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Sliding mode compensation to preserve dynamic decoupling of
stable systems
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Abstract

Dynamic decoupling of linear multiple-input and multiple-output systems involves both static and transient decoupling between inputs and
outputs of the system. Different control techniques exist in order to achieve this specification when ideal actuators are considered. However,
input saturation changes the direction of the plant input with respect to the controller output and, as a consequence, decoupling is lost. This
paper presents a method that allows, by means of a sliding mode (SM) auxiliary loop, maintaining dynamic decoupling even in the presence
of actuator saturation. Since the SM compensation is confined to the low-power side of the control system, the discontinuous signal can be
implemented with fast switching devices or, in the case of digital controllers, within a microprocessor algorithm. Furthermore, due to the
robustness properties of SM, the compensation loop dynamics may be assigned independently of the main control loop.
� 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

A frequent design specification in multivariable control sys-
tems is input–output decoupling. There are different degrees of
decoupling, ranging from partial to full decoupling, and from
static (only in steady state) to dynamic decoupling (at all fre-
quencies). Clearly, full dynamic decoupling is the strongest de-
mand. It implies that any change in the set-point value of a
controlled variable of the system leads to a response only in
that process variable, while all the other controlled variables
remain unaffected.

The advantages of full dynamic decoupling are intuitive.
Nevertheless, as might be expected, it is very sensitive to mod-
eling errors (Skogestad and Postlethwaite, 2005) and it has a
performance cost, which depends on the poles and zeros of the
plant in the right-hand plane (RHP) (Seron et al., 1997). The
evaluation of these difficulties is outside the scope of this article,
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where we will consider nominal dynamic decoupling to be the
3

Different control techniques exist to design a controller that
achieves full dynamic decoupling of a system when ideal actua-
tors are considered (Hautus and Heymann, 1983; Eldem, 1994;
Goodwin et al., 1997; Wang, 2003). However, the problem be-
comes considerably more complicated if physical limits of the
actuators are taken into account. In fact, multiple input satura-
tion changes the amplitude and the direction of the control sig-
nal that is necessary to achieve dynamic decoupling. Hence, in
addition to the known problem of windup (Kothare et al., 1994),
the change of directionality problem appears, which brings
about the loss of the decoupling obtained for the ideal case.

Among the earliest efforts to preserve control directional-
ity in constrained multivariable systems, Hanus and Kinnært
(1989) firstly proposed to modify the reference conditioning
technique (originally devised as a single-input and single-
output (SISO) anti-windup method) to deal with the prob-
lems of multiple-input and multiple-output (MIMO) systems.
Therein, an artificial nonlinearity placed just before the real

main control objective.

3

phase systems has been proposed in Garelli et al. (2016a).
A proposal to relax the cost of diagonal decoupling in non-minimum
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nonlinearity is designed in such a way that the conditioned
reference remains as close as possible to the original refer-
ence, under some criterion. Afterwards, Walgama and Sternby
(1993) integrated the ideas of Hanus and Kinnaert with a
generalization of the conditioning technique by introducing a
filtered setpoint. A posterior contribution worthy of mention
was made by Peng et al. (1998), where a parametrization of
anti-windup compensators and an optimal design are addressed
in a simple manner. Other techniques such as LinearMatrix
Inequalities (LMI), Linear Parameter-Varying (LPV) and refer-
ence conditioning for Internal Model Control (IMC) were also
applied to this topic (Mulder et al., 2001; Wu and Grigoriadis,
1999; Zheng et al., 1994). More recently, in Soroush et al.
(2015), an optimization-based control method for discrete-time
input-constrained processes was presented.

Most of the optimal design methods (e.g., Hanus and
Kinnært, 1989; Walgama and Sternby, 1993; Peng et al., 1998)
successfully avoid the change of control directionality by con-
ditioning the whole reference vector. However, when dynamic
decoupling is the main control objective, preservation of the
control directionality is necessary but not sufficient. Although
they solve the problem that originally caused the loss of de-
coupling, the methodology used may—in less degree—also
affect the decoupling of the system. In fact, when a reference
changes, the simultaneous correction of the whole reference
vector may lead to shape the unchanged references, thus pro-
ducing transient effects in controlled variables that should not
change. When the process to be controlled allows reaching the
operation points by successive changes of individual reference
components, which is very common in chemical processes, an
improved degree of decoupling is achievable. We will therefore
focus on this way of operation, which is also taken into ac-
count in Goodwin et al. (2001), where decoupling preservation
is attained by scaling down the error vector (which is equiva-
lent to introducing a nonlinear controller gain). Such method
is shown to be effective and preserves dynamic decoupling.
However, as it is claimed in Goodwin et al. (2001), for some
processes it may happen that no scaling of the error brings the
control back to the linear region.

