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REDUCED ORDER KALMAN FILTERING
WITHOUT MODEL REDUCTION

D. Simon*

Abstract

This paper presents an optimal discrete time reduced order Kalman
filter. The reduced order filter is used to estimate a linear combi-
nation of a subset of the state vector. Most previous approaches
to reduced order filtering rely on a reduction of the model order.
However, this paper takes the full model order into account. The
reduced order filter is obtained by minimizing the trace of the
estimation error covariance.
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1. Introduction

For linear dynamic systems with process and measurement
noise that are white and uncorrelated, the Kalman fllter
is known to be an optimal estimator [1]. In case the
process and measurement noise are colored or correlated,
the Kalman filter can be generalized and remains opti-
mal [2]. However, computational constraints can make the
full order Kalman filter difficult to implement in real time,
especially when the implementation platform is a micro-
controller or digital signal processor [3]. In addition, some
Kalman filter applications (e.g., meteorology and oceanog-
raphy applications) can involve millions of states [4]. This
has led to considerable effort on methods of reducing the
order of the Kalman filter.

The earliest efforts at reduced order Kalman filters
recognized that the Kalman filter for a system where
some of the measurements are noise free is equivalent to
a Kalman filter for a system with a reduced number of
states [5, 6]. On a related note, the Riccati equation
associated with the Kalman filter can be reduced if some of
the states are unobservable [7] although the resulting filter
still estimates all the states. Similarly, the Riccati equation
can be reduced if a matrix decomposition is performed on
some of the matrices in the Kalman filter, especially if
those matrices are rank deficient [4, 8-10].

Most reduced order filters are designed on the basis
of a reduction in the order of the system model. If we
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can find a reduced order system model that approximates
the full order system model, then we can design a state
estimator on the basis of the reduced order system model
that approximates the full order Kalman filter. This
approach has been applied to motor state estimation [3,11],
navigation system alignment [12], image restoration [13,
14], and audio analysis of respiratory data [15].

Some aerospace system equations have states that can
be semi-decoupled such that the derivative of the first
state partition is independent of the second state partition
(although the derivative of the second state partition is
still dependent on the first state partition). In that case
a reduced order Kalman filter can be designed to estimate
the first state partition by generalizing an approach to
Kalman filtering with time correlated measurement noise
and correlated process and measurement noise [16].

This paper does not make any approximations in the
order of the model and does not assume any special struc-
ture in the system dynamics. This is similar to the ap-
proaches proposed by Sims [17], Bernstein [18], Nagpal [19],
and Keller [20, 21]. Sims' approach involves the solution of
a two point boundary value problem, which can be numer-
ically difficult. Bernstein's approach guarantees stability,
but it is limited to steady state and involves the solution
of simultaneous Iliccati equations, which again can be nu-
merically difficult. In addition, his reduced order estimator
may be biased. Nagpal does not assume any special form
for the state transition matrix of the estimator. This leads
to the minimization of the error covariance subject to con-
straints that guarantee an unbiased estimate. However,
Nagpal's approach is limited to cases where the number
of estimated states is greater than or equal to the num-
ber of independent observations. In addition, estimator
stability is still an open question. Keller [20] presents a
simplification of Nagpal's approach along with convergence
and stability results, although the restriction on the num-
ber of estimated states remains. Keller presents another
approach [21] that is restricted to time invariant systems
where the number of measurements is greater than the
number of unestimated states.

The present paper assumes that the state transition
matrix is a certain matrix. This guarantees an unbiased
estimate and so the error covariance is minimized without
any constraints. Like Nagpal, we cannot prove anything
about stability for the reduced order filter presented here.
The optimal reduced order filter equations involve the si-
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multaneous iteration of six-time varying Riccati equations.
In general, these iterations are computationally more de-
manding than a full order filter. However, if a steady state
filter is desired, then the Riccati equations can be iterated
off line until they converge to steady state values, at which
point a reduced order constant filter gain can be computed
for on-line implementation.

In the equations in this paper, we use the notation
(• • •) to indicate the quantity that appeared in the pre-
vious set of parentheses. For example, the expression
[{A + 5) + (• • • V] is shorthand for [{A + B) + (A + Bf].
The notation E{-) indicates the expected value of the quan-
tity in parentheses. The notation 'Tv(A) indicates the trace
of the matrix A. Section 2 presents the reduced order filter.
Section 3 presents some simulation results, and Section 4
presents some concluding remarks.

