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On control of reaching movements for musculo-skeletal redundant arm model
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This paper focuses on a dynamic sensory-motor control mechanism of reaching movements for a musculo-skeletal redun-
dant arm model. The formulation of a musculo-skeletal redundant arm system, which takes into account non-linear muscle
properties obtained by some physiological understandings, is introduced and numerical simulations are perfomed. The non-
linear properties of muscle dynamics make it possible to modulate the viscosity of the joints, and the end point of the arm
converges to the desired point with a simple task-space feedback when adequate internal forces are chosen, regardless of
the redundancy of the joint. Numerical simulations were performed and the effectiveness of our control scheme is discussed
through these results. The results suggest that the reaching movements can be achieved using only a simple task-space feed-
back scheme together with the internal force effect that comes from non-linear properties of skeletal muscles without any
complex mathematical computation such as an inverse dynamics or optimal trajectory derivation. In addition, the dynamic
damping ellipsoid for evaluating how the internal forces can be determined is introduced. The task-space feedback is ex-
tended to the ‘virtual spring-damper hypothesis’ based on the research by Arimoto et al. (2016) to reduce the muscle output
forces and heterogeneity of convergence depending on the initial state and desired position. The research suggests a new
direction for studies of brain-motor control mechanism of human movements.
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Introduction

The natural movements of a human seem to be smooth,
dexterous and sophisticated compared with today’s robots.
Until now, these excellent movements have attracted many
physiologists, kinesiologists and robotics researchers who
hope to understand and extract them. In paticular, obtain-
ing and mimicking these natural movements in robotics has
become a hot topic, especially for robots that will be used
in close proximity to humans. Obtaining the fundamental
elements of how the central nervous system (CNS) gen-
erates control strategies to perform these kinds of move-
ments is one of the ultimate objectives and dreams for un-
derstanding the nature of human movements. In robotics,
many human movements such as object manipulations,
walking, etc., have been mimicked. However, achieving
highly natural movements, like human behaviour, is still
difficult. There are many reasons for these difficulties. One
is the existence of ill-posed problems induced by the joint
and muscle redundancies that a human body intrinsically
possesses (Bernstein 1935). Until now, many solutions for
overcoming these ill-posed problems by introducing vari-
ous optimisation criteria have been proposed not only in
physiology but also in robotics (Hogan 1984a; Hollerbach
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and Suh 1987; Katayama and Kawato 1993; Kawato et al.
1987, 1990; Nakamura 1991). In general, these optimisa-
tions require large calculation costs to solve complicated
optimal functions as well as an inverse dynamics, which
would be very difficult for a human to perform in real time.
Indeed, do humans perform actually these complex calcu-
lations every time they move?

In this paper, we suggest that the sensory-motor con-
trol mechanism, which enables many kinds of dexterous
human movements by the CNS, may not be so complicated
and may even use simple task-space feedback by utilising
intrinsic non-linear mechanical characteristics of skeletal
muscles. Morasso (1981) observed human reaching
movements and suggested that the central commands in
human movements may be coordinated not in joint space
but in task space. We focus on a simple reaching task
by using a three-link planar arm model driven by nine
redundant muscles so as to mimic the construction of
a human arm in a simple way. We introduce non-linear
muscle characteristics that correspond to the findings of
physiological studies (Hill 1938; Mashima et al. 1972)
and propose a simple task-space feedback control scheme
for the arm model taking into account internal forces

ISSN: 1176-2322 print / 1754-2103 online
©

DOI: 10.1080/11762320902789848
http://www.informaworld.com

Copyright 2018 Taylor & FrancisC



58 K. Tahara et al.

induced by redundant muscles. These internal forces can
be basically generated by the co-contraction of agonist and
antagonist muscles. Arimoto et al. (2015) suggested that
the performence of the convergence to the desired position
for human-like reaching movements by using a joint
redundant robotic arm depends upon the damping shaping
of each joint. Unfortunately, humans cannot directly
modulate the rotational joint viscosity because each joint
is driven by linear movement of antagonistic muscles. How
do humans modulate the rotational joint viscosity? Hogan
(1984b) remarked and Gribble et al. (2013) observed
that the co-contraction of agonist and antagonist muscles
contributes to the modulation of the joint impedance. In
our control scheme presented here, the co-contraction of
antagonistic muscles to invoke the internal forces coming
from the redundant muscles can modulate the damping
shaping of each joint if we introduce non-linear muscle
dynamics based on Mashima et al.’s model (1972).

