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Abstract

Fuzzy systems have been used extensively and successfully in control systems over

the past few decades, but have been applied much less often to ®ltering problems. This

is somewhat surprising in view of the dual relationship between control and estima-

tion. This paper discusses and demonstrates the application of fuzzy ®ltering to motor

winding current estimation in permanent magnet synchronous motors. Motor winding

current estimation is an important problem because in order to implement e�ective

closed-loop control, a good estimation of the current is needed. Motor winding

currents are notoriously noisy because of electrical noise in the motor drive. We use a

fuzzy system with correlation-product inference and centroid defuzzi®cation for motor

winding current estimation. With the assumption that the membership functions are

triangular (but not necessarily symmetric), we then optimize the membership functions

using gradient descent. Next we use singular value decomposition to reduce the rule

base for the fuzzy ®lter. Rule base reduction can be important for fuzzy systems in

those cases where the fuzzy system needs to be implemented in real time. This is

especially true with regard to fuzzy ®ltering in a real time motor controller. The

methods discussed in this paper are demonstrated on real motor winding currents that

were collected with a digital oscilloscope. It is demonstrated that fuzzy techniques

provide a feasible approach to motor current estimation, that gradient descent

optimization improves the performance of the ®lter, and that rule base reduction

results in a relatively small degradation of ®lter performance. Ó 2000 Elsevier Science

Inc. All rights reserved.
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1. Introduction

The electrical windings of a permanent magnet synchronous motor are
spaced on the stator (the ®xed part of the motor) at regular angles. When
excited with current, the windings produce magnetic ¯uxes that add vectorially
to produce the stator ¯ux. The controlling variables are the proportions of
currents in the motor windings, which determine ¯ux magnitude and orienta-
tion. Rotating rotor magnets produce the rotor ¯ux and interact with the stator
¯ux to produce torque. When the stator and rotor ¯uxes are aligned, the
magnetic ®elds are in equilibrium at the minimum energy position and no
torque is produced. When the stator and rotor ¯uxes are not aligned, the rotor
magnets are pulled toward the stator electromagnets. This torque is maximum
when the rotor ¯ux is 90° behind the stator ¯ux in the direction of motion. At
this point the ¯ux vectors are said to be ®eld-oriented for maximum torque at a
given current. This is also the most e�cient operating region of the motor,
because in this mode the power input to the mechanical side of the motor is
maximized. For continuous rotation at the highest torque and e�ciency, the
stator ¯ux is rotated in the desired direction of motion, keeping 90° ahead of
the rotor ¯ux. The stator ¯ux is produced by controlling the current in the
stator windings. Krause and Wasynczuk [1] provide a good overview of per-
manent magnet synchronous motors.

In order to implement an e�ective closed-loop current controller we need an
accurate estimate of the current [2]. Current estimation is thus an important
problem. It is also a challenging problem because the measured winding cur-
rents are strongly a�ected by electrical noise in the motor drive.

The motor's winding currents are generally shaped like sinusoids. Knowing
this, we can formulate common sense fuzzy membership functions for use in a
predictor±corrector type of estimator. The fuzzy winding current estimator is
recursive and non-linear. Its inputs comprises past estimates, and present and
past measurements. The use of fuzzy logic for motor winding current estima-
tion was ®rst explored by Simon [3].

We begin the fuzzy ®lter design process by gathering noisy experimental
motor winding current data from a motor. Next we construct initial mem-
bership functions for a fuzzy current estimator on the basis of common sense
and experience. We then use human expertise to guess the true motor currents
underlying the experimental data. Finally we use these ``true'' motor currents
as the basis with which to ®ne-tune the membership functions of the fuzzy
current estimator. The membership functions are ®ne-tuned (i.e., optimized)
using an iterative gradient-descent method.
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After the membership functions are optimized, we can use singular value
decomposition (SVD) to reduce the rule set of the fuzzy estimator. Rule base
reduction is important in view of the challenge of real time implementation in a
digital signal processor. The SVD method of rule reduction generates appro-
priate linear combinations of membership functions in order to obtain new
membership functions for a reduced rule base.

The fuzzy estimator is applied to real motor winding currents in this paper.
The results presented establish fuzzy estimation as a viable option for stator
winding current estimation.

