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Abstract—Reversible data hiding hides data in an image such
that the original image is recoverable. This paper presents
a novel embedding framework with reduced distortion called
skewed histogram shifting using a pair of extreme predictions.
Unlike traditional prediction error histogram shifting schemes,
where only one good prediction is used to generate a prediction
error histogram, the proposed scheme uses a pair of extreme
predictions to generate two skewed histograms. By exploiting
the structure of the skewed histogram, only the pixels from the
peak and the short tail are used for embedding, which decreases
the distortion from the lesser number of pixels being shifted.
Detailed experiments and analysis are provided using several
image databases.

Index Terms—Reversible data hiding, reversible watermark-
ing, skewed histogram shifting

I. INTRODUCTION

EVERSIBLE data hiding offers an interoperable way
to store information in an image, such that the original
image can be recovered when required.

There are several uses for reversible data hiding. The first
use is for distortion-sensitive applications, such as military and
medical imaging, where the authentication data is embedded
as a watermark. In this case, image enhancement filters are
applied directly to the watermarked image, while the original
image can be recovered, and data can be extracted, when
requested.

Data hiding in an encrypted image [1] is another use, where
the original image recovery information is embedded as a
reversible watermark. In this case, the original image recovery
is offered only to privileged users, while watermarked image
recovery is provided to all users.

Lastly, reversible data hiding is also finding applications in
areas where contrast enhancement is needed with the support
of the original image recovery [2-5]. In this case, the focus is
on achieving contrast enhancement, data hiding and file size
reduction [5], all at the same time.
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Fig. 1: Different histogram distributions.

In this paper, we investigate a new low-distortion embedding
framework based on the even and odd embedding of Sachnev
et al.’s scheme [6] using skewed histograms.

In Sachnev et al.’s work [6], pixels are even, if the sum of
a pixel’s horizontal and vertical positions is an even number,
and odd, if the sum is an odd number. Without loss of
generality, the even set is embedded first, and then the odd
set. This division allows for parallel predictions, and the use
of an accurate prediction method called, rhombus prediction.
The rhombus prediction is the average of the four direct
neighbors, and its accuracy is much higher than the traditional
predictors from image compression, because the traditional
predictors can only utilize at most two direct neighbors,
for the prediction. This usually results in a prediction error
histogram, which is symmetric with sharp peaks around 0 and
-1. The prediction error pe =p pis embedded using a map
such as the one in Fig. 2, and the modification is reflected to
the watermarked pixel p°:
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Fig. 2: Prediction error histogram mapping for Sachnev et al. [6].
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where b 2 f0; 1g is the payload bit.

Pixels with prediction errors 0 and -1 are used for embed-
ding, while pixels with prediction errors that are smaller than
-1 or greater than O are shifted away from the middle, causing
distortion.

In this paper, we explore using not one, but two prediction
values to create two skewed histograms, and use them to
reduce the number of shifted pixels. Skewed histograms,
histograms where bins are asymmetrically distributed and
concentrated to one side, have better distribution for histogram
shifting than symmetric histograms. Fig. 1b and ¢ show that
skewed histograms consist of a peak and two tails: a short
and a long tail, which extend on either sides of the peak. In
the proposed scheme, the peak is used for embedding, the
short tail is used for shifting (due to embedding), while the
long tail is left untouched. The number of shifted pixels can
be smaller compared to embedding in a symmetric histogram,
due to many pixels in the long tail not being modified.

Our contributions are as follows:

A novel embedding scheme called skewed histogram
shifting using a pair of extreme predictions is proposed.
The effectiveness of the skewed histogram shifting is
demonstrated.

Extensive experiments and analysis are performed using
images of varying sizes and payload sizes.

Il. RELATED WORK

Reversible data hiding for distortion-sensitive applications
has been realized using techniques that are based on lossless
compression [7-11], difference expansion [12-18], histogram
shifting [6, 12, 19-42], integer transform [43-49], and distor-
tion compensation [50, 51].