Basically, a redundant actuation system such as a
musculo-skeletal arm can generate internal forces. These
internal forces belong to the null-space of the muscle space
with respect to the joint space and thereby they are inde-
pendent of a principal part of the joint torques in relation
to generation of movements of the arm end point towards
the target. However, it causes an ill-posed problem of how
to determine the internal forces uniquely. Until now, many
optimisational methods to determine the internal forces
uniquely have been proposed by introducing some sort of
artificial indices (Delp and Loan 2010; Rasmussen et al.
2013). Unlike these methods, our proposed method does
not need any optimisation criteria, because the internal
forces can affect only part of the joint torques irrelevant
to motion of the arm end point towards the target in the
task space. Nevertheless, human-like slightly curved tra-
jectories of the end point can be realised by adequately
adjusting the internal forces through the null space with
respect to the joint space. This point quite differs from the
traditional optimisation methods.

In our previous work (Tahara et al. 2015), we treated
the two-joint six-muscle model which has only muscle re-
dundancy, that is, joint redundancy was not taken into con-
sideration. In this paper, we take into account not only
the muscle redundancy but also the joint redundancy by
introducing a three-joint nine-muscle planar arm model.
The crucial difference between these two cases is the con-
vergence analysis that uses Lyapunov’s direct method to
prove that the closed-loop dynamics of the joint redundant
model cannot be applied. To prove the stability and conver-
gence of the closed-loop dynamics under the existences of
both muscle and joint redundancies, we introduce the novel
concept of ‘stability on a manifold’ originated by Arimoto
(2015).

In what follows, we formulate the kinematics and dy-
namics of the three-joint planar arm model driven by six
mono-articular muscles and three bi-articular muscles gov-
erned by non-linear behaviour. The stability and conver-

gence of the overall system is given by introducing a sta-
bility theory on a manifold. We report some numerical sim-
ulations to demonstrate that the simple sensory-motor con-
trol scheme makes it possible to make reaching movements
even though both joint and muscle redundancies are taken
into consideration. To discuss and evaluate how to choose
the internal forces, we introduce a dynamic damping el-
lipsoid. In addition, the task-space feedback manner is ex-
tended to the ‘virtual spring-damper hypothesis’ proposed
by Arimoto et al. (2015) to reduce the muscle output forces
and the heterogeneity of convergence, which depends on
the initial state and desired position of the arm. Finally,
these results suggest a direction for studies of the brain-
motor control mechanism of human movements.

2. Musculo-skeletal redundant system

We introduce a musculo-skeletal redundant arm model that
consists of three serial links, six mono-articular muscles,
and three bi-articular muscles to imitate the configuration
of a human arm. This model is shown in Figure 1. The three
bi-articular muscles enhance the end-point stiffness.

2.1. Kinematics of muscle-joint space

Assume that the overall movements of the system are lim-
ited to a horizontal plane so that gravity does not affect

Figure 1. Three-link musculo-skeletal arm model with six
mono-articular muscles and three bi-articular muscles.
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movements at all. Any friction such as Coulomb’s friction
and static friction is ignored in our model. All skeletal mus-
cles included in the arm can only be linearly contracted
and are not curved on the way. Also the mass transfer of
the muscles during contraction is omitted because its ef-
fect on arm movements is not so crucial. The physical pa-
rameters and variables are shown in Figure 1. The lengths

9

between the insertion points of the muscles. They can be
expressed as follows:
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where l (i = 1−9) are the lengths of the muscles, and
θ (i = 1−3) are the joint angles. Also, r (i = 1−4, 7−
8), and s (i = 1−4, 7−8) are the distances between
the centre of each joint and the insertion point of each
mono-articular muscle, and w (i = 51, 52, 61, 62, 91, 92)
are those of bi-articular muscles. Taking the time deriva-
tive of Equation (1) yields
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joint space to muscle space. It is known that the relation be-
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where W ∈ R stands for the Jacobian matrix from

tween contractile forces of the muscles F ∈ R and joint
torques τ ∈ R can be expressed from the principle of vir-
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τ = W F . (3)

In this study, we assume that the Jacobian matrix W is of
row full-rank during movement. Therefore, we can take the
inverse of Equation (3) as

+ +
m 9 e
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m

F = W τ + (I − W W )k , (4)

where W =W (W W ) ∈ R signifies the pseudo-
inverse matrix of W , I − W W k ∈ R stands for the

( )
9 e

null-space of W , k ∈ R is an arbitrary vector, and I ∈
R denotes an identity matrix. The physical meaning of

e 9
9

9×9

the second term of the right-hand side is the internal force
generated by the redundant muscles. This relation does not
mean an optimisation, and it expresses only decomposition
of the muscle force space with respect to the joint space
into two spaces, one is the image space and the other is the
kernel space.