Section 2 gives a general algorithm for estimating a signal in the presence of
noise using a fuzzy ®lter. Section 3 presents a technique for optimizing fuzzy
membership functions using gradient descent, and Section 4 summarizes an
algorithm that can be used to reduce a fuzzy rule base. Section 5 contains
experimental results, and Section 6 contains some concluding remarks and
suggestions for further research.

2. Fuzzy estimation

We begin with a standard discrete, time-invariant system given by

xk�1 � f �xk� � vk; �1�
zk � h�xk� � wk; �2�

where k is the time index, xk the state vector, zk the measurement, and vk and wk

are the noise processes. The problem of ®nding an estimate x̂k for the state
vector based on past and present measurements is known as the a posteriori
®ltering problem. One commonly used estimator architecture is the recursive
predictor±corrector, given by

x̂k � f̂ �x̂kÿ1� � g�zk; x̂kÿ1�; �3�
where f̂ ��� is an estimate of f ���, and g��� is the correction function. The
process model f ��� is often known, or it can be found using system identi®-
cation methods. If f̂ ��� is available, only the correction mapping g��� needs to
be determined. Various analytic methods have been used for obtaining the
correction mapping [4]. As an alternative to analytic methods, the correction
mapping could be implemented as a fuzzy function [5].

2.1. Current estimation

Consider the problem of estimating a discrete-time signal fxg corrupted by
noise. The fuzzy estimator structure that we use to obtain an estimate of the
signal is given by
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x̂ÿk � x̂�kÿ1 � T v̂kÿ1; �4�
x̂�k � x̂ÿk � g�zk; x̂ÿk �; �5�

where x̂ÿk denotes the estimate of x at time k before the measurement at time k is
processed, and x̂�k denotes the estimate of x at time k after the measurement at
time k is processed. T is the update period of the estimator, zk the noisy
measurement of the winding current, and v̂ is the estimate of current rate. (The
determination of the rate estimate is discussed in Section 2.2.) The fuzzy cor-
rection mapping g��� has two inputs

�input 1�k � zk ÿ x̂ÿk ; �6�
�input 2�k � �input 1�k ÿ �input 1�kÿ1: �7�

So the correction mapping depends on the di�erence between the measurement
and the a priori estimate, and the amount by which that di�erence has changed
since the last time step. The output of the correction mapping is a fuzzy
variable which is determined by correlation-product inference. The fuzzy rule
base for the mapping g��� was chosen as shown in Table 1. In this paper, tri-
angular input and output membership functions are used.

The initial rule base and triangular membership functions were constructed
on the imprecise basis of experience, and trial and error. An appropriate initial
knowledge base is critical, because without an initial knowledge we cannot
proceed further with any optimization schemes. In spite of its importance, the
generation of initial knowledge remains a di�cult and ill-de®ned task in the
construction of fuzzy logic systems.

In general, we denote the centroid and the two half-widths of the ith fuzzy
membership function of the jth input by cij, bÿij , and b�ij . The membership
function attains a value of 1 when the input is cij. As the input decreases from
cij, the membership function reaches a value of 0 at cij ÿ bÿij . As the input

Table 1

Rule base for fuzzy ®ltera

Input 1 Input 2

NL NM NS Z PS PM PL

NL NL NL NM NM NS NS Z

NM NL NM NM NS NS Z PS

NS NM NM NS NS Z PS PS

Z NM NS NS Z PS PS PM

PS NS NS Z PS PS PM PM

PM NS Z PS PS PM PM PL

PL Z PS PS PM PM PL PL

a NL�negative large, NM�negative medium, NS�negative small, Z� zero, PS�positive small,

PM�positive medium, PL�positive large.
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increases from cij, the membership function reaches a value of 0 at cij � b�ij . A
generic triangular membership function is shown in Fig. 1. The degree of
membership of a crisp input x in the ith category of the jth input is given by

fij�x� �
1� �xÿ cij�=bÿij if ÿ bÿij 6 �xÿ cij�6 0;

1ÿ �xÿ cij�=b�ij if 06 �xÿ cij�6 b�ij ;
0 otherwise:

8<: �8�

The fuzzy output is mapped into a crisp numerical value using centroid de-
fuzzi®cation [6].