One of the key reversible data hiding techniques is called
histogram shifting. This technique uses a histogram of pixels
or some transformed version of the pixels, and shifts a set
of peaks of the histogram in a reversible way to hide data.
For example, the pixel-based histogram shifting technique pro-
posed by Ni et al. [20] uses the most frequent pixels for data
hiding. The difference expansion technique proposed by Tian
[13] uses the histogram of the difference between the pixel
and its immediate neighbor for data hiding. More advanced
techniques include the histogram shifting in prediction error
histogram, which requires less modification to hide data than
the pixel or pixel difference histograms.

Extending the research in prediction error histograms, sev-
eral researchers [12, 19, 39, 46, 52-55] have focused on em-
bedding peak selection optimization. These techniques choose
embedding peaks not by the frequency, but by distortion
minimization for the specific payload size. While these tech-
niques generally perform very well, they come with higher
computational cost.

Identification of smooth and rough areas has also been of
interest. This is because embedding in smooth areas tends to
cause less distortion than in rough areas. Exceptional work
proposed by Kamstra and Heijmans [15], and Sachnev et al.
[6] sorted pixels by local complexity values in order to embed
in smooth areas before embedding in rough areas. Since then,
improved local complexity functions have been proposed by
Ou et al. [23] and Li et al. [55], which performs better than
previous works.

Recent research has focused on histogram shifting using
pixel value ordering [26-28], which uses an ordering of the
pixel blocks with prediction error histogram shifting to achieve
very high PSNR for very small payload.

On the other hand, embedding large payload has been
explored by Dragoi and Coltuc [56], Lee et al. [57], and
Hwang et al. [58]. These techniques utilize regression-based
prediction methods to increases the accuracy of the pre-
dictions. Although it increases the computational power, a
more sharply distributed prediction error histogram suitable
for embedding large payload is produced.

Li et al. [24] and Gui et al. [59] explored a new embedding
point optimization called two-dimensional (2D) histogram
shifting. In 2D histogram shifting, each neighboring pair
of prediction errors (ei;ez) is either embedded or shifted
according to a predefined map. Modifying the prediction errors
as a pair gives more precise control over which pixels are
embedded, and which are shifted. Although Refs. [24, 59]
only focused on using a 2D pixel difference prediction error
histogram for embedding, it provided inspiration and the
foundation for the recent state of the art techniques called
pairwise prediction error expansion technique by Ou et al
[23], and adaptive pairing reversible data hiding by Dragoi
and Coltuc [17]. Among the several maps proposed by Refs.
[23], one map called “T1’ stands out, as it shuffles around
the embedding points to allow embedding in prediction error
values equal to not just 0 and -1, but other points as well; check
Refs. [23] for more details. This method is further improved
by using an improved local complexity function, which takes
consideration of more neighbors. The combination of the two
ideas has demonstrated superior performance against existing
1D methods. Refs. [23] also presents several graphical repre-
sentations of 2D prediction error histogram shifting mappings,
which can exploit the correlation of the pairs of prediction
errors. Their experimental results show the superiority of their
method when compared to 1D methods. On the other hand,
Refs. [17] is an optimized version of Refs. [23], in which
pairing the pixels is not fixed; instead, it is adaptive, creating
a more compact 2D prediction error histogram.

Other recent works also include techniques in distortion
compensation [50, 51], a double-embedding technique in
which the distortion from the first embedding maybe removed
or reduced by the second embedding. This research area is
quite fresh, and provides an interesting alternative to the
traditional scheme.

Like distortion compensation techniques, Chen et al. [60]
proposed a double-embedding technique based on directed
prediction error expansion. The technique generates two
slightly different prediction error histograms, using two vari-
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ations of gradient adjusted predictor (GAP), and embeds in
each histogram in a consecutive manner.