2.2. Kinematics of joint-task space

The end-point position of the arm model given by x =
T(x, y) in Cartesian coordinates is expressed as

x= . (5)
L cos θ +L cos(θ + θ ) + L cos(θ + θ + θ )

L sin θ +L sin(θ + θ ) + L sin(θ + θ + θ )
1 1 2 1 2 3 1 2 3

1 1 2 1 2 3 1 2 3

Taking the time derivative of Equation (5) yields

˙ẋ = Jθ , (6)

where J ∈ R stands for the Jacobian matrix from joint

τ ∈ R and output forces of the end point in Cartesian co-
ordinates F ∈ R can be represented as

τ = J F . (7)

2×3

space to task space. The relation between joint torques
3

2

T
x

x

Substituting Equation (7) into Equation (4) yields the re-
lation between contractile forces of the muscles F and
output forces of the end-point F . It is given by

( )
m x 9 e

m

x

+ T +F = W J F + I − W W k . (8)

2.3. Non-linear muscle model

It is known that the skeletal muscles are governed by
strong non-linearity. Here, we introduce a tangible non-
linear muscle model that is based on several physiologi-
cal results. In the modeling of the muscles, we assume that
the masses of all muscles are included in the masses of
each link. The model of muscle is basically according to
the two-element model which is composed of contractile
element (CE) and series elastic element (SE). In this pa-
per, we want to focus on the dumping effect on each joint
generated by CE, and thereby we introduce quite strong as-
sumption that the SE part can be approximated as a rigid
element which indicate that its elastic coefficient becomes
infinity. Therefore, hereafter, we only consider the CE part
in the muscle model. In physiology, the force–velocity rela-
tion of the skeletal muscle proposed by Hill (1938), which
is expressed as a simple hyperbolic equation, is known as
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one of the most fundamental muscle features. This equa-
tion is

˙

˙

the contractile velocity of the muscle, f is the maximum
isometric tensile force of the muscle which depends on
its length, a is the heat constant and b is the rate con-
stant of energy liberation. The shortening directions of

˙

in physiology that a skeletal muscle exerts more tensile
force in the lengthening phase than in the shortening phase.
Mashima et al. (1972) determined the above feature specif-
ically through some experiments. By considering this fea-
ture, we can modify Equation (8) as follows:

⎧
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where f is the output tensile force of the muscle, l is
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where 0 ≤ α ≤ 1 is the muscle activation level, the coeffi-
cients a and b are determined experimentally in Mashima
et al. (1972) as a = |0.25 × f |, b = |0.9 × l

intrinsic rest length of the muscles. Now, we define the con-
trol input to the muscles as ¯ × α, in order to set the
dimension of the input as that of the muscle force. There-
fore, Equation (10) can be represented as follows:
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Since a skeletal muscle intrinsically owns some damp-
ing factor, which comes from its component and material,
we introduce a muscle intrinsic viscosity c > 0 indepen-
dently from ¯
this study can be expressed as
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The force–velocity curve of the muscle property expressed
by Equation (12) is shown in Figure 2. As the figure shows,
the contractile force of the muscle model reduces gradually

0
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Figure 2. Force-velocity curve of the modified Hill’s muscle
property model, which is expressed by Equation (12).

as the contractile velocity of the muscle increases and vice
versa. Now, it should be remarked that in Equation (12) the

˙
˙

the overall muscle dynamics in this study can be expressed
as follows:

˙

⎡
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It is remarkable that in Equation (13), the diagonal matrix
A( ̄

¯
non-linearity of the muscle model. Also, the skeletal mus-
cle generates only a contractile force, so we define the con-

¯
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is semi-positive definite. Both damping matrices C and C

parameter p depending on l satisfies the inequality Equa-
tion 0 < p ≤ 1 as long as l is upper bounded. Eventually,
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α) is constructed by the elements of the control input
vector α (Tahara et al. 2005, 2006). This comes from the

trol signal α, which is a saturated function so as to keep a
semi-positive value, as shown in Figure 3. Therefore, A( α)
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are also positive definite. In this paper, the positive coeffi-
cient c , which is the intrinsic viscosity of muscle, is de-
fined as c = 0.2 by considering physiological aspects.

0

0

2.4. Control input

In physiological studies of the brain-motor control mech-
anism in human movements, several control strategies for
skeletal muscles have been proposed since Fel’dman first
proposed a spring-like model called the λ-model (Fel’dman
1966, 1986) which exerts muscle force by modulating
the threshold of tonic stretch reflex about muscle length.
Mclntyre and Bizzi (1993) also proposed the α-model
which modulates spring-like characteristics of the muscles
by α neuron. These models are based on the equilibrium
point (EP) hypothesis proposed by Fel’dman and observed
by Bizzi et al. Many studies concerned with multijoint
reaching movement, which were based on the EP hypoth-
esis, have been done (Bizzi et al. 1976, 1992; Flash 1987;
Flash and Hogan 1985). Recently, Arimoto et al. (2015)
have proposed a virtual spring hypothesis that a given
potential energy in task space can generate a spring-like
force on the end point and distribute it to each joint torque

T

task-space control scheme originated from Takegaki and
Arimoto (1981). In developmental psychology, it is said
that a potential function that emanates neuro-motor signals
emerges from intentional incentive of a voluntary move-
ment (Killeen 1992). The virtual spring hypothesis has em-
phasised that such a potential-generating neuro-motor sig-
nals should be coordinated not in the muscle or joint spaces
but in the task space in terms of the distance between a
present position of the end point and a desired one such as

T
2

T

plies the joint configuration of a human body. In the present
study, we introduce a simple task-space feedback control
scheme with internal forces, which basically follows the
virtual spring hypothesis.