In this paper we present a technique to preserve dynamic de-
coupling of constrained multivariable processes, assuring that
the controlled variables whose set-points did not change re-
main unaffected. The algorithm combines a reference condi-
tioning technique with variable structure systems (VSSs) and
sliding mode (SM) related concepts. These ideas were earlier
put together to limit crossed interactions in decentralized con-
trol systems (Garelli et al., 2006b) and in 2×2 partially decou-
pled systems with RHP zeros (Garelli et al., 2006a). Differing
from these two previous works, input constraints are consid-
ered here, where it is aimed to eliminate interactions rather than
bounding them. Moreover, in the present approach the model
of the plant is not needed for the SM compensation design. Fi-
nally, the development of the current MIMO strategy imposes
restrictions neither with respect to the number of inputs/outputs
of the (square) system, nor to the type of the centralized con-
troller. For the latter, some conditions are derived in order to
guarantee the stability of the SM compensation.

A very interesting property of the proposal is that, due to
the robustness properties of the SM to reject disturbances, the
SM conditioning dynamics is not affected by the main control
loop. Thus, the dynamics of the compensation loop may be
designed independently of the main loop design. Another dis-
tinctive feature is that, for strictly proper transfer functions, the
method allows one to easily determine the rate of approach to
the constraint by designing the sliding surface, thus avoiding
hard-hitting the limit. In addition, differing from other variable
structure control schemes, there are neither chattering problems
nor reaching mode in the current application (usually consid-
ered drawbacks of variable structure control).

The next section presents the basic ideas of the conditioning
algorithm. Section 3 develops the methodology proposed in
this paper to preserve dynamic decoupling in presence of input
saturation, which is thereafter evaluated through a pair of non-
minimum phase examples in Section 4. Finally, conclusions are
drawn.

2. Basic idea of the proposal

A VSS is composed of various continuous subsystems with a
switching logic. The resulting discontinuous control action is a
function of the system state. A particular operation is achieved
when switching occurs at a very high frequency constraining the
system state to a surface, named the sliding surface. This kind of
operation is called SM and has many attractive properties. It is
robust to parameter uncertainties and external disturbances, the
closed-loop system is an order-reduced one, and its dynamics
depends on the designer-chosen sliding surface (Sira-Ramírez,
1988; Utkin, 1977; Edwards and Spurgeon, 1998). Because of
its interesting features, a large number of papers presenting
practical applications of SM control have been reported. For
instance, Herrmann et al. (2003), Chen and Peng (2005, 2006)
and Picó et al. (2005) have discussed the application of SM to
chemical process control.

In the present work, we take advantage of the interesting
features and the confined dynamics of a system operating on
SM to address an important issue concerning multivariable sys-
tems: the problem of input constraint and system decoupling.
However, differing from conventional SM applications, sliding
regimes are exploited here as a transitional mode of operation,
in which the discontinuous signal is used for conditioning the
reference signal instead of using it as the main control action.

In order to keep the presentation as simple as possible, we
first describe conceptually how the SM reference conditioning
operates when it is applied to an SISO system controlled by
a biproper controller. The more general MIMO technique for
proper controllers will be discussed in the next section.

Fig. 1 illustrates the scheme of an SISO control system where
the SM conditioning technique was added to avoid surpassing
actuator limits. P is the plant under control with linearized
model of the form{

x = A x + b u,

y = c x ,
P : (1)

˙
p p

p p p p
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Fig. 1. SM reference conditioning for SISO system and biproper controller.

K

phase controller{
x = A x + b e,

u = c x + d e,

and F a first-order filter:{
x = −� x + r + w,

r = � x .

The dynamics of this linear filter, whose purpose is to smooth
out the conditioned reference r , is designed to be faster than
the closed loop in such a way that the response of the system
is not deteriorated during linear operation of the actuators.

For our particular purpose, the following commutation law
is implemented in the switching block:{

a

c c c c

f f f

w = w if

the actuator with saturation, C a linear biproper minimum-

˙
c c c

˙
f f f

f

−

C: (2)

F : (3)

s < 0,

w = w if s > 0,+
w = 0 otherwise,

where{

(4)

s = u − u,

s = u − u,
(5)

being u the upper limit of the actuator and u the lower one.
Note that because of the first-order filter and the biproper

controller, the trivial sliding functions (5) are of relative degree
1 with respect to w, which is a necessary condition for the
establishment of SM (Sira-Ramírez, 1989). Conversely, in the
case of strictly proper controllers other controller states should
be considered in the switching functions in order to guarantee
this necessary condition.