g�zk; x̂ÿk � �
Pn

j�1 m�yj�yjJjPn
j�1 m�yj�Jj

; �9�

where yj and Jj are the centroid and area of the jth output fuzzy membership
function and n is the number of fuzzy output sets. (Note that for the triangular
membership functions that we are using, Jj is equal to one-half of the sum of
the two half-widths of the jth output fuzzy membership function.) The fuzzy
output function m�y� is computed as

m�y� � fuzzy output function �
X

i;k

mik�y�; �10�

where mik�y� is de®ned as the consequent fuzzy output function when input 1 is
in class i and input 2 is in class k.

mik�y� � wikmoik�y�; �11�
wik is de®ned as the activation level of the consequent when input 1 is in class i
and input 2 is in class k, and moik�y� is the fuzzy function of the consequent that
is activated when input 1 is in class i and input 2 is in class k.

Fig. 1. Triangular membership function.
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wik � min�fi1�input 1�; fk2�input 2��: �12�
See Eq. (8) for the de®nition of the f ��� functions.

2.2. Current rate estimation

One of the inputs to the fuzzy estimator discussed above is the current rate
estimate v̂ (see Eq. (4)). This estimate must be computed causally from motor
winding current estimates using numerical di�erentiation, which is in itself a
challenging task. We will somewhat arbitrarily assume that we have the present
and past three current estimates available. With this in mind, we use the
method of undetermined coe�cients [7] to obtain an expression for the current
rate. The method of undetermined coe�cients is a simple but elegant approach
to deriving formulas for numerical di�erentiation. It consists of expanding x�t�
about available values of t using Taylor series expansions. For instance, if
we have x�t� available at times t ÿ s, t ÿ 2s, and t ÿ 3s, then we write Taylor
series expansions for x�t ÿ s�, x�t ÿ 2s�, and x�t ÿ 3s�. We then write
x0�t� � A1x�t� � A2x�t ÿ s� � A3x�t ÿ 2s� � A4x�t ÿ 3s�, where the Ai's are ``un-
determined coe�cients''. We can solve for the Ai's by substituting the Taylor
series expansions in the x0�t� equation and simply setting the result equal to
x0�t�. This approach gives us the following expression for the current rate

v�t� �
�
ÿ 1

3
x�t ÿ 3s� � 3

2
x�t ÿ 2s� ÿ 3x�t ÿ s� � 11

6
x�t�
��

s

ÿ 193s3

72
x�4��f�; �13�

where s is a time step (some multiple of T in Section 2.1) to be determined later,
and f is an unknown constant in �t ÿ 3s; t�. It is our objective in the remainder
of this section to determine an appropriate time step s. Denoting the error in
the current estimate as ~x, we obtain

v�t� �
�
ÿ 1

3
x̂�t ÿ 3s� � 3

2
x̂�t ÿ 2s� ÿ 3x̂�t ÿ s� � 11

6
x̂�t�
��

s

�
�
ÿ 1

3
~x�t ÿ 3s� � 3

2
~x�t ÿ 2s� ÿ 3~x�t ÿ s� � 11

6
~x�t�
��

s

ÿ 193s3

72
x�4��f�: �14�

So if we estimate v as

v̂�t� �
�
ÿ 1

3
x̂�t ÿ 3s� � 3

2
x̂�t ÿ 2s� ÿ 3x̂�t ÿ s� � 11

6
x̂�t�
��

s �15�
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we obtain the following expression for the current rate estimation error:

~v�t� � ÿ193s3

72
x�4��f�

�
�
ÿ 1

3
~x�t ÿ 3s� � 3

2
~x�t ÿ 2s� ÿ 3~x�t ÿ s� � 11

6
~x�t�
��

s: �16�

Now if we treat the time functions in the above equation as random processes
and make the simplifying assumption that x�4��t� and ~x�t� are independent, we
obtain the following expression for the variance of the current rate estimation
error:

E�~v2� � 193s3

72

� �2

E��x�4��2� � 530

36s2
E�~x2�: �17�

This equation shows that there is a tradeo� in using larger or smaller values of
s to estimate the current rate. The ®rst part of Eq. (17) re¯ects the e�ect of
using current estimates that are separated too much in time to estimate the
current rate. As s increases, the ®rst term in Eq. (17) increases due to the
uncorrelatedness between the current estimates that are being used to estimate
the current rate. The second part of Eq. (17) re¯ects the e�ect of using current
estimates that are too noisy to estimate the current rate. As s decreases, the
second term in Eq. (17) increases due to the noise in the current estimates that
are being used to estimate the current rate. An appropriate value of s needs to
be used in Eq. (15) based on the relative magnitudes of the current dynamics
and the current estimation error.

