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A specific parameterized nonlinear suboptimal control technique is proposed to control the relative 
position of a spacecraft in order to track a rotating target. The technique consists of using power series 
expansion to parameterize an SDRE (State-Dependent Riccati Equation) with an algebraic expression. 
One of the major contributions of this technique is the avoidance of online solution of algebraic 
Riccati and Lyapunov equations that will be much faster than the standard SDRE and θ − D control. 
Meanwhile, parameterized nonlinear suboptimal control is extended to adaptive form to verify robustness 
to unknown disturbances. Finally, we show two benchmark examples using this parameterized technique 
to construct controllers. Specifically, we also apply this technique to design the nonlinear control of a 
chaser spacecraft to track and rendezvous with a rotating non-cooperative target accompanied by an 
unknown translational maneuver. Numerical results demonstrate that the computational efficiency and 
tracking performance accuracy are superior to existing methods and an adaptive form is capable of 
offsetting unknown parameters.

© 2019 Elsevier Masson SAS. All rights reserved.
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1. Introduction

State-Dependent Riccati Equation (SDRE) is a well-known 
method that used in the applications such as regulator design and 
in tracking control strategies [1]. The SDRE represents a nonlinear 
system using a linear-like structure by state-dependent coefficients 
(SDC). This control method needs to be computed at every state 
to obtain a nonlinear feedback controller where some defined cost 
function is minimized. The SDRE has emerged as a general design 
method which is widely used in aerospace engineering [2–5] and 
other fields [6].

However, the standard SDRE method needs to solve the alge-
braic Riccati equation (ARE) repeatedly online at every integration 
step to obtain the suboptimal local feedback control law, which 
may raise an implementation issue if dimensionality and system 
order are high. The article [7] proposes an approximate technique 
to solve the SDRE via perturbation to solve an ARE once offline 
and several Lyapunov equations online based on the accuracy re-
quirement for an approximate solution. Ming Xin [8] developed 
an approximately closed-form feedback controller named θ − D
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which is also useful and extend the approximate technique in [7]
for stability at large initial conditions, since it considers parameter 
perturbations in the state weight matrix of the cost function. Then, 
Ming Xin et al. [2] investigated θ − D control of a spacecraft’s ap-
proach to and alignment with a tumbling target and considered 
the control of position and attitude in one optimal control frame-
work. Zhang et al. [4] extended a modification term in θ − D to 
tracking and rendezvous with a rotating non-cooperative target 
with unknown translational maneuvers. Liang Sun et al. [9] pro-
posed a gradient adaptive method to offset the parametric uncer-
tainties of a non-cooperative spacecraft in rendezvous with model 
uncertainty and external disturbances. Meanwhile [10–13] showed 
that the adaptive method is a promising approach for solving non-
cooperative target problems. Similar to the previous works, this 
paper proposes a new parameterized SDRE technique for speeding 
up online computation for designing nonlinear feedback controllers 
and extend it to adaptive form.

Approximations to the nonlinear regulator problem are all 
based upon a power series expansion of the state vector in terms 
of one perturbation parameter, which is an effective way to ap-
proximate the solution of the HJB and overcome computational 
difficulties. Especially for applications in aerospace engineering, 
good computational efficiency and accuracy will be very useful 
due to the limitations of hardware. Therefore we propose a new 
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Nomenclature

Cbt
I transformation matrix from body-fixed frame of target 

to the inertial frame
C l

I transformation matrix from LOS frame to the inertial 
frame

Q , R weight matrix on quadratic cost function
ρ distance between chaser spacecraft and target
qε,qβ sight inclination and declination angle respectively
nb required orientation in body frame of target spacecraft
uc, ut vector of control acceleration of chaser and target 

spacecraft respectively

ω I
I,bt vector of actual angular velocity of target in inertial 

frame
rc, rt state vector of chaser and target spacecrafts in inertial 

frame
μ gravitational constant

Subscripts

0 initial variable at t = 0
d desired variable
k, l exponent index
p,q different parameter identification
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parameterized SDRE by integrating power series expansion to an 
algebraic expression which is very suitable for online implemen-
tation. To compare with the traditional methods SDRE and θ − D , 
one of the major contributions in our research is the avoidance 
of online solution of algebraic Riccati equations and even Lya-
punov equations. Instead, the approximation in this work is used 
to find parameter-dependent linear control laws to stabilize a vec-
tor field at different equilibria in an appropriate region, and all 
the terms are computed offline. Therefore, the parameterized con-
trol law reduces the amount of online computation significantly. 
For non-cooperative spacecraft missions, we also studied an adap-
tive controller to offset the unmodeled parameters which does not 
significantly increase the required computation, such as unknown 
target maneuver. Since the algebraic expression, this suboptimal 
control law imposes mild restrictions, and it is asymptotically 
stable within a solvable region around the equilibrium which 
is also the range of the adaptive controller’s application. Some 
papers have analyzed the radius of such a stable region, includ-
ing [14,15].