According to (4), when the actuator operates in its linear
region (u < u < u) the signal w is 0 and no correction is made,
that is, the conditioning loop is inactive. However, when u

tries to exceed its upper bound, which makes s < 0, the signal
w changes to w (similarly, if u intends to fall bellow its
lower limit, making s > 0, w switches to w ). Whenever the

output bounds, the signal w will be switching between 0 and w

(or w ) at high frequency and a sliding regime will establish

−
+

trajectories of the system continue trying to cross the controller
−

+
transiently on surface s=0 (or s=0). In this manner, the filtered
reference will be continuously adjusted in such a way that the
controller output never exceeds the actuator limits.

+ −
state trajectories towards the interior of the linear region, i.e.,

The values w and w have to be sufficient to redirect the

they must assure:{
ṡ > 0 if s < 0,

ṡ < 0 if s > 0.

Assuming w < 0 < w (this choice corresponds to a positive
controller gain), (6) will be satisfied provided w �

(6)

− +
− w andeq

weq �w (Utkin, 1977), where the continuous equivalent con-

w

+

˜trol ˜ (� stands either foreq � or �) are obtained differentiating
once (5) with respect to time and equaling 0. Hence,

−1

It is important to remark that to satisfy the latter inequalities,
+ −

manner because the SM is restricted to the low-power side of
the system.

A sufficient condition for the reestablishment of linear oper-
ation can be derived from Eq. (7). With this aim, it is assumed
that SM is established on surface

˜ ˙w = r − r − [d � ] {c x

the selection of w and w can be made in a conservative

eq f c f c c − d y}| . (7)c s=0˙ ˜

s = u − u = 0, which means
that the continuous equivalent control satisfies w �− w < 0.eq
The system recovers linear operation and the nominal closed-
loop dynamics provided w crosses 0. Thus, we will study theeq
asymptotic behaviour of w to find under which conditions iteq
will be greater than 0 in finite time. If the system continued
undergoing SM on s = 0, weq

lim

would tend towards

t→∞ w = lim (r − r).eq f

In addition, since u =
t→∞ (8)

u during SM

lim r = lim (e + y)
t→∞ t→∞

−1 −1
c

f

= ((d − c A b ) − c A b )c c c p p
−1
p u = S (0)u

−1u, (9)

where S (0) is the control sensitivity evaluated in s=0, i.e., the
−1

u

dc-gain from r to u. Therefore, for step references r < S (0)u u

the asymptotic value limt→∞ w will be greater than 0, whicheq
guarantees that the system reenters linear region in finite time.

Reasoning in the same fashion for s =0 yields the following
sufficient condition for the reestablishment of linear operation:

−1

3. Preservation of dynamic decoupling in MIMO systems

|r| < |S (0) u|. (10)u ˜

Based on the basic ideas presented earlier, this section devel-
ops an SM reference conditioning method to maintain dynamic
decoupling of stable multivariable systems even in presence of
input saturation. The general case of proper (biproper or strictly
proper) controllers is considered.

3.1. Method formulation

Fig. 2 represents the MIMO control scheme suggested to
avoid directionality changes when actuator limits are reached.
As in Fig. 1, two loops can be distinguished: the main control
loop with output feedback and the SM conditioning loop.

In the main control loop P represents the stable process under
control with m inputs and m outputs. K are now m actuatorsa
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Fig. 2. MIMO control system with SM conditioning loop.

with amplitude saturation, whilst C is a centralized m × m

proper controller designed to obtain full dynamic decoupling
during the linear operation of the actuators K . F represents
a first-order linear filter in each channel. Signals r, r , e, u, u
and y are vectors of m scalar functions of time. The lower and
upper limits of the actuators are represented by the constant

m

a
ˆ

vectors u ∈ R and

f

u ∈ R , respectively. Individually, them

nonlinearity introduced by the ith actuator can be modeled in
a simple manner as:{

u =
K :

ˆ
a

i

i

u if u >i i u ,i
u = u if uˆ i i i �u �i u ,i
û = ui i if u < ui i

(11)

with i = 1, . . . , m and where ui and u are the correspondingi

elements of u and u.
The SM conditioning loop defines in this case two sliding

surfaces like the ones described in the previous section for each
2

differences in the conditioning loop structure with respect to
the SISO case.

The block M represents a constant matrix operator which

of the m transfer functions of the controller. This leads to some

produces two switching function vectors, S and S ∈ R , the
former comprising the switching functions associated with the
upper limits of the actuators and the latter the ones correspond-

T T T
1

T

functions associated with the j th-reference conditioning (note
that each ˜ comes from a different actuator K ).