Based on our knowledge of the current waveforms, we will assume that we
have a one-sigma current estimation error that corresponds to about 0.01 V.
(The current is measured by an analog-to-digital converter [ADC] on the
motor drive, so the acquired voltage is directly proportional to the motor
winding current.) Again based on our knowledge of the current waveforms,
we will assume that the standard deviation of the fourth derivative of the
current is about 80 V/(ms)4. Our ADC operates at a rate of 200 ls, so s must
be a multiple of 200 ls. We can then compute the rate estimation variance
from Eq. (17) as a function of s. The results are shown in Fig. 2. We see that
the variance of the rate estimation error is minimized for s � T . This shows
that the ®rst term in Eq. (17) dominates the variance of the current rate
estimation error. In other words, the current rate estimation error is domi-
nated by the high dynamics of the motor current rather than the error in the
motor current estimate. The rate estimation error is strongly dependent on s.
So we will use s � T in Eq. (15) (where T � 200 ls is the ADC period) to
estimate the current rate. This ®nding is critical to the success of the fuzzy
estimator.
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3. Optimization

If the fuzzy membership functions are triangular as shown in Fig. 1, gradient
descent can be used to optimize the centroids and the widths of the input and
output membership functions. The work in this section builds on and extends
similar e�orts in [5,8]. Consider an error function given by

E � 1

2N

XN

q�1

E2
q; �18�

Eq � x̂q ÿ xq; �19�
where N is the number of training samples. We can optimize E by using the
partial derivatives of E with respect to the centroids and half-widths of the
input and output fuzzy membership functions.

3.1. Input centroids

Using the relationships of Eq. (8) we obtain

oE
ocij
� 1

N

XN

q�1

Eq
ox̂q

ocij
; �20�

ox̂q

ocij
�
Xn

p�1

ox̂q

omp

omp

ocij
�mp � m�yp��; �21�

Fig. 2. Standard deviation of current rate estimation error.
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ox̂q

omj
� Jj�yj ÿ x̂q�Pn

i�1 miJi
; �22�

omp

ocij
�
X

k;l

rklp
owkl

ocij
: �23�

In Eq. (21), n is the number of fuzzy output sets. In Eq. (23), k goes from 1 to
the number of fuzzy sets for input 1, and l goes from 1 to the number of fuzzy
sets for input 2. Eq. (23) is valid for p � 1; . . . ; n. In Eq. (23), rklp � 1 if
��input 1� 2 class k and �input 2� 2 class l� ) �output 2 class p�, and 0 oth-
erwise. In Eq. (23), owkl=ocij is given as

owkl

ocij
� ofk1=ocij if fk1�input 1�6 fl2�input 2�;

ofl2=ocij otherwise:

�
The partials of the membership functions f ��� with respect to the input cent-
roids are

ofk1�input 1�
oci2

� 0; �24�
ofl2�input 2�

oci1
� 0; �25�

ofk1�input 1�
oci1

�
ÿdik=bÿi1 if ci1 ÿ bÿi16 input 16 ci1;

dik=b�i1 if ci16 input 16 ci1 � b�i1;

0 otherwise;

8><>: �26�

ofl2�input 2�
oci2

�
ÿdil=bÿi2 if ci2 ÿ bÿi26 input 26 ci2;

dil=b�i2 if ci26 input 26 ci2 � b�i2;

0 otherwise;

8><>: �27�

where dik is the Kronecker delta function (dik � 1 for i � k, 0 otherwise).