Now, let us consider the diagonal matrix P expressed
by Equation (13). Since the boundaries of its components
p are given by 0 < p ≤ 1, P is positive definite. Hence,

+

long as the muscle Jacobian matrix W does not degenerate
¯

expressed by

through the transpose of the Jacobian matrix J . This

1

joint through the transposed Jacobian matrix J which im-

¯

during movement. The control input to the muscles α is

�x K�x. This potential is eventually distributed to each

i i

+we can obtain a pseudo-inverse matrix W = (W P) as

ᾱ = −W J K�x + (I − W W )k , (14)¯ ¯ ¯

d

d

2

+ +
9 e

¯
2

2

2×2

sition feedback gain, and k signifies the positive stiffness

T

where W = W P , and �x = x − x is the end point po-
sition error between the present position x ∈ R and the
desired position x ∈ R in the task space. The positive
definite diagonal matrix K = k I ∈ R denotes the po-

coefficient of the virtual spring. It should be noted that
in Equation (14), the first term of the right-hand side de-
notes an artificial potential energy in task-space and pro-
duces spring-like forces to each muscle through two Ja-

+

for the internal forces generated by the redundant muscles,
9

expressed by Equation (14) can be interpreted more specif-
ically as that K�x comes from intentional incentive of a

T

implies the joint configuration of the arm relative to the arm
+ +

9 e

uration of the related muscles relative to the joints.

cobian matrices J and W and the second term standsT

where k ∈ R is an arbitrary vector. This control signals

movement which is generated in the motor cortex, and J

¯ ¯ ¯

¯

e

end-point, W and (I − W W )k come from the config-

2.5. Dynamics of three-link planar arm model

The dynamics of a three-link planar arm model can be de-
scribed by Lagrange’s equation of motion as

{
¨H(θ )θ + 1

2
Ḣ(θ) + S(θ , θ ) θ = τ , (15)

}
˙ ˙

where H(θ) ∈ R is the inertia matrix, which is sym-
¨ ˙

˙

τ ∈ R are the input torques to the joints. Substituting

1

3×3

3 3 3

are angular accelerations, angular velocities and angles of
3×3

matrix coming from Coriolis and centrifugal forces, and
3

Equations (2), (3), (13) and (14) into Equation (15) yields

{
¨

metric and positive definite, and θ ∈ R , θ ∈ R , θ ∈ R

joints, respectively. S(θ, θ ) ∈ R is a skew-symmetric

H(θ )θ +
2

T T

˙

)W θ = 0. (16)

H(θ ) + S(θ, θ ) θ

0

}
˙ ˙

˙+ J K�x + W P(AC + C

Equation (16) shows the overall closed-loop dynamics,
which is expressed in the joint coordination system.

3. Stability of the closed-loop dynamics

This section illustrates the convergence of the overall sys-
tem by introducing the concepts of ‘stability on a manifold’
and ‘transferability to a submanifold’. Now, it is convenient
to rewrite Equation (16) as

{
¨H(θ )θ + 1

2

T T

˙

0

H(θ) + S(θ, θ ) θ

}
˙ ˙

˙+ J K�x + WP (AC + C )W θ = �u,(17)

where �u = 0 are the input to the closed-loop dynamics of
Equation (16). Taking the inner product between the input
as Equation (17) and the output as the joint angular velocity
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˙

d

θ yields

T
θ̇ �u =

dt

where

E(t) =

E(t) + θ WP (AC + C )W θ, (18)˙ ˙T
0

1

T

2
˙ ˙θ Hθ +T k

2

Here, we should consider the damping matrix W P(AC +
T

components of the diagonal matrix A, are defined as a sat-
urated function (see Figure 3) to be semi-positive. There-
fore, the matrix (AC + C ) is positive definite because
A ≥ 0, C > 0, C > 0 and P > 0. Hence, the damping

T

the Jacobian matrix W is of row full-rank.
Now, integrating Equation (18) over time t ∈ [0, T )

yields

∫
T

0 ∫
T

0
0

This inequality means that the closed-loop dynamics of
Equation (16) satisfies the passivity condition. However,
it should be noted that this system is a joint redundant sys-
tem because the control input of task-space feedback re-
quires only an end-point position (x, y) although the arm
consists of three joints. Then, the scalar function E(t) is
non-negative definite, but not positive definite for all state

˙

of this redundant system, we introduce the novel concept of
‘stability theory on a manifold’ proposed by Arimoto et al.
(2015). In this proof, we consider that the one-dimensional

6 6

T

rank.
Let us introduce the following definitions to prove the

stability and convergence of the closed-loop dynamics.