I1l. PROPOSED: SKEWED HISTOGRAM SHIFTING SCHEME

Traditional image coding techniques rely on the symmetric
Laplacian or Gaussian distribution of the prediction error
for compression. Similarly, traditional reversible data hiding
utilizes the symmetric sharp distribution to embed in the
frequent peaks to maximize the embedding capacity while
minimizing the shifting distortion. The proposed method takes
a different approach by investigating different methods to
generate skewed asymmetrical histograms that are suited to
histogram shifting: asymmetric histograms with a short tail
and a long tail relative to their modes.

Generating a skewed prediction error histogram is quite
simple. Consider the prediction error equation: pe = p f.
If the prediction f is a high estimate, the prediction error pe
will likely be negative, i.e., the majority of the prediction error
values will be negative, forming a left skewed histogram (see
Fig. 1b). Conversely, a prediction histogram generated using
a low estimate will form a right skewed histogram (see Fig.
1c).

The proposed method takes advantage of the asymmetry of
the skewed histogram and shifts the pixels only within the
short tail part, leaving the pixels in the long tail part almost
unmodified. In conclusion, asymmetric prediction histograms
can have the previously unobserved benefits of reducing dis-
tortion.

In this section, we present a reversible data hiding scheme
called skewed histogram shifting that uses a pair of extreme
predictions. The steps are as follow:

1) Make a pair of extreme predictions for the pixel.
2) Embed using positive histogram shifting (PHS).
3) Embed using negative histogram shifting (NHS).

where, PHS and NHS are the unidirectional histogram shifting
method, and their shifting direction is fixed to their respective
signs, i.e., PHS only allows histogram bins to move towards
the positive direction, whereas NHS only allows histogram
bins to move towards the negative direction.

Sections I11-A and 111-B describe the embedding, extraction,
and recovery of the skewed histogram shifting. Section I11-C
outlines the proposed extreme prediction predictors. Finally,
Section I11-D presents the proposed local complexity function.

A. Embedding

Even and odd embedding is used in the proposed method;
without loss of generality, we embed the even sets first, and
then embed the odd sets. Pixels are even, if the sum of the
horizontal and vertical positions is even; likewise, odd, if the
sum is odd.

Each pixel is embedded twice in a row, first using the high
estimate Py, and then using the low estimate fy. The exact
formulations of Py, and gy are discussed in the next subsection.

The first skewed prediction error histogram isp  pn. One
bit is embedded in p using PHS:
8

2p+b ifp =0
p°=>p+1 ifp pPn=>0 2
Tp else

where b; 2 f0;1g is the first message bit, and p° is the
watermarked pixel. One bit is embedded only if the prediction
error is 0, and the other pixels are shifted by 1 only if their
prediction errors are strictly positive.

The second skewed prediction error histogram is p* f.
One bit is embedded8in p’ using NHS:

=p’ by ifp" m=0
pr=_p" 1 ifp" m<0 (3)
“p else

where by, 2 f0;1g is the second message bit, and p” is the
watermarked pixel. A bit is embedded only if the prediction
error is 0, and other pixels are shifted if the prediction errors
are strictly negative.

The proposed scheme only modifies the pixel value by at
most 1, because PHS maodifies it by either 0 or +1, whereas
NHS modifies it by either 0 or -1.

B. Extraction and Recovery

For extraction and recovery, the steps from embedding are
done in reverse order, i.e., the odd pixels are recovered before
the even pixels. First, the odd pixels are sorted. Message bits
b1 and b, can be extracted using the following equations:

0 ifp? p=0
b, = 4
2T 1 i = 1 )
«
by = 0 ifp" ph=0 5)
YT ifp ph=1
Then, pixel p is recovered using the following equations:
00 if 00
0 p?+1 ifp® /<O
6
P p¥ else ©)
(p° 1 ifp" pp>0
p= (7
p else

The same steps are repeated for the even set as well. The
embedding capacity and the distortion will vary depending on
the pair of extreme predictions Py, and . The next section
presents three prediction methods for py, and f.