In order to preserve control directionality, the discon-
T

m
T

nals that shape the j th reference, is governed by the following
switching law (implemented in the MIMO switching block):⎧⎨

m

j

2

T
m

i

ing to the lower bounds. Within S = [s · · · s · · · s ] , each

˜ s s s

ij a

tinuous vector w = [w · · · w · · · w ] , wherein each

j 1j ij mj

w = w if

˜
s =[˜ · · · ˜ · · · ˜ ] is a vector composed of the switching

s

T T T
1 j

w = [w · · · w · · · w ] comprises the discontinuous sig-

−

˜ ˜ ˜
j 1j ij mj

ij

⎩
ij s < 0,ij

+
ij

w = w if sij ij > 0, i = 1, . . . , m; j = j ,0 (12)
w = 0 otherwise,ij

whilst w = 0 if j � , where r is the changed reference.
For strictly proper transfer functions of the controller, the

multivariable version of Eq. (5) has relative degree greater than
1 with respect to w. Thus, the sliding functions will have to
include other controller states in order to enable the establish-
ment of sliding regimes. Although this makes the sliding func-
tions a bit more complex, it also provides degrees of freedom
that may be used to control the rate of approach to the satura-

ij 0 j0= j

tion limits, as we will see in the next subsection. Hence, the
sliding functions are reformulated as follows:

s˜ = ˜ − u if � = 0, (13)
�

(�)
ij i i ij

�=1

(14)

where � is the relative degree of the transfer function between
the controller output u and input e —its dependence on i and

(�)
i

4
�

tant to remark that no differentiation is needed for generating
(�)
i

states and inputs in the constant matrix operator represented by
(�)

i

the sliding functions are of relative degree 1 with respect to
(�)

j

is proportional to e = r − y , and that ė depends on w
because F represents a first-order filter for each channel.

Similar to the previous section, (12)–(14) state that SM will
establish transiently over the surface s˜ = 0 to shape the refer-
ence signal and prevent controller outputs from crossing their
limits.

ij i i

u

i ij

i

j

u ∑
s˜ = ˜ − u − k u if ��1, i, j = 1, . . . , m,

i j

j is not made explicit in order to simplify notation, u the
derivative of order � of u and k constant gains. It is impor-

u , which are obtained as a linear combination of controller

the block M of Fig. 2. The inclusion of u guarantees that

w . This property can be easily checked by verifying that u

j f j j j

ij

� i

3.2. SM dynamics

The filter F may be represented in state-space as:{
x = A x + B r + B w,

r = C x ,

where A =−C =� · I , B = I and B is block diagonal
2

Consider also the following column realization (Chen, 1999)
of the controller C:{

x = A x + B e,
u = C x + D e,

wherein A = diag(A ), B = diag(b ), C = [C · · · C ] and
D = [d · · · d ], with j = 1, . . . , m. A and C are matrices
of r × r and m × r , respectively, being r the degree
of the least common denominator of the transfer functions of
the j th column of C(s). Also, b and d are column vectors
of r and m elements, respectively. Hence, (A ,b ,C ,d ) is a
realization of the transfer vector between the error e and the
controller outputs u. Picking out the ith row of C and the ith
element of d (called c and d , respectively), it results in a
realization of the transfer function between e and the output
u of the controller:{

x = A x + b e ,
ij

i ij c ij j

F : (15)

C : (16)

j j

˙
f f f

f f f m f m w

(blocks of 1 × m) with dimension m × m .

˙
c c c

c j c j c 1 m

c 1 m j j

d d d d

j j

d j j j j

j

j

j ij ij

j

i

˙
u = c x + d e .

f f f f w

c c c c

j j j j

j

c j c j j

j

C (s) : (17)

4

input–output pair (ij) and the derivative order of u(�) in the sliding function.
The indexing of these constants corresponds to the controller
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Fig. 3. Active SM conditioning loop when a limit value ( ˜ ) is reached in
u due to a change in r . � comprises the controller output u and its first
(� − 1) derivatives.

u

i j i

i

c

As we argued in the introduction, individual changes of the ref-
erence components are considered, since this way of operation
is very common in decoupled designs and it allows achieving
an improved degree of decoupling in presence of input satura-
tion. Then, and according to (12), the SM correction loop does
always shape the reference which last changed, that we will
call r from now on instead of r to simplify notation. In this
way, each time the system is about to reach saturation in the
ith component of the control vector u, the SM compensation
operates over the controller transfer function between e and
u , as shown in Fig. 3. The other components of the error e
are not in the SM loop because they remain unchanged, and so
they do not affect the SM dynamics.

Therefore, the open loop dynamics of the conditioning loop
when a change in reference r leads the controller output u

near its limit value is determined from (15) and (17) by:[ ] [ ] [ ] [ ]
x A b x 0
e 0 0 e c A x + c B r − ˙

0
c B w

u = c x + d e , (19)

where c is the j th row of C , and so c B r = −� r and
c B w = −� [1 . . . 1]w .