Definition 1 (Stability on a manifold)
0

1

bitrarily given ε > 0, there exist a constant δ(ε) > 0 and
another constant r > 0 (r < r ) independent of ε such
that a solution trajectory starting from any initial state

6
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3×3

0

0

matrix WP (AC + C )W is positive definite as long as

t

˙

t
T

variables of (θ, θ ). Therefore, to discuss the convergence

submanifold M on the spectrum S ∈ R such that the
3×2
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1 1 0

˙

hood of δ stays on N (ε, r ) in the neighbourhood of ε, the
reference state (θ , 0) is said to be stable on a manifold.

1 1 0

fold M ∩ N (ε , r ), the reference state (θ , 0) is said to

‖�x‖ ≥ 0. (19)

θ + βk J �x yields

Definition 2 (Transferability to a submanifold)
0

1

stant ε > 0 and another constant r > 0 (r < r ) such
that any solution trajectory starting from an arbitrary initial

6 6

verges asymptotically as t → ∞ to a point on a submani-
0

1 1 0

be transferable to a submanifold of M .
2

energy of the system does not increase during movement.
In addition, the meaning of Definition 2 is that the desired

˙
α

Taking the inner product between Equation (16) and
T

d

C )W ∈ R such that the control inputs ¯ , which are

0

θ �udσ = E(t) − E(0)

˙ ˙

1

transposed Jacobian matrix J ∈ R is of column full-

For the reference state (θ = θ , θ = 0) ∈ M , if for an ar-

(θ(0), θ (0)) contained in N (δ(ε), r ) in the neighbour-
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0 i

+ θ WP (AC + C )W θ dσ ≥ −E(0). (20)
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If for the reference state (θ , 0) ∈ M , there exist a con-
1 1 1 0

state contained in N (δ(ε), r ) stays on N (ε , r ) and con-

6

1

The physical meaning of Definition 1 is that the overall

state (�x = 0, θ = 0) is guaranteed while the system is
stable.

˙

dt

{
1

2
˙ ˙θ Hθ +T k

2

2 T 2

‖�x‖ + θ W P(AC + C )W θ2 T

1

}
T

0

{
T T

˙ ˙

¨+βk ‖J �x‖ +βk�x J Hθ + βk�x J
2

T T
0

where β is a positive number. We introduce the following
equation.

d

Ḣ + S θ

}
˙

+βk�x J W P(AC + C )W θ = 0, (21)

¨

˙

T�x J Hθ =
dt

−�x J Hθ − �x J Hθ . (22)

Substituting Equation (22) into Equation (21) yields

d

�x J Hθ − θ J J HθT T

˙ ˙

˙ ˙ ˙

˙ ˙

T

T T

dt

{
1

2
˙ ˙θ Hθ +T k

2

T

2 T 2

˙

where

˙

||�x|| + βk�x J Hθ2

˙

1

}
T

T
0

T T
0

{
T

˙

+ θ WP (AC + C )W θ˙ ˙

+βk ||J �x|| + βk�x J W P(AC + C )W θ

+βkh(θ ,�x) = 0, (23)

h(θ,�x) = �x J −
2

T

The second, third and sixth terms of the left-hand side of
Equation (21) can be rewritten as follows:

T
0

T T
0

1 k

2 2

˙

˙

H + S θ

}
˙

T

T

− θ J J Hθ − �x J Hθ . (24)

−θ W P(AC + C )W θ − βk ||J �x||

˙ ˙ ˙

˙ ˙ ˙

˙ ˙

−βk�x J W P(AC + C )W θ

2

T

T 2 T 2

˙{ }
T= −γ θ Hθ + ||�x|| + βk�x J Hθ
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{ }
T

0

{ }
T

−θ W (AC + C )W − H θ˙ ˙

− k�x βk J J − I �x

+γβk�x J Hθ − βk�x J W P(AC + C )W θ , (25)

−βk�x J W P(AC + C )W θ

T

T

2

˙ ˙

of the damping matrix W P(AC + C )W .