C. Proposed pairs of extreme predictors

In the proposed method, the predictors are evaluated as a
pair (fn; P) using the neighboring pixel values. First, the four
immediate neighboring pixel values N, W, S, Eg (see Fig.
4a) are sorted in ascending order: X3 Xz X3  X4. Table
1, in the bottom of the page, lists three proposed predictor
pairs: Predictor 1 has the most extreme prediction values
(highest and lowest neighboring values), whereas Predictor 3
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Fig. 3: Embedding example using predictor 1.
Predictor # | 1 2 | 3 j . .
e+ xat T s x5 7351 D. Local complexity functions
Pn x4 . s 3 ; In literature, a technique called pixel selection is used to
0, xp | 2| TXetXetxa further reduce the distortion. The main idea of pixel selection
2 3

TABLE I: Predictor pairs. [:] rounds to the nearest integer.

returns the most collaborative pair of prediction values (most
neighbors are used for prediction).
Following the trend, Predictor 4 would be:

h i
ph:m: X4+X3:X2+X1 (8)
However, since the prediction values are the same, embed-
ding would be the same as double-embedding around 0, which
is known to not perform well; thus, it is not analyzed in this
paper.
Furthermore, to avoid double embedding around 0, the
equation below is used to ensure that the pair of prediction
values are never equal:

(Ql 1 ifph=pn
i =
m:

4] else ©

Note that using Eq. (9) has no effect on the reversibility as
it is applied after the prediction and before the embedding.
The analysis of the predictors and Eq. (9) is shown in the last
section.

A short example of embedding using Predictor 1 is shown
in Fig. 3 for embedding m = 0 and m = 1 in p = 125.
During PHS, m cannot be embedded, since the prediction error
(p  Pn) is not O; however, during NHS, m can be embedded,
since the prediction error (p ) is 0.

is choosing less distortion-causing pixels first for embedding.
Local complexity values are used to rank the pixels by
examining their likelihood of being embeddable. Generally,
a smaller value indicates that it is a smooth pixel, i.e., more
embeddable. Therefore, pixels with smaller local complexity
values are embedded first. In this subsection, two techniques
from the literature and one proposed technique are presented:
the four-pixel version, the pairwise version, and the proposed
extended version.

Fig. 4a shows the context of the four-pixel version,
which uses the four direct neighbors to determine the local
complexity value. Fig. 4b shows the context of the pairwise
version [23], which uses pairs of pixels’ neighbors. Fig. 4c
shows the context of the proposed scheme, which uses a
similar idea of incorporating more neighbors. The following
gives a description of the relevant functions:

1) Four-pixel version (see Fig. 4a):
C(p) =jN Wj+jw Sj+jS Ej+jN Ej+jW Ej+jN Sj
2) Pairwise version (see Fig. 4b):
Cpair(P1) = jN1 Wij + jW;
iS1 S2j+jS2 Ezj+jEx Eij+]jE:;
3) Extended version (see Fig. 4c):
C(p) =C(p) + C(NW) + C(NE) + C(SE) + C(SW)

S1j+jS1  Eij+jNi

F2j

Eij +
F1j +jS1

IV. ENCODER AND DECODER.

In this section, the encoder and decoder are presented.
Before presenting the encoder and the decoder, the side
information needed for perfect recovery is discussed.
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A. Side information

The decoder requires side information for data extraction
and original image recovery. Each part of the side information
is described as following:

Preprocessing and Location Map: A preprocessing step
and location map are necessary to avoid an underflow and
overflow problem. Embedding a pixel can result in a water-
marked pixel with under and overflow values -1 and 256; but
this can be solved if pixel values 0 and 255 are preprocessed
to 1 and 254, respectively. The general procedure is to modify
the image prior to embedding (preprocessing) and embed the
modification history (location map) as part of the payload. The
location map M = My M; i Mg is generated and
preprocessing from the original pixel p, to the preprocessed
pixel p is implemented in the following way:

1) Scan the image in raster scanning order.