−1
ij

c x ). This results from solving (19) for e and equaling (13)
to 0. Thus, the last row of (18) becomes redundant. Replacing
the previous expression of e in the first r rows of (18), the
following sliding regime dynamics is obtained:

−1
j j

−1
ij

It is easy to show that the eigenvalues of Q are the zeros of
C (s). Then, if the biproper transfer function involved in the
compensation loop is of minimum phase the SM conditioning
loop will be stable. Furthermore, SM dynamics presents inter-
esting robustness properties. Notice that it is governed only by
controller parameters, and that it is not seen from the controller
output, because u = ˜ during the sliding regime.

Now, for deriving the SM dynamics corresponding to strictly
proper C (s) (��1, d = 0), it is convenient to express

j j0

j

i

j i

˙
˙ y

+ , (18)
f w

i ij c ij j

f f f f f j

f w f j

If C (s) is biproper, during SM we have e = d ( ˜ −
ij c j

j d

x = Q x + b d u ,

Q = (A − b d c ).

c0

ij

u

ij ij

c j j c

j j f f f f f j

j

j

j j

j

u

j

j

˙ ˜
c0 j j ij

i i

j j

j j

ij j i

c c0 c j i

= +[ ]

ij (20)

(18)–(19) in its normal canonical form (Isidori, 1995):⎧
i i

u = u ,⎪
u = u ,⎪

�
� = P � + Q � ,

e = c A x + c B r − ˙ + c B w,

u = u ,

�
c �

u and its first (� − 1) derivatives, � are (r − �) linearly
independent states and b �

When the system operates in its linear region, w = 0 and
the conditioning loop is inactive. However, when a controller
output reaches an actuator limit SM is established and the last
equation of (21) becomes redundant. Effectively, by making
(14) equal 0 the SM dynamics results:⎧

i i⎪⎨
u = u ,

�
i i i ij i ij

� = P � + Q � ,

u = u ,

In this form, the zeros of C (s) are the eigenvalues of Q ,
and so they determine the hidden dynamics of the controller.
Hence, either biproper or strictly proper C (s) related with a
potential saturating actuator must be of minimum phase so that
the SM dynamics is stable. Note, however, that this restriction
on individual entries C (s) of the controller transfer matrix
does not mean that the MIMO controller C or the process P
must be of minimum phase. In fact, transmission zeros may
be in the right half plane while all the zeros of the individual
transfer functions are of minimum phase, as in the examples of
the next section.

The first � lines of (22) determine the evolution of the con-
troller output u during SM. In Laplace domain, the constants
k are the coefficients of the characteristic polynomial of the
transfer function from ˜ to u . Thus, the dynamics of the con-
troller output u only depends on the values chosen for k . If
k are chosen properly, then once the SM is established the
controller output u will tend towards its saturation limit ˜ at
a rate determined by k and without overshooting it. Conse-
quently, no differences will exist between u and u (they will
coincide for all time), and the dynamic decoupling of the sys-
tem will be preserved. This explains the choice made in (14) for
the sliding surfaces. Just when the control action falls into the
region delimited by the saturation limits without risk of aban-
doning linear operation, the SM conditioning loop will become
inactive.

⎪
i i

�−1

i � � j

c c

⎪
2 3

�−1

˙ u

⎪⎪
⎪

c c

c c c

⎪⎪
⎪⎩

u = u ,⎪
2 3

· · · = · · · ,
˙
u = a � + a � + be ,⎪
˙ y

i i

where � = [u u · · · u ] comprises the controller output
i d

= 0.

u = u ,

u = u ,

· · · = · · · ,
˙⎪

� �˙
i i

ij c

ij

ij

i

ij

u

i ij

ij

u

ij

ˆ

1 2⎪
�⎪⎪

j j j

1 2

1 2⎪ i i

� (22)

u = ( ˜ − u − k u )/k ,

c c c

⎪
(21)⎪⎩

∑
�=2 (�−1) �

˙
˙⎨
i i

˙
˙
j f f f f f j f w

1

i i i

c j

˙
˙

⎪ i i⎪
c c

1

�

i i

�

�

i i

�

⎪

⎪

3.3. SM robustness and reestablishment of linear operation

A distinctive property of sliding regimes is that they are
not affected by disturbances which are co-linear with the
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discontinuous action (i.e., that satisfy the so-called matching
condition) (Sira-Ramírez, 1988). Effectively, it is said that the
SM presents strong invariance to that kind of disturbances. Ob-
serve that this property is associated with the high-gain involved
in sliding regimes. For our conditioning scheme, r and y act
as matched disturbances for the SM conditioning loop (see
Fig. 3). This can also be seen from the right-hand side of (18),
where the second and third terms, which can be interpreted
respectively as the disturbance and the control vector fields of
the conditioning loop, satisfy the matching condition. Thus,

+
ij−

ij

chosen, w will be able to maintain the SM when constraints are
reached. In this way, r and y affect neither the SM dynamics
nor the conditioning loop stability. This is a particular feature
of the current approach, and it is shown by Eqs. (20) and (22).
Observe, however, that the SM generated by the switching law
(12) does only reject those changes of r and y that would
lead u to exceed its bounds. In fact, the system continues
undergoing SM only if its own trajectories continue trying to
cross the actuator limits. Conversely, whenever a change in r

or y conducts them to reenter the linear region, the switching
law (12) will make w = 0 and the SM conditioning will
become inactive.