˙

≤ βk�x J W P(AC + C )W J �x

+

γ

2

γ
2

T T T
0

where γ is a positive number. Also, the following inequal-
ity can be obtained by considering the positive definiteness

T
0

T T
0

T T T
0

βk

4

Similarly, we can obtain the following inequality:

T T

T

T

˙ ˙θ W P(AC + C )W θ . (26)
T

0

γβk
γαk�x J Hθ ≤ γβk�x J H J �x +˙

4

By substituting Equations (26) and (27) into Equation (25),
we obtain the following inequality:

T
0

T T
0

1

˙ ˙θ Hθ . (27)
T

−θ W P(AC + C )W θ − βk ||J �x||˙ ˙

−βk�x J W P(AC + C )W θ

T 2 T 2

˙{
≤ −γ

2
˙ ˙θ Hθ +T k

2{(
× 1−

||�x|| + βk�x J Hθ − θ2 T ˙ ˙
}

T

βk

4

)
T

0W P(AC + C )W − γ

2

(
1 + βk

2{
T T

) }
˙H θ

−k�x βk J J − γ

2( ) }
−β J γ H + WP (AC + C )W J �x. (28)

Here, we introduce the scalar function V (t) such that

1

I

T T
0

2

V (t) =
2

˙ ˙θ Hθ +T k

2

1

||�x|| + βk�x J Hθ2 T ˙

=
2

+

( ) ( )
θ + βk J �x H θ + βk J �x

k

˙ ˙T TT

2

Substituting Equations (28) and (29) into Equation (23)
yields

d

�x I − β k J H J �x. (29)T 2 T
( )

2

dt
V (t) ≤ −γV (t) − βkh(θ,�x) − f (θ ,�x), (30)˙ ˙

where
{(

T
f (θ,�x) = θ 1 −˙ ˙ βk

4

γ

)
T

0W P(AC + C )W

−
2

(
1 + βk

2

) }
T TH θ + k�x βk J J −
[

˙ γ

2
{ }

0

˙
˙

of their coefficients is less than or equal to the maximum
eigenvalue of H . Also, J consists of a trigonometric func-
tion and physical parameters, and they are thereby totally
bounded. Thus, as long as ‖�x(t)‖<‖�x(0)‖, there exists
a positive number ζ for h to satisfy the following inequal-
ity (Tahara et al. 2015, 2016):

2

Now, assume that we can choose the numbers k, β, γ and
the internal force vector k to satisfy the following inequal-
ities.

2 T
2(
1−

2

]
T T

In Equation (25), since H and S are in linear homoge-
neous with respect to the angular velocities θ , and the order

0

˙ ˙

e

I − β k J H J > 0 (33)

βk

I

−β J γ H + W P(AC + C )W J �x. (31)

|h(θ,�x)| ≤ ζ‖θ‖ . (32)

4

)
T

0W P(AC+C )W −γ

2

(
1+βk

2

γ

)
H > βkζ

(34)

βk J J−T

2

By considering these inequalities, we see that the scalar
function V (t) expressed by Equation (29) is positive, and
the inequality

−βkh(θ ,�x) − f (θ ,�x) ≤ 0 (36)

is satisfied. Hence, Equation (23) can be reduced to

I −β J γ H+W P(AC+C )W J >0.
{ }

2 0

(35)

˙ ˙

d

T T

dt

Therefore, from Equation (37) we obtain

V (t) ≤ e V (0) (38)

and conclude that the scalar function V (t) converges to
zero exponentially. The scalar function V (t) plays the role
of a modified energy function of E(t) in Equation (19).

˙

V (t) ≤ −γV (t). (37)

−γ t

Q.E.D.

Therefore, θ → 0 and �x → 0 when t → ∞.
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Table 1. Physical parameters of the arm.

K. Tahara et al.

Length Mass Inertia
2

Mass centre
(m)(m) (kg) (kg·m )

Upper arm 0.31
Forearm 0.27
Wrist 0.15

1.93
1.32
0.35

0.0141
0.0120
0.0010

0.165
0.135
0.075

4. Numerical simulation

Table 1 shows the physical parameters of the arm model,
Table 2 shows the insertions of the muscles and Table 3
shows the initial and desired positions of the end point.
In this paper, we treat two types of reaching movements:
short-range and middle-range reaching. We also determine
the internal force vector as k = k e in order to see the
influence of k on the dynamics, where k is a positive

T 9

for the short-range reaching movement (|�x|≤0.3[m])
with virtual spring coefficient k=10.0 and internal force
coefficient k =5.0 are shown in Figure 4. The end-point
trajectory moves along a very winding path even though it
converges to the desired point. Simulation results for the
short-range reaching movement with k = 10.0 and k =
25.0 are shown in Figure 5. Here, in contrast to Figure 4,
the end-point converges to the desired point smoothly and
its trajectory is close to a straight line. Figure 6 shows
the trajectories of the end-point position (x, y) of a short-
range reaching movement with the virtual spring coef-
ficient k=10.0 when k is shifted from 5.0 to 30.0 by
5.0 units. These trajectories are made close to a straight
line by increasing the internal force coefficient k . Fig-
ure 7 shows the transient responses of the end-point ve-

e e

e e

number and e = (1, 1, . . . , 1) ∈ R . Simulation results

e

e

e

e

√
locity |v| = ˙ ˙

e

e

e

e

x + y of short-range reaching movement2 2

with k = 10.0 when k is shifted from 5.0 to 30.0 by 5.0
units. The velocity profiles are made smooth by increasing
the internal force coefficient k . Figures 8 and 9 show the
transient responses of the end-point x- and y-position with
k = 10.0 when k is shifted from 5.0 to 30.0 by 5.0 units.
We see from these figures that the shortest settling time
of the end-point x-position is about 1.5 s when k = 30.0,

Table 2. Insertion of each muscle.