0 if pp =1 or 254

Mi = . (10)
1 ifpo=0o0r255
8
=254 if p, = 255
p= >1 if po =0 (1)
~ Po else

2) Repeat the above steps until the whole image is scanned.

During the decoding stage, recovery of the pixel values 0
and 255 using M s trivial:

1) Scan the image in raster scanning order.

0 ifp=land M =1
Po = .p_ LT (12)
255 if p=254and M; =1

2) Repeat the above steps until the whole image is scanned.

Finally, the location map is losslessly compressed using
arithmetic coding and appended to the front of the payload,
along with its size. Given an image size of n m, the
upper limit to represent the size of the location map is
t = dlog2(n  m)e bits. For an image size of 512 512,
this is 18 bits.

Payload length: The payload length is recorded in the LSBs
of the border pixels using the LSB replacement method, and
the original LSBs are appended in front of the payload. It
should be sufficient to limit the t = dlogo(n m)e bits to
represent the size of the payload. For an image size of 512
512, this is 18 bits. The payload length is used to know when
to stop decoding.
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Fig. 4. Context used for different local complexity functions. Yellow
pixels represent the context, and the blue pixels are the target pixels.
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Fig. 5: Encoder and decoder

Predictor number: All three predictors are used for embed-
ding, and the watermarked image with the highest PSNR is
chosen. The predictor information is recorded using the LSB
replacement method in the border pixels” LSB. The predictor
number can be represented using two bits.

LSBs of the border pixels: Payload length (t bits) and
predictor number (2 bits) are recorded in the border pixel’s
LSBs, and the t + 2 border pixel LSBs are appended to the
front of the payload and used during recovery.

B. Encoder

Given an image of size n  m, the embedding is done using
the following steps:
1) Preprocess and generate the location map.
2) Append the location map’s size, the location map, and the
LSBs of the t + 2 border pixels to the payload.
3) For each predictor, perform Steps 4)-8).
4) Replace the t + 2 border pixel LSBs with the payload length
and predictor number.
5) Sort the even pixels using C(p).
6) Use PHS, and then NHS to embed the first half of the payload.
7) Sort the odd pixels using C(p%).
8) Use PHS, and then NHS to embed the second half of the
payload.
9) Calculate the PSNR between the original and each of the
watermarked images.
10) Save the watermarked image with the highest PSNR.

C. Decoder

Extraction and recovery are done using the following steps:

1) Read the t + 2 border pixel LSBs and extract the predictor
number and the payload length.

2) Sort the odd pixels using C(p%).

3) Undo NHS, then PHS, and recover and extract the second part
of the payload.

4) Sort the even pixels using C(p).

5) Undo NHS, then PHS, and recover and extract the first part of
the payload.

6) Replace the first t + 2 border pixel’s LSBs with the original
LSBs.

7) Uncompress the location map, and undo the preprocessing.
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Fig. 6: PSNR comparison for the USC-SIPI image database. ‘Ou’ is [23], ‘Sachnev+’ is [6]+, ‘Sachnev’ is [6], and ‘Chen’ is [60].

The graphical figure for encoder and decoder is provided in Kodak and BOSS databases are used to collect the statistics
Fig. 5. of the comparison results*. The goal of the comparison here is
to compare the proposed scheme with the other basic schemes

V. EXPERIMENTAL RESULT AND ANALYSIS without peak optimization to provide clear analysis.

This section compares the proposed method using three
image databases: USC-SIPI!, Kodak?, and BOSS v1-13. The A. USC-SIPI database
USC-SIPI database is used for detailed analysis, whereas USC-SIPI is a popular image database for testing various

image processing techniques, and contains several 512 512
Lhttp://sipi.usc.edu/database/

2http://www.rok.us/graphics/kodak/ 40ur code will be available at https:/github.com/suahnkim/skewed_
3http://agents.fel.cvut.cz/stegodata/RAWS/BossBase- 1.0-raw-1.tar histogram_shifting after publication
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sized color and grey-scaled images.