3.2. Input half-widths

Again using Eq. (8) it can be shown that

oE
obÿij
� 1

N

XN

q�1

Eq
ox̂q

obÿij
; �28�

ox̂q

obÿij
�
Xn

p�1

ox̂q

omp

omp

obÿij
; �29�

omp

obÿij
�
X

k;l

rklp
owkl

obÿij
; �30�
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oE
ob�ij
� 1

N

XN

q�1

Eq
ox̂q

ob�ij
; �31�

ox̂q

ob�ij
�
Xn

p�1

ox̂q

omp

omp

ob�ij
; �32�

omp

ob�ij
�
X

k;l

rklp
owkl

ob�ij
; �33�

ox̂q

omj
� Jj�yj ÿ x̂q�Pn

i�1 miJi
; �34�

where mp � m�yp� and rklp is given above in Eq. (23). owkl=obÿij and owkl=ob�ij are
given as

owkl

obÿij
� ofk1=obÿij if fk1�input 1�6 fl2�input 2�;

ofl2=obÿij otherwise;

�
�35�

owkl

ob�ij
� ofk1=ob�ij if fk1�input 1�6 fl2�input 2�;

ofl2=ob�ij otherwise:

�
�36�

The partials of the membership functions f ��� with respect to the half-widths of
the input fuzzy membership functions are given as

ofk1�input 1�
obÿi2

� ofl2�input 2�
obÿi1

� 0; �37�

ofk1�input 1�
obÿi1

� dik�1ÿ fk1�input 1��=bÿi1 if ci1 ÿ bÿi16 input 16 ci1;

0 otherwise;

�
�38�

ofl2�input 2�
obÿi2

� dil�1ÿ fl2�input 2��=bÿi2 if ci2ÿ bÿi26 input 26 ci2;

0 otherwise;

�
�39�

ofk1�input 1�
ob�i2

� ofl2�input 2�
ob�i1

� 0; �40�

ofk1�input 1�
ob�i1

� dik�1ÿ fk1�input 1��=b�i1 if ci16 input 16 ci1� b�i1;

0 otherwise;

�
�41�

ofl2�input 2�
ob�i2

� dil�1ÿ fl2�input 2��=b�i2 if ci26 input 26 ci2� b�i2;

0 otherwise:

�
�42�

3.3. Output centroids

The partials of the objective function E with respect to the centroids of the
output fuzzy membership functions are given as
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oE
oyj
� 1

N

XN

q�1

Eq
ox̂q

oyj
; �43�

ox̂q

oyj
� mjJjPn

i�1 miJi
: �44�

3.4. Output half-widths

In this section, we will denote the centroids and half-widths of the jth output
membership function as yj, bÿj , and b�j . In other words, an output membership
function looks like Fig. 1 with c replaced by y, bÿ replaced by bÿ, and b� re-
placed by b�. The partials of the objective function E with respect to the half-
widths of the output membership functions are

oE
obÿj
� 1

N

XN

q�1

Eq
ox̂q

obÿj
; �45�

oE
ob�j
� 1

N

XN

q�1

Eq
ox̂q

ob�j
; �46�

ox̂
bÿj
� mj

Pn
i�1 mib

ÿ
i �yj ÿ yi�

�Pn
i�1 mib

ÿ
i �2

; �47�

ox̂
b�j
� mj

Pn
i�1 mib

�
i �yj ÿ yi�

�Pn
i�1 mib

�
i �2

: �48�

In the above equations, n is the number of output membership grades. Note
from the above equations that if we start with symmetric output membership
functions (i.e., bÿj � b�j ), then ox̂=obÿj � ox̂=ob�j . Therefore, if we start our
optimization with symmetric output membership functions, we will always
have symmetric output membership functions because the derivatives of the
error function with respect to the lower and upper half-widths will always be
equal.

3.5. Gradient descent

After the partial derivatives are computed as described in the above sections,
the gradient descent rule is used to update the independent variables from one
iteration to the next as follows:

cij�k � 1� � cij�k� ÿ gc
oE�k�
ocij

; �49�

bÿij �k � 1� � bÿij �k� ÿ gb
oE�k�
obÿij

; �50�
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b�ij �k � 1� � b�ij �k� ÿ gb
oE�k�
ob�ij

; �51�

yj�k � 1� � yj�k� ÿ gy
oE�k�
oyj

; �52�

bÿij �k � 1� � bÿij �k� ÿ gb

oE�k�
obÿij

; �53�

b�ij �k � 1� � b�ij �k� ÿ gb

oE�k�
ob�ij

; �54�

where gc, gb, gy , and gb are gradient descent step sizes.

