reference model in short
time, and the tracking errors occurring at the begin-
ning drop quickly in a few seconds. Therefore, it can
be concluded that the MEMS gyroscope can maintain
the proof mass to oscillate in the x, y, and z direction
at given frequency and amplitude with the adaptive
neural control and the control objective is well accom-
plished because neural network system has the strong
ability to approximate the nonlinear system and com-
pensate the system nonlinearities. It can be observed
from Fig. 5 that s(t) asymptotically converges to zero
showing that the sliding control system reaches the

sliding surface in short time. Adaptation of the con-
troller parameters is described in Fig. 6 showing that
K1(t) converge to their true values in short time with
persistent excitation signals. The true value of the con-
troller K1(t) is

K∗
1 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1533.5 97.4659 116.9591
97.4659 1370 136.4522
116.9561 136.4522 1167.6

0.0251 9.9975 4.0025
10.004 0.0402 5.9948
3.996 6.0052 0.0523

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

The estimated upper bound of disturbances using
RBF neural network is depicted in Fig. 7, where RBF
neural network is used to adjust the gain of the switch
part of adaptive sliding mode control input. Figure 8 is
the angular velocity using RBF based adaptive slid-
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Fig. 6 Adaptation of the
controller parameters

ing mode controller, it can be shown that the esti-
mates of angular velocity converge to their true values
Ωx = 3.0 rad/s, Ωy = 2.0 rad/s, Ωz = 5.0 rad/s with
persistent excitation signals.

Figure 9 is the adaptive sliding control input with
estimated upper bound of disturbances using RBF
neural network and Fig. 10 is the adaptive sliding
control input with fixed value upper bound of distur-
bances. Comparing these two figures, it can be found
that the control input in Fig. 9 is better than that of
Fig. 10 and the magnitudes of u1, u2 and u3 in Fig. 10

are larger than that in Fig. 9. All of the control inputs
such as u1, u2, and u3 in Fig. 10 have obvious chat-
tering because of fixed value of upper bound of distur-
bances. Therefore, it can be concluded that the adap-
tive learned upper bound of disturbances using RBF
neural network can reduce chattering significantly. Us-
ing RBF neural network based adaptive sliding mode
control can generate the smooth sliding mode con-
trol force which can create a small boundary layer
about the switching surface to eliminate the chatter-
ing.
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Fig. 7 Adaptation of upper
bound of the disturbances

Fig. 8 Adaptation of
angular velocity using RBF
based adaptive sliding mode
controller

It can be concluded that the dynamic system re-
sponses are as expected, and the simulation results
demonstrated that adaptive RBF neural network con-
trol has good tracking performance and tracking errors
converge to zero asymptotically. The satisfactory per-
formance and improved robustness with regard to sys-
tem nonlinearities such as parametric variations and

external disturbances can be obtained with the pro-
posed adaptive neural control.

5 Conclusion

This paper presents an adaptive design of RBF neu-
ral network based adaptive sliding mode control for
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Fig. 9 Control input with
estimated upper bound of
the disturbances using RBF
network

Fig. 10 Control input
using fixed value of upper
bound of the disturbances

dynamic systems. An adaptive RBF neural network
is used to learn the upper bound of model uncertain-
ties and external disturbances. The output of the neu-
ral network is used as compensator parameter and
the effects of the model uncertainties and external
disturbances can be eliminated. The stability of the
closed-loop system can be guaranteed with the pro-
posed adaptive RBF sliding mode control strategy. The

simulation is implemented to verify the effectiveness
of the proposed adaptive RBF sliding mode control for
the triaxial angular velocity sensor. Simulation results
demonstrates that tracking error and sliding surface all
converge to zero asymptotically, the system parame-
ters converges to their true values asymptotically
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