The proposed method is compared with Sachnev et al. [6],
updated version of [6] (denoted as [6]+ or Sachnev+), Ou et
al. [23], and Chen et al. [60].

[6] is one of the most well-known benchmark algorithms
for reversible data hiding.

[6]+ is updated with the proposed location map and the
extended local complexity function.

[23] is one of the most recent state of the art reversible
data hiding techniques which utilizes the 2D histogram
shifting, which performs strictly better than existing
methods without embedding peak optimization.

[60] is the histogram shifting using directed-prediction
scheme, which utilizes two variants of gradient adjusted
predictors (GAP) to produce two histograms. This is
similar to the proposed algorithm; it uses a pair of
predictions to generate two prediction error histograms,
but the difference in prediction values exists only for the
edges: edge prediction values are assigned constant values
of either 0 or 255, depending on the histogram.

Payloads starting from 5,000 bits, increasing in the order
of 1,000 bits, are tested and corresponding PSNR values are
compared.

Fig. 6 shows that in general, Chen et al.’s method [60] does
not perform well, except for the image Peppers. For image
Peppers, it performs better or the same as [23] for payload
between 5,000 and 20,000 bits. More importantly, it performs
strictly worse than the proposed method for all images and
payloads.

On the other hand, [6]+ noticeably performs better than
[6] in lower payload areas, especially for image F16 (the
performance improvement is a direct result of the updated
local complexity function).

The proposed method performs better or close to [23] across
most payloads. However, it performs worse for image Barbara,
near the maximum embedding capacity (rough areas), because
the rough areas of image Barbara have many prediction errors
equal to 1 and -2 and only [23] can possibly embed in those
prediction errors. Thus, for this specific case, [23] embeds
with smaller distortion compared to the proposed method and
[6]. Overall, the proposed method performs better than [23] in
noisy images such as Boat and Peppers.

In conclusion, the proposed method performs very well with
noisy images such as Boat and Peppers, because prediction
error histograms tend to be more skewed, leading to a smaller
number of pixels that are shifted. For smooth images such
as F16, the proposed method lacks the advantage, because
the rhombus predictor’s prediction value and the proposed
predictor’s prediction values are more likely to be similar, i.e.,
the generated prediction error histograms are barely skewed.

B. Kodak database

Extended experiments were performed using the Kodak
database. This database has 24 color images with size of 512

768. The images are first converted to gray-scaled images
using the built-in MATLAB function rgb2gray().
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Fig. 7: PSNR comparison for the Kodak image database.
10,000 bits 20,000 bits
# [6]+ [23] Proposed [6]+ [23] Proposed
1 63.69 64.01 64.76 59.79 60.05 60.52
2 64.09 64.22 64.69 60.53 60.85 61.58
3 64.97  65.09 65.02 61.73  61.86 62.01
4 63.84  63.86 64.61 60.05  60.40 61.35
5 63.47  63.61 64.66 59.85  60.11 60.92
6 66.42 66.94 66.42 63.27 63.48 63.24
7 64.37 64.44 64.51 61.02 61.22 61.50
8 57.02  58.66 58.39 5439  55.56 56.01
9 61.87 61.77 62.74 58.13 58.40 59.57
10 61.58 61.80 62.40 58.11 58.42 59.52
11 64.70 64.84 64.90 61.22 61.53 61.95
12 64.39 64.62 64.64 60.84 61.12 61.50
13 58.85  60.01 59.32 53.66 54.24 54.52
14 62.76  62.93 64.06 58.81  59.07 60.05
15 62.85 63.61 62.91 60.82 61.31 60.89
16 64.77 64.77 64.98 61.19 61.41 61.90
17 62.77 6297 63.82 59.20  59.65 60.80
18 5896  59.71 60.94 56.12  56.68 58.10
19 6144  62.04 62.92 5820  58.89 60.06
20 56.73 57.09 56.75 56.18 56.58 56.30
21 61.53 61.90 62.57 58.09 58.66 59.66
22 61.01 61.62 62.60 57.96  58.52 59.83
23 63.88  64.05 64.06 60.68  60.84 61.16
24 59.89  61.00 60.48 5858  59.34 58.99
Average  62.33  62.73 63.05 59.10  59.51 60.08

TABLE II: PSNR comparison for the Kodak database.