4. Rule base reduction

Wang et al. [9] have recently used an SVD method to reduce the dimension
of the input space of a fuzzy system, assuming that the membership functions
are B-splines. The present paper, on the other hand, follows the work of Yam
et al. [10] in applying SVD directly to the consequents of the rule set. This
section brie¯y describes the rule base reduction algorithm used in this paper.

Consider a fuzzy rule base with two inputs a and b and a single fuzzy
consequent r. We have na fuzzy sets for the ®rst input and nb fuzzy sets for the
second input. In this paper, we assume that na and nb are odd numbers. The
more general case is treated in [10]

fi1�a� and fj2�b� ! rij; �55�
where rij is the centroid of the output membership function corresponding to
the �i; j�th fuzzy rule. To perform rule base reduction, we form the following
na � nb matrix

R �
r11 r12 � � � r1nb

r21 r22 � � � r2nb

..

. ..
. ..

. ..
.

rna1 rna2 � � � rnanb

26664
37775: �56�

We then perform singular value decomposition on R.

R � URV T; �57�
where U is na � na and V is nb � nb. The magnitudes of the singular values in R
indicate the relative importance of the corresponding columns of U and V in
the formation of R. A close approximation to R can be obtained by keeping the
nr largest singular values.

R � UrRrV T
r ; �58�
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where Ur is na � nr, Rr is nr � nr, and Vr is nb � nr. We then partition U and V
into the parts that are to be retained and the parts that are to be discarded as
follows:

U � �Ur j Ud �; �59�
V � �Vr j Vd �: �60�

We next form nr � nr matrices UU and UV as follows:

UU �

Pna
i�1 Ur�i; 1� 0 � � � 0

0
Pna

i�1 Ur�i; 2� � � � 0

..

. ..
. ..

. ..
.

0 0 � � � Pna
i�1 Ur�i; nr�

26666664

37777775; �61�

UV �

Pnb
i�1 Vr�i; 1� 0 � � � 0

0
Pnb

i�1 Vr�i; 2� � � � 0

..

. ..
. ..

. ..
.

0 0 � � � Pnb
i�1 Vr�i; nr�

26666664

37777775: �62�

Actually, UU and UV can be chosen as any invertible matrices whose row sums
are equal to the column sums of Ur and Vr, respectively [10]. We choose the
above forms for ease of computation. We de®ne the �na ÿ nr� � 1 vector Ûd and
the �nb ÿ nr� � 1 vector V̂d as

Ûd �
Xna

i�1

Ud�i; 1� � � �
Xna

i�1

Ud�i; na

"
ÿ nr�

#T

; �63�

V̂d �
Xnb

i�1

Vd�i; 1� � � �
Xnb

i�1

Vd�i; nb

"
ÿ nr�

#T

: �64�

We next form the na � �nr � 1� matrix SU and the nb � �nr � 1� matrix SV as
follows:

SU � �Ur j Ud � Ûd � �
UU 0nr�1

01�nr 1

� �
; �65�

SV � �Vr j Vd � V̂d � �
UV 0nr�1

01�nr 1

� �
; �66�

where 0i�j is de®ned as the i� j matrix comprised of all zeros. We next form
the �nr � 1� � �nr � 1� matrices NU and NV as follows:
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fU �
1 if mini;j SU �i; j�P ÿ 1;

jmini;j SU �i; j�jÿ1
otherwise;

(
�67�

fV �
1 if mini;j SV �i; j�P ÿ 1;

jmini;j SV �i; j�jÿ1
otherwise;

(
�68�

NU � 1

nr � 1� fU
�

1� fU 1 � � � 1

1 1� fU � � � 1

..

. ..
. ..

. ..
.

1 1 � � � 1� fU

266664
377775; �69�

NV � 1

nr � 1� fV
�

1� fV 1 � � � 1

1 1� fV � � � 1

..

. ..
. ..

. ..
.

1 1 � � � 1� fV

266664
377775: �70�

We next form the na � �nr � 1� matrix ~U and the nb � �nr � 1� matrix ~V as
follows:

~U � SU NU ; �71�
~V � SV NV : �72�

We next consider the na rows in ~U and the nb rows in ~V as points in an �nr � 1�-
dimensional space.