The rest of the paper is organized as follows. The technique 
for the parameterized SDRE controller is presented in Section 2. 
Section 3 describes the properties of the proposed controller and 
its adaptive form. Simulation of two benchmark examples and 
an application in space mission are shown in Section 4 to eval-
uate the performance of the proposed controller. Finally, con-
clusions and potential applications are discussed in Sections 5
and 6.

2. Parameterized suboptimal control of an affine nonlinear 
system

We consider an affine nonlinear system of the form:

ẋ = f (x) + B(x)u(x) (1)

Assume f (x) is continuously differentiable. We want to find a con-
troller for the system in Eq. (1) that minimizes the quadratic cost 
function given by:

J = 1

2

∞∫
0

(xT Q x + uT Ru)dt (2)

The infinite-horizon nonlinear control problem can be solved by 
solving a HJB partial differential equation [16].

∂V T

∂x
f (x) − 1

2

∂V T

∂x
B(x)R−1 BT (x)

∂V

∂x
+ 1

2
xT Q x = 0 (3)

where V = min
u

J is the optimal cost of the above objective func-

tion (2) subject to u. After solving Eq. (3) the optimal control is
given by the solution:

u(x, t) = −R−1 B(x, t)
∂V T

∂x
x(t) (4)

Actually solving Eq. (3) is very expensive. An approximate so-
lution of the HJB equations is parameterized by the perturbation 
ε ∈ R

p which varies the vector field. Assuming that Eq. (1) is in 
the form that the dependence of system on the parameter vector 
ε and state the following:

ẋ = (A0 +
p̄∑

p=1

ap(ε)Ap)x + (B0 +
q̄∑

q=1

bq(ε)Bq)u (5)

where Ap and Bq are both constant matrices, and ap, bq is a map-
ping of ε . The mappings ap, bq are not restricted to polynomials
but any form of algebraic expression of f . p̄, ̄q ∈ N are the upper 
limits allowed for parameters ap, bq , which is based on the form 
of system (1). This is the part that differs most from traditional 
suboptimal methods. A0 and B0 are both constant matrices such 
that (A0, B0) is a stabilizable pair and (A0 + ∑p̄

p=1 ap(ε)Ap, B0 +∑q̄
q=1 bq(ε)Bq)) is pointwise controllable. We assume the parame-

terized coefficients A(x, ε) = A0 + ∑p̄
p=1 ap(ε)A p and B(x, ε) =

B0 + ∑q̄
q=1 bq(ε)Bq . (A(x, ε), B(x, ε)) are treated as in an ex-

tended linearization control method, which consists of SDC like 
the SDRE method, leading to nonlinear control laws that render 
the closed-loop dynamic matrix pointwise Hurwitz.

We next assume that L = ∂V
∂x has a power series expansion:

L(x,ε) = L0,0 +
p̄∑

p=1

q̄∑
q=1

∞∑
k,l=0

ak
pbl

q Lp,q
k,l (6)

where k, l are the exponents for each ap, bq , and k + l �= 0. The 
superscript p, q of L p,q

k,l distinguishes different bases for ap, bq . We 
obtain L(x, ε) = L0,0 when a(ε) = 0, b(ε) = 0 is solving an exact 
Riccati equation for L0,0:

AT
0 L0,0 + L0,0 A0 − L0,0 B0 R−1 BT

0 L0,0 + Q = 0 (7)

The rest of the expansion for the ap, bq term L p,q
k,l , k < k̄, l < l̄

(omitting hereafter the superscript p, q for each Lk,l) is affine in 
Lk,l . These are a set of Lyapunov functions:
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(A0 − B0 R−1 BT
0 L0,0)

T Lk,l + Lk,l(A0 − B0 R−1 BT
0 L0,0)

= −Lk−1,l Ap − AT
p Lk−1,l

+
k−1∑
i=0

[
l−1∑
j=1

Li, j B0 R−1 BT
0 Lk−i,l− j

+
l−1∑
j=0

Li, j(B0 R−1 BT
q + Bq R−1 BT

0 )Lk−i,l− j−1

+
l−2∑
j=0

Li, j Bq R−1 BT
q Lk−i,l− j−2]

(8)

The proof of Eq. (8) is shown in the Appendix. We note that ma-
trix (A0 − B0 R−1 BT

0 L0,0) is Hurwitz. The solution to Eq. (8) solves 
a set of Lyapunov equations that are linear terms of Lk,l (Note: any 
subscripts Li′<0, j′<0 mean that terms with Li′, j′ are nonexistent). 
Solving a linear Lyapunov equation is much faster than solving a 
Riccati equation, which is one of the main superiorities of subopti-
mal methods (e.g. θ − D). In this paper, even these sets of Lyapunov 
equations can be solved offline. After parameterization the subop-
timal solution can be obtained for an appropriate state space in 
any prescribed order of series expansion:

u(x,ε, t) = −R−1 B(x)L(x,ε)x(t) (9)

If supposed that x is a function of ε , the control law of Eq. (9)
depends only on x. If ε is any parameterized uncertainty, Eq. (9)
will be parameterized robust SDC suboptimal control for the non-
linear system of Eq. (1).