Table Il and Fig. 7 show the PSNR values for 10,000
and 20,000 bits, where the table entry is in bold if it is the
highest. The proposed method has the highest PSNR value
for 17 and 20 images for 10,000 and 20,000 bits, respectively.
The proposed algorithm has the highest average PSNR value
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Fig. 8: PSNR comparison for the BOSS database.

as well. Compared to [6]+, the proposed method has higher
PSNR value by 0.72 dB and 0.98 dB for 10,000 and 20,000
bits, respectively. Compared to [23], the proposed method has
higher PSNR value by 0.32 dB and 0.57 dB for 10,000 and
20,000 bits, respectively.

Overall, the proposed method performs better than [6]+
and [23], and the PSNR gain for 20,000 bits is larger than
for 10,000 bits. The next subsection describes additional
experiments using a larger database with larger images.

C. Boss database

To verify the experiments at larger scale, Break Our
Steganography System (BOSS) database is used. For the
experiment, 1,000 raw color images of size 2;602 3;906
in CR2 format are used. To use the raw pixels, the images
are first converted to PGM format using DCRaw® and then
converted to gray-scaled images.

Instead of testing the payload size of 2 10* bits, the
payload size of 8 10° bits is tested, since when compared
to the USC-SIPI images, the BOSS images have about 40
times the number of pixels. Image 229 has been excluded
from the result, because only the proposed method successfully
embedded the payload, due to the large location map size.

Fig. 8 summarizes the gain in the PSNR result. The
proposed algorithm has the highest average PSNR value; it

Shttp://www.cybercom.net/  dcoffin/dcraw/

performs better than [6]+ by 0.77 dB and better than [23] by
0.29 dB, and it has higher PSNR values than [23] for 74.1%
of the images.

VI. ANALYSIS OF THE EXTREME PREDICTORS

In this section, the proposed predictors are analyzed by
their embedding and distortion capability. The initial analysis
focuses on the result of each predictor when Eq. (9) is not
used (indicated by an asterisk ‘*’ after the predictor number),
and the improvement resulting from Eq. (9) is discussed in the
last subsection.

A. Pixel classification

For analysis of the extreme predictors, the following Table
111 is used to classify each pixel,

Lec =0 Lec =1 Lec =2
Lg =0 Skipped Embedded Twice Embedded
Lg=1 Shifted Embedded  Twice Embedded

TABLE llI: Pixel Classification.

where, Lq represents the local distortion, the absolute differ-
ence between the watermarked pixel p® and the original pixel
p, and L represents the local embedding, the number of bits
embedded in p®.

Fig. 9 shows a graphical representation of the distribution

to further examine each predictors.

1) Fig. 9a has the most skipped pixels, whereas Fig. 9c has
the least skipped pixels.

2) Fig. 9a has the least embedded pixels, whereas Fig. 9c
has the most embedded pixels.

3) Fig. 9a has almost no twice embedded pixels, whereas
for Figs. 9b and c, a few trails of twice embedded pixels
can be observed near the head of the airplane.

In summary, predictors that incorporate more neighboring
information have more embedded and twice embedded pixels,
whereas predictors that incorporate least neighboring informa-
tion have more skipped pixels.

B. Notes on skipped pixels

Skipped pixels are the main advantage of skewed histogram
shifting because they do not cause distortion.

(a) Predictor 1* (b) Predictor 2* (c) Predictor 3*

Fig. 9: F16 embedded using skewed histogram shifting without using
Eq. (9). Blue pixels are embedded, red pixels are shifted, green pixels
are twice embedded, and gray-scaled pixels are skipped.
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Fig. 10: Improved performance due to Eq. (9). **’ denotes the results
without using Eq. (9).