We form an �nr � 1� � �nr � 1� matrix whose nr � 1 rows represent points
which comprise a convex hull that approximately bounds the na points rep-
resented in ~U . We likewise form an �nr � 1� � �nr � 1� matrix whose nr � 1
rows represent points which comprise a convex hull that approximately bounds
the nb points represented in ~V . These two matrices are denoted as Qÿ1

U and Qÿ1
V ,

respectively. Finally we form the na � �nr � 1� matrix �U , the �nr � 1� � �nr � 1�
matrix �R, and the nb � �nr � 1� matrix �V as follows:

�U � ~UQU ; �73�
�V � ~V QV ; �74�
�R � Qÿ1

U Nÿ1
U Uÿ1

U RrU
ÿT
V NÿT

V QÿT
V : �75�

Now the reduced rule base can be de®ned. If our initial two-input rule base is

fi1�a� and fj2�b� ! rij; �76�
where i � 1; . . . ; na and j � 1; . . . ; nb, then the membership functions for our
reduced rule base are de®ned as

158 D. Simon / Internat. J. Approx. Reason. 25 (2000) 145±167



�f�i1�a� �
Xna

i�1

fi1�a� �U�i;�i� ��i � 1; . . . ; nr � 1�; �77�

�f�j2�b� �
Xnb

j�1

fj2�b� �V �j; �j� ��j � 1; . . . ; nr � 1�: �78�

The centroids of the consequents for the reduced rule base are de®ned in the matrix
�R. The reduced rule base has �nr � 1�2 rules instead of the original nanb rules.

5. Experimental results

The fuzzy estimator and optimizer discussed in this paper was implemented
in Visual Basic and was used to ®lter the winding currents of a permanent
magnet synchronous motor. The motor winding currents were collected with a
digital oscilloscope at a rate of one sample every 200 ls. The gradient descent
method was used to optimize the fuzzy membership functions. The training
data for the gradient descent optimization consisted of a simple symmetric
non-causal 51-point moving average. The fuzzy ®lter was causal and was im-
plemented as described earlier in this paper. The error function of Eq. (18)
consisted of the error between the non-causal moving average and the output
of the causal fuzzy ®lter.

The rule base was de®ned as shown in Table 1. These are common sense
rules, such as, if the error between the measured value and the extrapolated
estimate is positive medium, and the change in error is zero, then change the
estimate by a positive small amount. There was no attempt in this paper to
optimize the rule base. This is an important area of current fuzzy systems re-
search [11], but is not addressed in this paper.

The gradient descent learning parameters gc, gb, gy , and gb were all initial-
ized to 4. There were seven membership functions for the two inputs and the
output. The membership functions were constrained to be non-symmetric tri-
angles, so the error function E in Eq. (18) was optimized with respect to 63
parameters ± the centroids of each of the membership functions (21 total), and
the two half-widths of each of the membership functions (42 total).

Fig. 3 shows the training data that was used for the gradient descent opti-
mization. Fig. 3 shows 2500 samples of raw current and the output of the 51-
point moving average that was used to optimize the fuzzy ®lter. (The vertical
axis of the ®gures is labelled `Volts' because the current is acquired with an
ADC, which measures the current with a proportional voltage.) Fig. 4 shows
the seven initial membership functions for the two inputs and the output. (The
two inputs and the output were all initialized with the same seven membership
functions.) Fig. 5 shows the decrease of the objective function as training
progressed. The algorithm reached a local minimum after about 40 iterations.

D. Simon / Internat. J. Approx. Reason. 25 (2000) 145±167 159



The optimization required about two minutes on a Pentium 233 MHz PC
running Visual Basic in design mode. Fig. 6 shows the membership functions
that resulted from the gradient descent optimization. A comparison with Fig. 4
shows that the membership functions did not change dramatically during the
optimization process. But the changes in the membership functions can be

Fig. 3. Training data: (a) un®ltered; (b) 51-point moving average.
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Fig. 4. Default membership functions for input 1, input 2, and output.

Fig. 5. Gradient descent training of membership functions.
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Fig. 6. Optimized membership functions for (a) input 1, (b) input 2, (c) output.
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seen, and the membership functions for the two inputs became slightly asym-
metric as a result of the optimization.