During SM, the controller output u will coincide with or
will tend towards the saturation limit ˜ with the SM dynamics
chosen, which is not affected by the main loop due to the ro-
bustness properties of the SM mentioned above. Actually, the
limit value ˜ acts as the input of the conditioning loop, whose
output is u . Thus, the controlled variable y will evolve tran-
siently (during SM) according to a serial connection of the sat-
uration limit ˜ (input), the conditioning dynamics (from ˜ to
u ) and the stable dynamics of the plant (from u to y ). Since
control directionality does not change and only r is being
conditioned, full decoupling is preserved and the other con-
trolled variables remain unaffected. Thus, the whole dynamics
will be stable during the transient SM operation. If the actu-
ators are properly chosen for the control objective, i.e., either
for positive or negative references

|[P(0)] u| > |r | (23)

with [P(0)] the j th row of the dc-gain of the plant, then the
available control u will be sufficient for leading y close to its
set-point r . Therefore, as was mentioned, the state trajectory
will evolve naturally towards the linear region, and the SM

5

then on, the system recovers the original closed-loop dynamics.
Hence, the whole system is stable during both the transient SM
operation and the normal unconstrained operation.

3.4. Additional comments

• Differing from most VSS approaches, there exists no reaching
mode prior to the sliding regimes in the present strategy. In

j j

for suitable bounds on r, x , y and y, there always exist w

and w that assure condition (6). If these values are properly

j j

j j

i

j

j

ij

i

u

u

i j

u u

i i j

f

˜
j

˜
j

conditioning loop will become inactive in finite time. From

f

j

˙

i

i

i i

j

j

j

5

−1
Observe that condition (23) is equivalent to the sufficient condition (10)

derived in Section 2, because for static decoupling S (0) must equal P(0).u

effect, since evolution within the linear region is the desired
mode of operation, no control effort is taken to force the
system to reach the sliding surfaces. This is an interesting
property of the proposed SM conditioning algorithm because
reaching phases commonly degrade the global response of
VSS controllers (Mantz et al., 2015).

• Chattering, usually caused by limited frequency commuta-
tion or by unmodeled dynamics, is not present in the main
control loop. On one hand, switching may be carried out at
very high frequency because the discontinuous action is ap-
plied in the low power side of the system. On the other hand,
the relative degree 1 of the sliding functions with respect to
w is always guaranteed. Indeed, the sliding functions are ob-
tained from feedback of the controller states, which are com-
pletely accessible, and the relative degree of the controller is
perfectly known. Therefore, provided the reference filtering
is fittingly designed, all the signals in the main control loop
will be smooth.

• The same analysis of Section 3.2 is valid for triangularly de-
coupled systems with two inputs and two outputs, where the
conditioning of a variable reference is performed in order
to preserve decoupling of the other controlled variable. For
partially decoupled systems of greater dimensions, interac-
tions between the conditioned reference and the remaining
coupled variables should be considered.

4. Examples

4.1. Example 1

Firstly, we consider a plant with the following nominal
model:

1
P(s) =

(s + 1)

T (s) =

2

As can be easily checked, P(s) is a non-minimum phase plant
with a transmission zero at s = 4. In order to synthesize a con-
troller that decouples the system, we followed the ideas pre-
sented in Goodwin et al. (1997). We assume that the following
complementary sensitivity is aimed:

−9(s − 4)
0

[ ]
s + 2 −3
−2 1

. (24)

4(s + 4s + 9)2

[
1 0

100
s+10

This is accomplished with the following centralized controller:

]
. (25)

2

C(s) = −9(s + 1)

4s
2

.

(26)

With the objective of evaluating the proposed method we add
to the system a filter like the one described in (15), even for
the case where no SM correction is made. This will allow us to
compare the system performance with and without SM com-
pensation, ruling out the possibility that their differences are

[
×

]
1/(s + 6.25) 30/(s + 14s + 71.5)

22/(s + 6.25) 10(s + 2)/(s + 14s + 71.5)

Hamid
Highlight
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Fig. 4. Unconstrained and constrained system responses.

because of the added filter. The filter dynamics was chosen to

f 2 f 2

B = I , B = , (27)

w

1 2

1 2
u u

6

be faster than the closed loop one so that it does not affect the
system response during the linear operation of the actuators.
The matrices of the state-space representation of the filter are:

A = −20 · I , C = 20 · I ,

1 1 0 0
f 2 w

where B only makes sense for the case with SM compensation,
in which the discontinuous control vector w is generated.