3. Variations of the algorithm

3.1. Globally stable

For θ − D methods, the prior works have shown how to con-
struct nonlinear control using perturbations to parameterize the 
terms in the cost function; the proof of convergence and stabil-
ity of the θ − D methods are given in [8]. Ref. [17] explains the 
selection of exponential terms to diminish the terms in the cost 
function as time evolves.

Assume we have the closed-loop coefficient Acl(x) = A(x) −
B(x)R−1 B(x)L(x). In [14] Theorem 10, it is shown that we could 
construct term Q (x) in the cost function to guarantee L̇ < 0, so 
that the SDRE closed loop solution is (semi)globally stable.

Theorem 1. Assume a constant control weighting R , and a state weight-
ing Q (x) > 0 which are selected so that L < 0 for all x. Then, for any SDC 
parameterization of the nonlinear system which is both strongly control-
lable and strongly observable for all x, the SDRE closed loop solution is 
(semi)globally stable.

Proof. Let V (x) be the candidate Lyapunov function so that:

V̇ = xT L̇x + xT Lẋ + ẋT Lx = xT (L̇ − Q − L B R−1 B L)x (10)

Obviously, if L̇ < 0 the control will be globally stable. Thanks 
to build Eq. (6), we can know the algebraic expression of the 
quadratic Lyapunov function (10). Assume that xd is a function of ε
and the quadratic Lyapunov function V = (x − xd(ε))T L(x, xd(ε))×
(x − xd(ε)) along the desired trajectory can be expressed as alge-
braic. Then the level set {x | 0 < V (x) < ρ, V̇ (x) < 0} represents 
the stable region in every local state, and ρ = ∞ which is globally 
stable.

In [14] we know Q̇ < 0 was selected so that L̇ < 0, and the 
system will be (semi)globally stable. Therefore, the θ − D method 
provides a good way to construct a diminishing Q̇ to expand the 
region of stability. So, we could also construct the parameterized 
Q̇ with D p,q on the right side of Eq. (8), where the D p,q is shown 
as follows:

D p,q =kp,qe−lp,qt{Lk−1,l Ap + AT
p Lk−1,l

−
k−1∑
i=0

[
l−1∑
j=1

Li, j B0 R−1 BT
0 Lk−i,l− j

+
l−1∑
j=0

Li, j(B0 R−1 BT
q + Bq R−1 BT

0 )Lk−i,l− j−1

−
l−2∑
j=0

Li, j Bq R−1 BT
q Lk−i,l− j−2]} = 0

(11)

Solving Eq. (8) is an offline calculation so that the time in (11)
should use a prior estimated value that is increasing monotonically. 
However, tuning the parameters of kp,q and lp,q in the term D p,q
is not quantitative, since L̇ in (10) cannot be obtained in θ − D or 
SDRE methods explicitly. To use Eq. (6) we can compute an alge-
braic expression for the quadratic Lyapunov function V (x) = xT Lx. 
Therefore we can know the convergence properties of each trajec-
tory by the algebraic control law (9). �
3.2. Adaptive control

Model-based control design techniques are limited by inaccu-
rate models of the plant dynamics and even some terms that 
cannot be modeled like the unknown maneuvering of a target. 
Adaptive controllers have emerged as powerful solutions for han-
dling unknown parameters. Following [18] and [19], we consider a 
system with unknown parameter θ :

ẋ = f (x) + B(x)uθ + F (x)θ (12)

with θ ∈ R
r . The mappings f (x), B(x) and F (x) are smooth, and 

f (0) = 0, F (0) = 0. We search for an adaptive controller uθ and an 
estimate of unknown parameters θ for system (12). Let us assume 
the following estimation of unknown parameters:

˙̂
θ = τ (x, θ̂) (13)

Using the above analysis we have an algebraic expression of 
the quadratic Lyapunov function V (x), which is a smooth, positive-
definite, scalar function. Now consider a candidate Lyapunov func-
tion for this system:

V θ = V (x) + 1

2
θ̃

T
�θ̃ (14)

where θ̃ = θ − θ̂ and user-defined matrix � = �T > 0. If we let:

˙̂
θ = τ (x, θ̂) = −�−1 F (x)T (

∂V

∂x
)T (15)

The time derivative of this candidate Lyapunov function is:

V̇ θ = ∂V

∂x
+ θ̃

T
� ˙̃θ = ∂V

∂x
( f (x) + F (x)θ + B(x)uθ ) + θ̃�τ (x, θ̂)