2. Reduced Order Kalman Filtering

Suppose we have a linear discrete time dynamic system.
For ease of notation we will assume that the system is time
invariant, although the derivation applies equally well to
time-varying systems. The system is given as:

(1)

where {wk} and {vk} are uncorrelated zero mean white
noise processes with covariance matrices Q and R, respec-
tively. The state vector x has ra + n elements, and the
measurement vector z has p elements. We desire to es-
timate m linear combinations of the state T^x,..., T^x,
where each Tj is an Tn + n element column vector, and all
of the Ti vectors are linearly independent. We form the
(m + n) X (m + n) matrix:

(2)

where 5 is an n x (m + n) matrix that is arbitrary as long
as T is invertible. We make the linear transformation
X = Tx which results in the algebraically equivalent system:

(3)

where F = TFT-\ G = TG, and H = HT-\ Now we want
to estimate the first m elements of x, and we do not care
about the last n elements of x. The equivalent system can
be partitioned as:

Xk+l

~Xk+,_ F21 F22

Zk = [Hi H2\
Xk

Xk

Xk

+.
1

Vk

G i '

G2

(4)

We want to estimate x but we do not care about
estimating x. The dynamic system for x and x can be
written as:

+ +
(5)

where Fn is the transition matrix of Xk and the quantities
in parentheses are considered to be noise terms [22]. With
this perspective we can design a filter for Xk that uses
the known part of its transition matrix Fn, and that uses
the measurement matrix Hi that relates Xk to Zk. This
motivates the proposed reduced order estimator:

(6)

The problem is to determine the optimal filter gain
Kk. We define e^ as the error in the estimate of Xfc.
Combining the two previous equations and rearranging
gives the estimation error as:

+ (F12 - Kk+iHiFi2

k - Kk+iVk+1

(7)

= (/ - Kk+iHi)Fii{xk -

- Kk+iH2F22)xk - Kk+

+ {Gi - Kk+iHG)wk

Note that if E{eQ) = 0, E{xo) = 0, and E(S:o) = 0, then
the estimator proposed in (6) is unbiased for all k regardless
of the choice of Kk. Now we define the following covariance
matrices:

Pk = E{ekel)

Pk = E{xkxl)

(8)

Ilk =

Uk =

Our goal is to find the filter gain that minimizes some
measure of Pk, the covariance of the estimation error. To
simplify notation we define the auxiliary variables:

C — H1F12 + H2F22

(9)

where / is the appropriately dimensioned identity matrix.
We can use (5)-(7) to obtain the following equations for
the covariance matrices:
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+G2QGI

+ G1QGI

= (/ - Kk+iHi)Fn{IlkFli +

- (•

- Kk+iHG)Q{Gi

(10)

Now we use some properties of matrix calculus. If
A and B are general matrices, then the following matrix
derivatives hold:

dA
dTrjAB)

dA

dA

= B

^ AB +

(11)

With these definitions we can choose the filter gain
Kk+i to minimize the trace of Pk+i in (10). Taking the
partial derivative of the trace of Pk+i in (10) with respect
to Kk+i and setting the result equal to 0 results in:

(12)

where Ak and Bk are given as:

R

+ F12T.I - +
+ +

(13)

Equations (12) and (13) and the iterations in (10) can
be solved for the optimal filter gain Kk+i at each time
step.

In many cases the solution of these equations will be
more computationally demanding than the full order filter,
in which case the entire objective of reduced order filter-
ing will be defeated. However, in some state estimation
applications the total number of states is on the order of
millions, while the number of estimated states is a tiny
fraction of the total number of states [4]. In these cases
the approach outlined here could result in a huge savings
in computational effort.

In some applications of reduced order filtering, the
number of estimated states is of the same order of magni-
tude as the total number of states. In these cases, the ap-
proach outlined here would not be computationally benefi-
cial for real-time implementation. However, if the reduced
order gain given in (12) converges during off-line calcula-
tions to a steady state value, then this constant reduced
order gain can be used in real time to achieve computa-
tional savings. At this point, the only way to determine
the convergence and stability of the reduced order filter
is through numerical computation. Analytical results on
convergence and stability remain as open research issues.