The ideal actuator system was excited first with a positive
step change in r , and then with a negative step change in r . Its
response to such an input is shown with dotted lines in Fig. 4,
where it can be verified the linear decoupled performance of
the closed loop. The non-minimum phase behaviour of each
channel output is the price to be paid for dynamic decoupling,
and it depends on the poles and zeros of the plant in the right
half plane (Morari and Zafiriou, 1989). The bottom half of the
figure shows the time evolution of the control actions in both
channels.

Considering now that the system has two identical actuators
whose linear operations are confined to the range [−2 2], the
performance is seriously deteriorated (solid lines of Fig. 4).
In addition to longer settling times, the dynamic decoupling
for which the controller had been designed is completely lost.
The causes of this interaction can be found in the bottom half
of the figure, where it is observed how the controller outputs
(u , u ), which are the same as they were in the unconstrained
case, differ from the plant inputs ( ˆ , ˆ ) as a consequence

[ ]
0 0 1 1

1 2

6

extremely conservative controller for small set-point changes.
A filter that avoids, by its own, the input saturation would result in an

of saturation. The amplitude limits of the actuators are called
u =max u =1 u = 2 and u = u2 min

In order to solve the change of directionality problem we
applied the SM compensation proposed in Section 3 to the con-
troller C(s). From (24), the condition (23) guarantees recovery
of linear operation provided |r | < 2, j = 1, 2. The matrix im-
plemented in the block M is given by⎡

0 −1 0 0 1 0
−1 0 −.02 0 1 0
0 −1 0 0 1 0

−1 0 0 0 0 1
0 −1 0 0 0 1

−1 0 −.02 0 0 1
0 −1 0 0 0 1

where its input is [u u u u u u ] (canonical states
were previously obtained). Note that the first four rows of
M generate the sliding functions s

1

j

−1 0 0 0 1 0⎢⎢⎢⎢⎢

˙ ˙

= u = −2.

⎤
⎥⎥⎥⎥⎥

�

ij

2

⎥⎥
, (28)⎥⎦

1 2 1 2 min max

⎢⎢
M = ⎢⎢⎣

⎥

, whilst the other four
rows produce s . The order chosen for the outputs wasij�[s s s s ] for both s11 21 12 22 ij or s . Each component of theij

�discontinuous control action w = [w w w w ] is gen-
erated in the MIMO switching block from the sliding functions.
They switch according to the switching law (12), being for this

− +
ij ij

to do with the negative gains of the transfer functions of C(s)).
Only the functions s

11 21 12 22

example w = 1 and w = −1 (these “inverted” values have

12 and s include ˙ ,in concordance with12 1u

the relative degree of the transfer functions of C(s).
The effectiveness of the SM proposal is verified in Fig. 5.

Indeed, the outputs of the system remain dynamically decou-
pled and its performance is gracefully degraded (dotted curves
y and y of Fig. 4 are repeated for comparative purposes).
Besides, the controller output never exceeds the actuators

1 2
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Fig. 6. Controller output u (dotted line) and plant input u (solid line) evolution.ˆ

limits, and so it coincides all the time with the plant input. When
reference r changes and u reaches the lower limit of the sec-
ond actuator, a sliding regime is established along the surface
s

1 2

21 = 0 between t and t . This SM shapes reference r so that1 2 1

saturation of u is prevented. Afterwards, SM establishes again
with the step in r , now over two surfaces:

2

2 s = 0 (between t22 3
and t ) and4 s = 0 (from t to t ). The latter surface constants12 4 5
were chosen for a time constant of 20 ms. This controller
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Fig. 7. Conditioned reference r and discontinuous action w.f

output dynamics during SM avoids hard-hitting the actuator
limits, as it can be appreciated in the zoomed area of the
figure.

The left box of Fig. 6 demonstrates the change of direction-
ality of the plant input u with respect to the controller output
u when no compensation is performed. Particularly, it can be
seen how the controller output direction—the signal needed
for decoupling—changes from t = 5.11 to 5.24 s (between the
two longest arrows), whilst the plant input direction stays un-
changed during this time period (shortest arrow). The right plot
confirms that u ≡ u when the SM compensator is added, which
preserves dynamic decoupling (Fig. 5). It can also be observed
how at t SM establishes before reaching the limit

ˆ

ˆ

4 u because1
of the dynamics imposed by s = 0, thus controlling the rate12
of approach to that boundary (in concordance with the zoomed
area of Fig. 5). Finally, Fig. 7 shows the reference r with the
SM conditioning loop (solid lines) and without it (dotted lines).
In addition, it presents the time evolution of the discontinuous
control signals w. There it can be observed how the switching
law (12) prevents from conditioning of the invariant references
in each case.

f

4.2. Example 2: sugar mill

As a second example, we consider the control of a sugar
crushing station. A schematic diagram of this milling stage is
shown in Fig. 8.