(16)

which takes the form:

V̇ θ = ∂V

∂x
[ f (x) + F (x)θ̂ + B(x)uθ ] (17)

Thus, if we find the adaptive control law uθ such that V̇ θ <

0, ∀x, θ, ̂θ , then we have an adaptive control law uθ in an invariant 
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Fig. 1. 2-D benchmark problem: x0 = [1, 1]T . Solid black curve is the result of the standard SDRE method; different colors of dashed curves represent different order 
expansions in our method. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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region which guarantees that x → 0 as t → ∞. Thus we parame-
terize the adaptive controller as:

uθ = upar + K θ θ̂ (18)

where upar comes from Eq. (9), and K θ θ̂ is the adaptive modified 
term, where we choose K θ = −B L F (x) (where B L that satisfies
B B L = I is the left inverse of B). So the closed-loop system will 
be:

ẋ = Acl(x)(x − xd) + F (x)(θ − θ̂) (19)

Obviously, Eq. (19) is a stable system. In addition, combining 
the outcomes of the Subsections 3.1 and 3.2, we can achieve an 
adaptive control in a large stable region to offset unknown terms 
due to solution of algebraic expression.

4. Simulation

First we use two simple benchmark examples in Subsections 4.1
and 4.2 to test the capabilities of our methods, and in Subsec-
tion 4.3 we simulate the spacecraft relative position control to 
track and rendezvous with a rotating non-cooperative target with 
an unknown orbit maneuver.

4.1. Constant B(x) matrix example

We wish to find a control u to minimize the cost function and 
drive the system to the origin (xd = 0), which is from the formula-
tion given in Section 2.4 in [8]:

J = 1

2

∞∫
0

(xT

[
1 0

0 1

]
x + uT

[
2 0

0 2

]
u)dt (20)

Assume x = [x1, x2]T , and u = [u1, u2]T so that the system is de-
fined by:

ẋ1 = x1 − x3
1 + x2 + u1

ẋ2 = x1 + x2
1x2 − x2 + u2

(21)

For this problem, f (x) is factorized using SDC with parameterized 
form:

A(x) =
[

1 1

1 −1

]
+ x2

1

[
−1 0

0 1

]
, B0 =

[
1

1

]
(22)
For analysis, the results are compared with the standard SDRE 
method.

x1 is close to x2 so that we only show the plot of the state 
response of x1 in the state response subfigure of Fig. 1. It is evident 
from the zoomed-in view of the of state response subfigure that 
higher order leads to better performance, which is close to the 
result of standard SDRE. The control response subfigure shows the 
same phenomenon, since a better approximation is achieved at a 
higher order. The two sets of curves shown are u1 and u2 versus 
time.

From the above simulation, it is clear that the second order 
result achieved a sufficient accuracy to approach the SDRE result. 
Thus in the following we use second order parameterized control 
to design an adaptive controller. We assume the system (21) has 
an unknown constant scalar uncertainty θ = 1 and the coefficient 
F (x) = [1, 1]T . Thus the real system is as follows:

ẋ1 = x1 − x3
1 + x2 + 1 + u1

ẋ2 = x1 + x2
1x2 − x2 + 1 + u2

(23)

However, in the modeled system, θ is an unknown the pa-
rameter which was specifically set to zero as an initial guess: 
θ̂ = 0. In the first iteration, we also choose V θ = V which is a 
valid Lyapunov function with the robustness in the stable region. 
In the analyses of Subsection 3.1, we can check the capacity to 
converge with unknown parameter θ and give an initial state us-
ing level-set computation. The robustness analysis is discussed in 
[14]. The weight matrix for θ in the Lyapunov function is set as 
� = diag([10, 10]). The state and control responses are shown in 
Fig. 2. The simulation time is shown over a period of 10 s.

The results can be seen in Figs. 2 and 3. It is clear in the state 
response of Fig. 2 that if there are unknown parameters in the real 
system that we have not been modeled, then the state response 
fails to converge to zero (black curve), while the adaptive one does 
(red curve). Meanwhile, the estimated parameter does converge to 
the true parameter θ̂ → θ , which is shown in Fig. 3 (black curve).