Muscle Value (m)

l r = 0.055 s = 0.080
l r = 0.055 s = 0.080
l r = 0.030 s = 0.120
l r = 0.030 s = 0.120
l w = 0.040 w = 0.045
l w = 0.040 w = 0.045
l r = 0.035 s = 0.220
l r = 0.050 s = 0.250
l w = 0.040 w = 0.030

1 1 1

2 2 2

3 3 3

4 4 4

5 51 52

6 61 62

7 7 7

8 8 8

9 91 92

Table 3. Initial and desired points.

Initial point (m) (x, y) = (0.0, 0.60)

Desired point (m)
Short range (x , y
Middle range (x , y

d d

d d

) = (−0.20, 0.40)
) = (−0.40, 0.20)

and that of the y-position is about 2.0 s when k = 20.0.
On the other hand, Figure 10 shows the simulation result
of the middle-range reaching movement with k = 10.0 and
k = 5.0. The trajectory of the end point is not smooth and
describe a more winding route than that of the short-range
reaching, and the final posture of the arm seems to be im-
possible for a real human. In contrast, Figure 11 shows the
simulation result of the middle-range reaching movement
with k = 10.0 and k = 25.0. The end-point converges to
the desired point smoothly, and its trajectory becomes a
quasi-straight line even though ‖�x‖ ≤ 0.6 m holds for
in middle-range reaching. Figure 12 shows trajectories of
the end-point position (x, y) of the middle-range reaching
movement with k=10.0 when k is shifted from k =5.0 to
k =30.0 by 5.0 units. Like the short-range reaching move-
ments shown in Figure 6, the end-point trajectories become
smooth and close to straight lines as k increases. Figure 13
shows transient responses of the end-point velocity |v| of
the middle-range reaching movement with k = 10.0 when
k is shifted from k = 5.0 to k = 30.0 by 5.0 units. The
velocity profiles when k = 5.0 and k = 10.0 are oscil-
latory, and each settling time is more than 3.0 s. However,
those in the case of k = 25.0 and k = 30.0 are smooth be-
cause of the higher k , and also each settling time is about
1.5 s. Figures 14 and 15 show the transient responses of
the end-point x- and y-position with k = 10.0 when k is
shifted from 5.0 to 30.0 by 5.0 units. We see from these
figures that the fastest convergence time of the end-point

e

e

e

e e

e

e

e e e

e e

e e

e

e
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Figure 4. Short-range reaching movement with k = 10.0 and
k = 5.0.e
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Figure 5. Short-range reaching movement with k = 10.0 and
k = 25.0.e

x-position is about 2.0 s when k = 15.0, and that of the
y-position is about 2.0 s when k = 25.0. These simula-
tion results suggest that the internal force coefficieint k

are chosen according to the virtual spring coefficient k, the
end point of the musculo-skeletal redundant arm converges
to the desired point smoothly without any complex math-
ematical optimization. The benefit of our proposed model
is that co-contraction of antagonistic muscles can modu-
late the damping effect in the joint space. Until now, many
control schemes for muscle redundant arm model are used
by some optimisation method to determine muscle output
force uniquely because the internal forces cannot affect to
the joint torques. Unlike these methods, in our model, in-
ternal forces can affect the joint torques, and thereby the
trajectory of the end point is changed by varying the inter-
nal force vector k .

e

e

e

e

k = 5.0e
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Figure 6. Trajectories of the end-point position of short-range
reaching movements with k = 10.0.

Figure 9. Transient responses of the end-point y-position of
short-range reaching movements with k = 10.0.
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Figure 7. Transient responses of the end-point velocity of short-
range reaching movements with k = 10.0.
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Figure 8. Transient responses of the end-point x-position of
short-range reaching movements with k = 10.0.
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Figure 10. Middle-range reaching movement with k = 10.0 and
k = 5.0.e
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Figure 11. Middle-range reaching movement with k = 10.0 and
k = 25.0.e
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Figure 12. Trajectories of the end-point position of middle-
range reaching movements with k = 10.0.