3. Simulation Results

3.1 Results for a Two State System

In this section, we present a simple example to demonstrate
the effectiveness of the reduced order filter. Consider the
second order system given by:

1

0

= [0 l]xk + •

~ N{Q,0.1)

F =
0.9 0.1

0.2 0.7
(14)

We desire to find a reduced order estimator of the first
element of x. The steady state full order Kalman filter is
given as:

K
0.1983

0.1168

(15)

The steady state reduced order estimator proposed in
this paper is given as:

f̂c+i = 0-9̂ fc + Kr{zk+i - 0 X 0.9 X £+)

= 0.9£j + KrZk+i (16)

Kr « 0.1420
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In this case the reduced order estimator is stable.
Perhaps not coincidentally, the state transition matrix of
the system given in (14) is stable. The reduced order
filter is clearly computationally cheaper than the full order
Kalman filter. The analytic one-sigma estimation error of
the first element of x is 0.697 for the full order time-varying
Kalman filter and 0.726 for the reduced order steady state
filter. As expected, the use of the reduced order filter
increases the estimation error, but the increase is only
about 4%, while the decrease in computational effort is
about 75%. Fig. 1 shows the convergence of the reduced
order gain and Fig. 2 shows a comparison of the estimation
error during a simulation of the time-varying full order
Kalman filter and the steady state reduced order filter. If
the state transition matrix is changed to:

F =
1.1 -0.1

0.2 0.7
(17)
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Figure 1. Convergence of reduced order gain.
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Figure 2. Error of estimate of first state element.

then the reduced order filter gain does not converge to
a steady state value. Perhaps not coincidentally, the
state transition matrix of the system in this case is un-
stable. This may provide a clue to further work in an-
alytical determination of reduced order filter convergence
and stability. The Matlab m-file that was used to gen-
erate these simulation results can be downloaded from
http://academic.csuohio.edu/simond/kalmanreduced/.

3.2 Results for a Higher Order System

In this section, we present simulation results for a more re-
alistic higher order system. The problem that we consider
is health parameter estimation for an aircraft turbofan
engine. Health parameters represent engine component
efficiencies and flow capacities. The performance of gas
turbine engines deteriorates over time. This deterioration
reduces the fuel economy of the engine. Airlines periodi-
cally collect engine data to evaluate the health of the engine
and its components. The health evaluation is then used
to determine maintenance schedules. Reliable health eval-
uations are used to anticipate future maintenance needs.
This offers the benefits of improved safety and reduced op-
erating costs. The money-saving potential of such health
evaluations is substantial, but only if the evaluations are
reliable. The data used to perform health evaluations are
typically collected during fiight and later transferred to
ground-based computers for post-fiight analysis. Data are
collected for each fiight at the same engine operating point
and corrected to account for variability in ambient condi-
tions. Further details about the aircraft turbofan health
parameter estimation problem can be found in [23].

The simulation used in this section is a gas turbine
engine simulation software package called MAPSS (Mod-
ular Aero Propulsion System Simulation) [24]. MAPSS is
written using Matlab Simulink. The MAPSS engine model
is based on a low frequency, transient, performance model
of a high-pressure ratio, dual-spool, low-bypass, military-
type, variable cycle, turbofan engine with a digital con-
troller. The controller update rate is 50 Hz, and the com-
ponent level model balances the mass/energy equations of
the system at a rate of 2500 Hz. The three state vari-
ables used in MAPSS are low-pressure rotor speed, high-
pressure rotor speed, and the average hot section metal
temperature (measured from aft of the combustor to the
high-pressure turbine). The 10-element health parameter
vector consists of airfiow and efficiency at the fan, booster
tip, booster hub, high-pressure turbine, and lower-pressure
turbine. The 11 measurements consist of the pressures at
the low-pressure turbine exit, bypass duct, fan exit, booster
inlet, and high-pressure compressor exit; the temperatures
at the low-pressure turbine exit, high-pressure compressor
inlet, high-pressure compressor exit, and low-pressure tur-
bine blade; and the speeds of the low-pressure rotor and
core rotor.

Although the engine model is nonlinear, it is linearized
in this simulation so that Kalman filter theory can be
applied. Also, even though the health parameters are
not state variables of the model, the dynamic model is
augmented in such a way that a Kalman filter can estimate
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Table 1
Health parameter estimation errors (%), along with standard deviations, based on 20 Monte Carlo simulations. The

estimation error is measured as \{p-p)/pf[, where p is the true health parameter value, p is the estimated health parameter
value, and py is the health parameter value at the end of the 50-fiight simulation.