4.2. State dependent B(x) matrix example

Assume x = [x1, x2]T . We wish to find a control law u to mini-
mize the following cost function, which is from section 2.5 in [8]:

J = 1

2

∞∫
(x2

1 + 2x2
2 + u2)dt (24)
0
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Fig. 2. 2-D benchmark adaptive problem: x0 = [1 1]T . The black curves are the result of non-adaptive control and the red curves represent the result of adaptive control. 
The red dashed line is the location of the final equilibrium.
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Fig. 3. θ̂ versus time.

with system dynamics described by:

ẋ1 = x2 + (x1 − 1)u

ẋ = x + x − (x + 2)u
(25)
2 1 2 1
The SDC are selected as:

A0 =
[

0 1

1 1

]
, B(x) =

[
−1

−2

]
+ x1

[
0

−1

]
+ x2

[
1

0

]
(26)

Simulation results are shown in Fig. 4. We obtain the same 
conclusion as the first benchmark example. Higher order expan-
sion will obtain better approximations of SDRE optimal control. 
The control could be expressed as a polynomial in the appropriate 
region. These two benchmark examples also show that the rela-
tively poor approximation of control is due to the error between 
the current state and the origin of expansion. Hence the power se-
ries approximation could be useful in tracking problems which are 
not far away from the nominal trajectory or the desired equilib-
rium point.

4.3. Tracking and rendezvous with a rotating non-cooperative target

In this simulation, we consider the spacecraft mission perform-
ing a track and rendezvous with a non-cooperative target such as 
space debris or a disabled satellite. In order to verify our parame-
terized controller, the simulations separate to two cases: a rotating 
non-cooperative target without translational maneuvers and a ro-
111
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Fig. 4. 2-D benchmark problem with state-dependent B(x) : x0 = [1;1].
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Fig. 5. LOS frame: O i is the mass center of the earth and O l is the center of the 
center of mass of the chaser spacecraft. The blue and red spheres represent the 
chaser and target spacecraft respectively.

tating non-cooperative target with an unknown translational ma-
neuvers. In first case, we use our parameterized controller without 
adaptive modification and compare with SDRE and θ − D con-
troller. In second case, a unknown translational maneuvers of the 
rotating non-cooperative is considered in the mission. The param-
eterized controller with adaptive modification is used to track and 
rendezvous with the non-cooperative target.

The spacecraft kinematics and dynamics neglecting the gravity 
difference in the LOS frame can be described by [4], and we add 
the gravity difference item to complete the model. This relative 
dynamic model built in the LOS frame is widely used in missile 
missions to deal with maneuver targets. For a non-cooperative tar-
get in space, the relative motion equations are built in the LOS 
frame with the origin at the center of mass of the chaser space-
craft to avoid introducing unknown parameters into the equa-
tion.

As shown in Fig. 5, O i xi yi zi represents an inertial frame that 
is fixed to the center of the Earth. By making use of transfor-
mation via coordinate translation, O i xi yi zi is used to obtain the 
dashed line coordinate system which is fixed at the center of 
mass of the chaser spacecraft. O l xl yl zl represents the Line-of-Sight 
frame (LOS frame) that is also fixed to the center of mass of the 
chaser. The sight inclination and declination angles qε ∈ (−π

2 , π2 ), 
qβ ∈ (−π, π) are generated by the coordinate rotation of O lxi yi zi

and transition coordinate O lx′ yi zl which are shown in Fig. 5. ρ
is the distance between chaser and target spacecraft. The dynamic 
equations are shown as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ̈ − ρ
(

q̇2
ε + q̇2

βcos2qε

)
= �gx + utx − ucx

ρq̈ε + 2ρ̇q̇ε + ρq̇2
β sin qε cos qε = �g y + uty − ucy

− ρq̈β cos qε + 2ρq̇β q̇ε sin qε − 2ρ̇q̇β cos qε

= �gz + utz − ucz

(27)

The first and last equations in Eq. (27) describe relative longi-
tudinal movement of the sight direction and transverse movement 
of the sight angle respectively. These dynamic equations in LOS 
coordinates could be applied to any relative motion form of orbit. 
In state-space, assume x = [ρ, qε, qβ, ρ̇, ρq̇ε, ρq̇β cos qε]T repre-
sents our state vector so that the dynamic model can be expressed 
as a nonlinear system in state space:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x4

ẋ2 = x5/x1

ẋ3 = x6/(x1cosx2)

ẋ4 = (x2
5 + x2

6)/x1 + �gx + utx − ucx

ẋ5 = −x4x5/x1 − x2
6sinx2/(x1cosx2) + �g y + uty − ucy

ẋ6 = −x4x6/x1 + x5x6sinx2/(x1cosx2) − �gz − utz + ucz

(28)

where the gravity difference in the LOS frame (identified by su-
perscript l, and omitted in this article) �g = [�gx, �g y, �gz]T; 
ut = [utx, uty, utz]T and uc = [ucx, ucy, ucz]T represent the accel-
eration of target and chaser spacecraft respectively. The gravity 
difference in the inertial frame (identified by superscript I) can 
be expressed as follows:

�g I = μ

r3
c

rc − μ

r3
t

rt (29)

We assume ρ I = rt − rc . Since rc = ‖rc‖ 
 ρ = ‖ρ I‖, rt =
‖rt‖ 
 ρ , the gravity difference can be expressed as a first order 
approximation of the Taylor expansion at rc :