The conditions for a pixel to be skipped are as follows:

1) Skipped during PHS
impliesp ph <0
then p < Py,

2) Skipped during NHS,
implies p' = p and p’
then py < p’

From conditions 1) and 2), a pixel is skipped if fy < p < pn
is established, i.e., the target pixel value is strictly between the
predicted extreme values. To summarize, skipped pixels occur
in cases where pixels are difficult to predict.

B >0

C. Notes on twice embedded pixels and Eqg. (9)

Twice embedded pixels are the main drawback to skewed
histogram shifting. Although these pixels embed two bits at
the cost of one or zero distortion, they decrease the total
embedding capacity. This is because of the part of the con-
dition of twice embedded hinges on the equality between the
high estimate and the low estimate (B, = ), which results
in double embedding for prediction errors equal to 0. The
conditions for a pixel to be twice embedded are as follows:

1) Embedded during PHS

impliesp ph=0
then p = Py,

2) Embedded during NHS
impliesp’ =0
then p' =

From conditions 1) and 2), a pixel is twice embedded if
bh = p = p’ = M, i.e, high estimate, target pixel, first
watermarked pixel, and low estimate are all the same.

The aforementioned Eq. (9) is used to eliminate the chance
of double embedding. In the case of p = f, Eq. (9)
artificially decreases py by -1 such that embedding is possible
whenp ph=0andp’ p 1=0 (here, f is the original
value without Eq. (9). Upon close inspection, this modification
is equivalent to embedding in not just 0, but also in -1 when
Pr = ) is established

Fig 10 shows the performance gain when Eq. (9) is used
for image F16, and “*’ indicates the results without using
Eq. (9). Significant improvement ranging from 0.25 to 1 dB

can be observed. Notice that predictors that incorporate more
neighboring information end up with the most improvement.
This is because when more neighbors are incorporated, it is
more likely that By, = y cases occur.

Another point to be made is that the improvement is more
noticeable for embedding in smooth images such as image
F16, as pn = By cases occur most often for smooth areas.

VII. FUTURE WORK IN REVERSIBLE DATA HIDING WITH

IMAGE CONTENT ANALYSIS

Image content analysis is becoming a hot topic, as it
provides an efficient way to search images using texts and
match similar images based on its content [61]. Since it is
becoming popular, we want to share how the proposed method
and other reversible data hiding techniques can be applicable
in image content analysis.

First, we want to discuss the performance impact when
image search techniques are used on watermarked images.
Existing image search techniques based on probabilistic image
hashing, such as locality-sensitive hashing [62] and Grassman
hashing [63, 64], hash the image such that there is a higher
chance of collision for similar looking images than the ones
that are not. Therefore, smaller distortion causing reversible
data hiding methods are less likely to affect the search
performance than the ones that cause larger distortion, i.e.,
PSNR will be a good estimator for determining whether a
particular technique will affect the image search performance.
Furthermore, since the proposed method prioritizes embedding
in smooth areas before complex areas, an image hashing
technique that is trained to be robust against noise in the
smooth areas will have smaller impact on the performance.

The proposed method can also be used to embed the
metadata resulting from image content analysis directly into
the image. When implemented in this way, it provides an
additional protection against accidental deletion and corruption
of metadata. In addition to the protection, the embedded
metadata can be compared with the original metadata for
integrity verification.

VI1Il. CONCLUSION

In this paper, we propose a novel reversible data hiding
scheme that uses skewed histograms with a pair of extreme
predictions. Unlike the traditional prediction error histogram
shifting, where each pixel is predicted once using a good
predictor, the proposed method predicts each pixel twice
using a pair of extreme prediction values to produce two
skewed histograms, where their asymmetry is used to reduce
distortion. Analysis shows that the proposed method performs
well. Further research on the topic should bring interesting
results.
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