Health Parameter

Fan airfiow

Fan efficiency

Booster tip airfiow

Booster tip efficiency*

Booster hub airflow

Booster hub efficiency

High-pressure turbine airfiow

High-pressure turbine efficiency

Low-pressure turbine airfiow

Low-pressure turbine eflSciency

Average

Estimation Error (%)

Full Order
Filter

1.02 ±0.09

1.07 ±0.20

0.62 ±0.05

NA

3.90 ±0.07

0.86 ±0.06

0.70 ±0.08

4.42 ±0.16

12.34 ±0.20

11.71 ±0.49

4.07 ±0.05

Keller's
Filter

3.23 ±0.10

4.66 ±0.12

2.37±0.11

NA

6.70 ±0.07

4.81 ±0.03

3.34 ±0.09

7.88 ±0.90

4.34 ±1.02

5.01 ±0.07

4.70 ±0.20

Proposed
Filter

4.85 ±0.10

3.11±0.12

6.58±0.11

NA

0.84 ±0.03

3.52 ±0.03

6.92 ±0.06

3.48 ±0.09

7.43 ±0.06

7.13 ±0.06

4.87 ±0.04

•Booster tip efficiency is not yet implemented in MAPSS.

the health parameters. This gives an augmented state
vector of dimension 13 (the three original states plus the
10 health parameters).

Sensor dynamics are assumed to be high enough band-
width that they can be ignored in the dynamic equations.
We simulated the methods discussed in this paper using
Matlab. We measured a steady state 3 second burst of
open loop engine data, at 100 Hz during each fiight. These
routine data collections were performed over 50 fiights at
a single operating point, except the engine's health pa-
rameters deteriorated a small amount each fiight. We
simulated a linear-plus-exponential degradation of the 10
health parameters over 50 fiights with open loop control.

Since we are interested only in health parameter es-
timation (not state estimation), we can design a reduced
order filter to estimate only the 10 health parameter com-
ponents of the augmented state vector while ignoring the
original three state elements. Table 1 shows the root-mean-
square (RMS) estimation error, averaged over 20 simula-
tions, of the standard Kalman filter, Keller's reduced order
filter [21], and the reduced order filter proposed in this
paper. Keller's reduced order filter has a couple of re-
strictions that make it less fiexible than the filter proposed
in this paper. For example, Keller's filter is limited to
time invariant systems, and the number of measurements
must be greater than the number of unestimated states.
However, those restrictions are not limiting factors in this
example, so we can use Keller's filter for this problem.

For each filter shown in Table 1 the steady state filter
gains were used. It is seen from the table that the full
order filter performs better (on average) than the reduced

order filters. However, for some health parameters the
reduced order filters actually perform better than the full
order filter. It is difficult to make any guarantees about
performance for this example as it is a nonlinear system.
Nevertheless these results show that the proposed filter
works well and is competitive with other reduced order
filters.

4. Conclusion

An approach has been presented for obtaining an opti-
mal, unbiased, reduced order state estimator for stochastic
dynamic systems. The reduced order estimator may be
attractive in cases where the computational effort of the
state estimator is an important consideration. Simulation
results show the effectiveness of the proposed approach.

Previous to this paper, reduced order filters have been
proposed by a number of different approaches. Reducing
the order of the system model results in a reduced order
filter, but this is at the expense of a loss of model informa-
tion. Our approach is derived on the basis of the full order
system model.

Bernstein presents an elegant approach that guaran-
tees filter stability [18], but his approach applies only to
steady state filtering and requires the solution of simul-
taneous Riccati equations, which may be mathematically
difficult. Our approach does not guarantee stability, but
it is mathematically simpler and can be used to derive
time-varying filters as well as steady state filters.

Nagpal [19] and Keller [20, 21] present approaches that
optimize the transition matrix of the filter as well as the
gain of the filter. As our approach does not optimize the fil-
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ter's transition matrix, it is expected that their approaches
should yield better results than our approach. However,
their approaches have restrictions on the number of states
to be estimated and appear to be more complicated math-
ematically with the inclusion of matrix inverse operations.
In our approach, like Napgal's approach, convergence and
stability cannot be guaranteed without numerical calcula-
tions. However, Keller's approaches do include convergence
and stabiUty results.

This paper provides a new tool for reduced order state
estimation. In some cases it may be more attractive than
the previous approaches, while in other situations one of the
previous approaches may be more attractive. The choice
of which approach to use depends on the problem at hand.
The advantages of the reduced order filter proposed here
include mathematical simplicity and applicability to time-
varying systems. For future work it would be important to
analyze the convergence and stability of the filter proposed
here.
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