�g I = μ

r3
c
[ρ I − 3

r2
c
(rc · ρ I )rc] (30)

The gravity difference is linear in ρ I . For simplification, we first 
design a model-based open-loop control to offset the gravity dif-
ference: uof f set = −�g = −C I

l �g I where C I
l is the transformation 

matrix from inertial frame to LOS frame, C I
l = (C l

I )
T:

C I
l = C z(qε)C y(qβ) =

⎡
⎢⎣

cos qε cos qβ sin qε − cos qε sin qβ

− sin qε cos qβ cos qε sin qε sin qβ

sin qβ 0 cos qβ

⎤
⎥⎦

(31)

In space operation tasks with non-cooperative targets, we note 
that a specified orientation in the body frame of the target is nec-
essary for subsequent tasks like docking. Assume nb contains the 
prescribed orientation in the body frame of the target spacecraft, 
so that −nb is the desired direction of LOS tracking. Then, the de-
sired direction is projected into the inertial frame:

ρ I
d = Cbt

I (−nbρd) (32)

The desired position in the LOS frame is ρd = [ρd, 0, 0]T . The 
desired distance between the chaser and the target ρd is projected 
into the inertial frame:

ρ I
d = C l

Iρd

ρ̇ I
d = (ω I

I,bt)
×ρ I

d

(33)

Eq. (32) and Eq. (33) can deduce the desired sight inclination and 
declination angles: qε,d , qβ,d and q̇ε,d , q̇β,d .

The simulation is developed to test the performance of the pro-
posed parameterized method in the translational control of the 
chaser spacecraft. The mass of the chaser is 100 kg. In order to 
compare the performances of different control methods, the con-
trol accelerations are not limited in the saturator, but we choose 
the appropriate parameters Q and R that let the control acceler-
ations along each axis are less than 0.05 (m/s2). The initial orbit 
parameters of the chaser and target spacecrafts are given in Ta-
ble 1.

The target is rotating with an angular velocity ω = 0.1◦/s
at axis [1, 1, 1]T in its body frame. The initial quaternion of 
the target attitude is: qt = [0.7071, −0.3126, 0.5477, −0.3162]T . 
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Table 1
Orbit parameters of the chaser and target.

Orbit parameters Target Chaser

Eccentricity 0.01 0.01
Inclination (deg) 50.002 50.002
Right ascension of ascending node (deg) 9.9981 9.9981
Semimajor axis (km) 8000 8000
Argument of perigee (deg) 30.1 30.0001
Initial true anomaly (deg) 111.0736 111.0679
μ (m3/s2) 3.9860044 ×1014

Fig. 6. 3D Trajectory in O lxi yi zi frame.

We seek a control u with control cost weight matrices: Q =
diag([0.01, 1000, 1000, 1, 1000, 10000]), R = diag([1000, 10000,

100]). The dynamic model is shown in Eq. (27). The parameters for 
θ − D are selected in the same. We selected the SDC as (omitting 
the subscript d):

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1/ρ0 0

0 0 0 0 0 1/(ρ0cosqε0)

0 0 0 0 q̇ε0 q̇β0cosqε0

0 0 0 −q̇ε0 0 −q̇β0sinqε0

0 0 0 −q̇β0cosqε0 q̇β0sinqε0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

A(x) = A0 + a1

[
02×4 �1

04×4 04×2

]
+ a2

[
02×5 02×1

04×5 �2

]

+ a3

[
03×3 03×3

03×3 �3

]
+ a4

[
03×3 03×3

03×3 �4

]

+ a5

[
04×4 04×2

02×4 �5

]
(35)

where a1 = 1/x1 − 1/ρ0, a2 = 1/x1/cosx2 − 1/(ρ0cosqε0), a3 =
x5/x1 − q̇ε0, a4 = x6/x1 + q̇β0sinqε0, a5 = x6sinx2/(x1cosx2) −

q̇β0sinqε0. �1 =
[

0 0
1 0

]
, �2 = [1, 0, 0, 0]T , �3 =

⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦, 

�4 =
⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦, �5 =

[
0 −1
1 0

]
.

Fig. 6 and Fig. 7 provide a numerical comparison of the SDRE 
(solid black), our algorithm (dashed red) and the θ − D algorithm 
(dotted blue). The expansion order of our algorithm and the θ − D
Fig. 7. Control acceleration.