For maximal juice extraction, the buffer chute height h(t)

and the mill torque �(t) are controlled by means of the position
of a flap mechanism f (t) and the turbine speed �(t). While the
control of the torque has significant influence on juice extrac-
tion, the main purpose of the chute height regulation is to filter
out the main disturbance d(t), generated by the fluctuating feed
of sugar cane to the buffer chute.

Controller

Height

Flap

Speed Torque

Intercarrier
Cane in

d (t)

h (t)

Buffer

Chute

Ω (t)

Juice

f (t)

(t)τ

Fig. 8. A crushing station of sugar cane.

The following linearized model was obtained for this process
from experimental results (West, 1997):[ ] [

�(t) −
h(t)

=
5

25s+1
s −0.005s−0.0052

s(s+1)
1

25s+1

0.005
s

0.0023
s

This plant has a right half plane zero at s = 0.137 with as-

−]
0.0023

s

d(t). (29)

�

] [ ]
f (t)

�(t)[
+

sociated direction h = [1 5] (Morari and Zafiriou, 1989).
The strong alignment of the zero with the “less important”

−
−

z0
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Fig. 10. Response degradation due to turbine speed saturation.

(regarding only juice extraction) variable h(t) indicates that
triangular decoupling is desirable for this process, since small
interactions will occur in h(t) if only �(t) is decoupled. Fur-
thermore, such a design will also push the non-minimum phase
effect to the secondary variable h(t), avoiding the spreading
over �(t) that results from full dynamic decoupling (Garelli et
al., 2006a). This was verified in Goodwin et al. (2001), where
among the different designs tested on this plant, the triangular
decoupling achieved the best performance.

We then took from Goodwin et al. (2001) the controller
that attained triangular decoupling and ran simulations with it.
The response of the closed-loop system with ideal actuators is
shown in Fig. 9. It can be observed how the torque �(t) is unaf-

fected by changes in the chute height reference r . Moreover,
the non-minimum phase zero spreading is avoided: only the
chute height evolution shows step inverse response. The closed
loop also compensates step disturbance d(t) rapidly, particu-
larly in the torque channel. However, the bottom half of the fig-
ure shows that the turbine speed �(t) presents quite large and
sudden changes for the step on height channel, making input
saturation possible. This risk of saturation is higher for greater
bandwidth demands.

Hence, we introduced an isolated saturation element to the
turbine speed in order to evaluate its effects on system perfor-
mance. As Fig. 10 reveals, just slight saturation of the turbine
speed �(t) leads to great interactions with the torque when a

fh
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Fig. 11. Improvement of the constrained system response by means of the proposed SM conditioning.

step is applied to the height set-point. Like in the previous ex-
ample, the desired decoupling is lost as a consequence of input
saturation and the associated change of control directionality.

Once more, the proposed SM conditioning was added, this
time in a simplified configuration. Because only torque decou-
pling preservation is desired, it was sufficient to generate dis-
continuous signals w and w to shape r =r when f (t)=u

or �(t) = u reach their bounds, respectively. The results pre-
sented in Fig. 11 show that the SM approach effectively pre-
serves triangular decoupling in the presence of input saturation
by shaping r with the discontinuous signal w . Notice that
disturbance rejection is not affected at all since the original
closed-loop performance is recovered once the system reenters
the linear region.

12 22 f 2 1

2

f 22

h

h

5. Conclusions

A method to preserve dynamic decoupling of stable MIMO
systems in the presence of input saturation was presented. The
approach exploits the attributes of sliding regime as a transi-
tional mode of operation, in which a discontinuous signal is
used for conditioning the reference signal. The method is ap-
plicable to a great variety of centralized controllers, including
strictly proper and non-minimum phase controllers, provided
some derived conditions hold. As a consequence of the SM con-
ditioning, input constraints and control directionality changes
are effectively avoided without affecting the decoupling of the
system.

Some remarkable features of the proposals are that: (1) the
reference is conditioned only if controller outputs reach their
bounds, otherwise, the SM loop is inactive and the original
control system is not altered at all; (2) the dynamics of the SM

conditioning loop can be designed independently of the main
control loop dynamics; (3) there are neither chattering problems
nor reaching mode, which usually degrade VSS responses; (4)
the SM implementation is extremely simple because the con-
ditioning loop is confined to the low-power side of the system.

Problems for further research are a detailed analysis of the
performance costs and the derivation of an invariant set of the
state-space in which control signals limits are assured, in or-
der to be able to apply the algorithm (locally) to constrained
unstable systems.
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