Fig. 7 shows the test data before and after being ®ltered with the fuzzy es-
timator. Comparison with Fig. 3 shows that the resultant curve is not as
smooth as the moving average curve; nevertheless, the data that came out of
the fuzzy ®lter is noticeably smoother than the raw data, and there is no visible
time delay in the ®ltered data.

The rule base reduction scheme discussed in Section 4 was implemented in
MATLAB and applied to the optimized fuzzy membership functions. The
initial membership functions are shown in Fig. 6. We form a 7� 7 R matrix
based on Eq. (56), Table 1, and the centroids of the output membership
functions shown in Fig. 6. The singular values of the resulting R matrix are
f234; 232; 34; 34; 10; 10; 1g mV. We choose to keep the two largest singular
values and go through the algorithm described in Section 4. This results in
three fuzzy sets each for the inputs instead of the original seven sets each. The
Qÿ1 matrices were chosen using a graphical method described in [12]

Qÿ1
U �

~U�1; 1� ~U�1; 2� ~U�1; 3�
~U�4; 1� ~U�4; 2� ~U�4; 3�
~U�7; 1� ~U�7; 2� ~U�7; 3�

2664
3775; �79�

Qÿ1
V �

~V �1; 1� ~V �1; 2� ~V �1; 3�
~V �4; 1� ~V �4; 2� ~V �4; 3�
~V �7; 1� ~V �7; 2� ~V �7; 3�

2664
3775: �80�

The �R matrix that results from the rule base reduction algorithm has ®ve
distinct values

�R �
ÿ0:09255 ÿ0:05447 ÿ0:0004669

ÿ0:05447 ÿ0:0004669 0:05429

ÿ0:0004669 0:05429 0:09255

264
375: �81�

The new reduced membership functions are shown in Fig. 8, and the reduced
rule base is shown in Table 2. Instead of the original 49 rules, we now have 9
rules in our rule base. Note from Fig. 8 that some of the membership functions
are less than zero for some values of the input. This is somewhat non-intuitive,
but the mathematics of fuzzy inference is still valid. If it is important to the user
to have membership function values that are always greater than zero, Yam
et al. [10] present a way of accomplishing this.

Table 3 summarizes the performance of the fuzzy ®lter for various sets of
membership functions. As expected, the performance gets better as we go from
no ®ltering to nominal ®ltering to optimal ®ltering. As expected, the perfor-
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Fig. 7. Test data: (a) un®ltered; (b) ®ltered with fuzzy estimator.
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Fig. 8. Reduced membership functions for (a) input 1, (b) input 2, (c) output. For input 1 and input

2, dashed line� negative, dotted line� zero, and solid line� positive.
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mance of the reduced rule base is worse than the performance of the optimal
®lter, but the performance degradation is not as severe as we might expect from
reducing a 49-rule rule base to a 9-rule rule base.

6. Conclusion

A fuzzy ®lter has been applied to the estimation of motor winding currents.
The fuzzy estimator o�ers the possibility of training if a nominal current his-
tory is known a priori. The gradient descent optimization discussed in this
paper is attractive because of its conceptual straightforwardness, but one of its
primary disadvantages is its convergence to a local minimum. Considering the
fact that in this paper we optimized with respect to 63 variables, it would be
very surprising if we were anywhere close to a global minimum. Further work
on the topic of this paper is focusing on optimization methods that do better at
®nding the global minimum (e.g., genetic algorithms), integration of the ®l-
tering scheme with motor control, and real time implementation issues.

The SVD-based rule base reduction was shown to be e�ective at decreasing
the number of rules used in the fuzzy ®lter. This reduction could be important
for real time implementation where cycle time is at a premium. It is not di�cult
to program a general purpose rule base reduction algorithm if we can make the
following assumptions: (1) There are an odd number of membership functions
for the two inputs and the output; (2) the membership functions are symmetric

Table 2

Reduced rule base for fuzzy ®ltera

Input 1 Input 2

N Z P

N NL NS Z

Z NS Z PS

P Z PS PL

a NL�negative large, n�negative, ns�negative small, Z� zero, PS� positive small, P�positive,

PL� positive large.

Table 3

Error function values for test data

Error function value

Raw data 18.0

Nominal membership functions 10.7

Optimized membership functions 7.4

Reduced membership functions 7.7
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triangles; and (3) we desire to keep the two largest singular values in the R

� .
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