Fig. 8. Gravity difference in LOS frame.

algorithm are both 2nd order at the initial position. We set the ini-
tial position of the chaser as shown in Table 1, when there is no 
target orbit maneuver to influence the relative motion. The simula-
tion shows the approach and flight process around the chaser, seen 
in Fig. 6, which is a plot of 3D relative trajectory in the inertial 
frame and computed by Eq. (33). The two approximate methods 
have a similar control precision. The control acceleration of the 
chaser spacecraft is shown in Fig. 7, where we can see similar 
control precision with the θ − D algorithm of the same order. The 
control law shown in Fig. 7 is designed using the model of Eq. (28)
without considering the gravity difference. This numerical simu-
lation in Fig. 8 shows the gravity difference during 100 s. This is 
much smaller than the control acceleration and we can also use an 
additional control to offset its effects. Fig. 9 shows the time com-
plexity for this problem after normalization with SDRE in first to 
fourth order expansions in the same numerical simulation with the 
same simulation environment (CPU i7-6700HQ, RAM 8 GB, Matlab
R2016a). Obviously, our algorithm is much faster than SDRE and 
θ − D algorithm.

For target maneuvering case, we use the adaptive controller de-
scribed in Section 3.2 to control the incomplete modeled system in 
Eq. (28) with ut �= 0 and unknown. From the previous simulations, 
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Fig. 9. Computation time cost.

Fig. 10. Estimated maneuvering of target with time.

we notice that adaptive control provides an offset between the 
modeled system and the true system. Hence if the target spacecraft 
has an unknown maneuver acceleration ut , it is assumed to be a 
constant ut = [0.01, 0.02, 0.03]T m/s2 in simulation. To test our 
algorithm, the initial guess of the unknown maneuver is set to be 
zero, and we choose � = 1 × 105 × diag([1, 10, 1]). Fig. 10 shows 
the estimated target unknown acceleration (solid black) converge 
to the real value (dashed line). Obviously, if the target changes its 
orbit acceleration it will be guaranteed to converge to a new stable 
estimate like the phenomenon in Fig. 2. Fig. 11 shows the relative 
distance and sight angle respectively, where the dashed line is the 
desired value. All the states converge to the desired value after 
100 s. The adaptive control acceleration of the chaser spacecraft is 
shown in Fig. 12. From the above simulation, we notice that this 
form of adaptive controller is valid for affine unknown parameters 
that can be applied to more complex missions.

5. Discussion

In this section, we briefly discuss the limitations of our algo-
rithm, some implementation details and other possible variations 
of this algorithm.

5.1. Limitations of this algorithm

Strong nonlinearity requires a higher-order power series to 
achieve appropriate precision, thereby increasing the computa-
tional burden of our parameterized control method. Accordingly, 
the assignment operation may wipe out the efficiency advantage 
Fig. 11. Main states with time.

Fig. 12. Adaptive control acceleration.

if the expressions are very complicated. Computational complex-
ity is also based on the order and dimensionality of Lk,l , which is 
based on the original system. Some complex systems with lower 
dimensionality use an SDRE method by solving algebraic Riccati 
equations or Lyapunov equations will be faster.

5.2. Implementation details

1. The solution of the Riccati equation L after parameterization 
using Eq. (6) is not certain to be a polynomial matrix. Hence, some 
complex algebraic expressions require a significant computational 
burden. It will be efficient to transform the algebraic expression to 
a polynomial using a Taylor expansion if there are complex alge-
braic expressions in the parameterized control. In examples such 
as the dynamic system in the LOS frame mentioned in this paper, 
there are complex trigonometric function computations in param-
eterized control so that transforming the algebraic expression to a 
polynomial expression is efficient.

2. We can sometimes remove the terms with small coefficients 
in the Lk,l . Parameterized control is not always an accurate expres-
sion for a system, as some small coefficients have little influence 
on control precision. Hence, removing these terms will save com-
puting time.
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3. For constructing the algebraic mapping: ap, bq in Eq. (5) are 
not unique. However, the computational precision of our algorithm 
is not very dependent on the choice of ap, bq . Here we provide
a general way to construct ap, bq: calculating A(x, ε) − A0 and 
B(x, ε) − B0, we divide the results to scalar algebraic mappings: 
ap, bq and the corresponding constant matrix: A p, Bq .

5.3. Other variations of this algorithm

1. We can expand the Riccati equation, which could also speed 
up LQR based methods in non-strong nonlinear systems to esti-
mate local control, such as [20].

2. H2 optimal control involves finding an appropriate controller 
and minimizing the H2 norm of its transfer function. With output 
feedback, H2 control design is equivalent to solving two Riccati 
equations for the optimal control and the optimal observer. These 
two Riccati equations can both be parameterized and solved offline 
using our method to speed-up online computation.

6. Conclusion

In this paper, a parameterized nonlinear control synthesis tech-
nique was developed. The basic framework comes from parame-
terized SDRE theory. Many similar approximation techniques have 
been found to solve nonlinear suboptimal control. The approach 
in this study is to give a parameterized approximately closed-form 
feedback controller. We have compared with the standard SDRE 
methods and the θ − D technique, both of which should solve 
algebraic Riccati equations or Lyapunov equations online, which 
is very time-consuming. By constructing the parameterized coef-
ficient matrix in the cost function this method inherits the asymp-
totic stability in large initial states like the θ − D technique. In 
addition, adaptive control has been designed in this parameterized 
process to offset the unmodeled dynamics.

Application of the parameterized synthesis to two simple 
benchmark examples and relative motion of a chaser spacecraft 
with respect to a target was presented in this paper to certify the 
validity. Under unknown target maneuvering, we apply an adap-
tive design to estimate the unknown acceleration and to track 
the target. The result for tracking and rendezvous with a ro-
tating non-cooperative target exhibits good performance since it 
takes the advantage of efficient computation and adaptive cor-
rection capability. In conclusion, this research has packaged the 
solution of algebraic Riccati equations and Lyapunov equations 
offline and constructed an algebraic expression for SDRE control, 
while some new properties and potential variations have been dis-
cussed.
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Appendix. Proof of Eq. (8)

For the general term, k + l ≤ i assume:

Li =
p̄∑

p=1

q̄∑
q=1

ak
pbl

q Lp,q
k,l , k + l = i

�A =
p̄∑

p=1

ap(ε)Ap

�B =
q̄∑

q=1

bq(ε)Bq

Ac = (A0 − B0 R−1 BT
0 L0)

(36)

From the reference [7], we have the following power series, 
which can be expressed as a set of Lyapunov equations:

AT
c Li + Li Ac = −Li−1�A − �AT Li−1 + [

i−1∑
j=1

L j B0 R−1 BT
0 Li− j

+
i−1∑
j=0

L j(B0 R−1�BT + �B R−1 BT
0 )Li− j−1

+
i−2∑
j=0

L j�B R−1�BT Li− j−2], i > 0

(37)

For the 1st order (i = 1), we have L1 = ∑p̄
p=1 a(ε)p Lp

1,0 +∑q̄
q=1 b(ε)q Lq

0,1, the sum of different parameters p, q should be 
linear, so that in order to simplify, in the derivation we assume 
L1 = aL1,0 + bL0,1 for each pair of parameters of p, q such that 
plugging Eq. (36) into Eq. (37) gives us:

AT
c (aL1,0 + bL0,1) + (aL1,0 + bL0,1)Ac

= −aL0 Ap − aAT
p L0 + (aL1,0 + bL0,1)B0 R−1 BT

0 L0
(38)

Eq. (38) can be decomposed as the sum of the following two equa-
tions:

aAT
c L1,0 + aL1,0 Ac = −aL0 Ap − aAT

p L0 + aL1,0 B0 R−1 BT
0 L0

b AT
c L0,1 + bL0,1 Ac = bL0,1 B0 R−1 BT

0 L0 (39)

Since ab �= 0, then:

AT
c L1,0 + L1,0 Ac = −L0 Ap − AT

p L0 + L1,0 B0 R−1 BT
0 L0

AT
c L0,1 + L0,1 Ac = L0,1 B0 R−1 BT

0 L0
(40)

Thanks to this we may construct the upper Eq. (40), which is a set 
of Lyapunov equations without any parameters ε .

For 2nd order, assuming L2 = a2 L2,0 + b2 L0,2 + abL1,1 in Eq. 
(37), we obtain an equation like Eq. (38):

AT
c (a2 L2,0 + b2 L0,2 + abL1,1) + (a2 L2,0 + b2 L0,2 + abL1,1)Ac

= −(a2 L1,0 + abL0,1)Ap − AT
p (a2 L1,0 + abL0,1)

+ (aL1,0 + bL0,1)B0 R−1 BT
0 (aL1,0 + bL0,1)

+ L0(B0 R−1 BT
q + Bq R−1 BT

0 )(abL1,0 + b2 L0,1)

+ (abL1,0 + b2 L0,1)(B0 R−1 BT
q + Bq R−1 BT

0 )L0

+ b2 L0 Bq R−1 BT
q L0

(41)

Since ab �= 0, we assume G0 = B0 R−1 BT
0 , G1 = B0 R−1 BT

q +
Bq R−1 BT

0 , G2 = Bq R−1 BT
q and Eq. (41) could decompose as the 

sum of the following equations:
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AT
c L2,0 + L2,0 Ac = −L1,0 Ap − AT

p L1,0 + L1,0G0 L1,0

AT
c L0,2 + L0,2 Ac = L0,1G0 L0,1 + L0G1 L0,1

+ L0,1G1 L0 + L0G2 L0

AT
c L1,1 + L1,1 Ac = −L0,1 Ap − AT

p L0,1 + L0,1G0 L1,0

+ L1,0G0 L0,1 + L0G1 L1,0 + L1,0G1 L0

(42)

For nth order Ln = an Ln,0 + bn L0,n + ∑n−1
i=1 an−ibi Ln−i,i , and we 

have a similar derivation like the first and second procedures used 
here. Hence the generalized expression that is shown in Eq. (8).
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