Figure 15. Transient response of the end-point y-position of
middle-range reaching movements with k = 10.0.
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Figure 13. Transient responses of the end-point velocity of
middle-range reaching movements with k = 10.0.
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Figure 14. Transient response of the end-point x-position of
middle-range reaching movements with k = 10.0.
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5. Dynamic damping ellipsoid

We introduce a dynamic damping ellipsoid, in order to dis-
cuss how the internal force vector k is determined, and to
evaluate it. The damping ellipsoid at the end point of the
human arm has been proposed by Tsuji et al. (1994). The
ellipsoid can express the damping effect at the end point
of a human arm when the arm’s dynamics can be approxi-
mated as being almost governed by only a term related to
the velocity. It was derived from the result of measurement
and the evaluation of a real human hand’s damping effect
in a quasi-static situation. Unlike the above ellipsoid, our
dynamic damping ellipsoid expresses the damping effect
that can be given to the end point of the arm by modulating
the internal force vector k included in the control input to
the muscles. Figure 16 illustrates the dynamic damping el-
lipsoid at the end point of a human arm. We consider part
of the control input in Equation (14), which can generate
the joint torque for only the damping effect as

e

e

τD = −W P(AC + C T
0)W θ ,˙ (39)

where τ is the vector of the input torques for generating
the damping effect. Since the damping force F at the end
point in task space can be expressed as

D

D

F = −Dx,D ˙ (40)

where

D = −( J )T +W P(AC + C T +
0)W J , (41)

Figure 16. Dynamic damping ellipsoid at the end point.

Figure 17. Dynamic damping ellipsoid at the end point when
k = 10.0 and k = 25.0.e

( J ) is the pseudo-inverse transposed Jacobian matrix of
J , and J means the pseudo-inverse Jacobian matrix of

the end-point velocity x satisfies the inequality of ‖x‖ ≤ 1

F (D ) D F ≤ 1. (42)

e

e

e

T +
T +

J . Therefore, the exertable end-point damping force when
˙ ˙

can be expressed as

T −1 T −1
D D

This ellipsoid shows the end-point damping forces gener-
ated by the control input during movement. By considering
this ellipsoid, we can evaluate the internal forces required
to modulate the damping effect. Figure 17 shows the damp-
ing ellipsoid at the end point of the middle-range reach-
ing movement with k = 25.0, and Figure 18 shows that
with k = 5.0. We see from these figures that in the case
of a suitable internal force (k = 25.0), the long axis of

Figure 18. Dynamic damping ellipsoid at the end point when
k = 10.0 and k = 10.0.e
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Table 4. Parameters for a virtual spring-damper.

Virtual spring k = 10.0

Virtual damper ζ = 1.0 (k = 5.0)
ζ = 0.0 (k = 25.0)

e

e

the damping ellipsoid turns on the shoulder during move-
ments. Therefore, the short axis of the damping ellipsoid
turns on the desired point, and the damping effect at the
end-point is relatively small in the direction of the de-
sired point during movement. Also at the beginning of
the movement, the ellipsoid is relatively large. It becomes
gradually small as the end-point velocity increases, and fi-
nally the shape of the ellipsoid becomes large again like
at the beginning shape. However, in the case of an un-
suitable internal force (k = 5.0), the damping ellipsoid is
relatively small: the long and short axes of the ellipsoid
are nearly equal. By comparing these results we can con-
clude that the end point can converge to the desired point
smoothly by considering the size and direction of the dy-
namic damping ellipsoid during movement. The size and
direction of dynamic damping ellipsoid are governed by
the internal force vector k and muscle contractile veloc-
ity. However in this paper, we only pointed out a relation
between the internal forces and the ellipsoid from the view-
point of muscle and joint configurations as a posteriori rea-
soning, and could not disclose any dynamic relation be-
tween the internal force vector and the ellipsoid explicitly
from the dynamics viewpoint, because an explicit dynam-
ics of co-activation model is not presented here. Therefore,

e

e

a more systematic paradigm for determining k accord-
ing to the dynamic damping ellipsoid or a totally differ-
ent modeling of muscle dynamics that may naturally pre-
vent involvement of internal forces is needed in our next
work.

e

6. Extension to ‘virtual spring-damper hypothesis’

We extend our control stragegy to the ‘virtual spring-
damper hypothesis’ proposed by Arimoto et al. (2016).
This hypothesis made the point that in reaching move-
ments, if we assume the existence of a virtual spring and a
virtual damper between the end point and the desired point,
the end point of a human arm can converge to the desired
point smoothly according to this virtual spring-damper (see
Figure 19). Also in physiology, it is known that the co-
contraction of agonist and antagonist muscles is gradually

Figure 19. Virtual spring-damper between the end point and the desired position.
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Figure 20. Middle-range reaching movement with a virtual
spring-damper when k = 10.0, k = 5.0 and ζ = 1.0.e

reduced as the process of learning a movement progresses
(Osu et al. 1997). Now, we hypothesise that the internal
forces generated by the co-contraction of agonist and an-
tagonist muscles are reduced, which enables an adequate
damping shape in the task space to be gradually obtained
as the learning process for reaching movements progresses.
We modify the control input to the virtual spring-damper
model. It is given by

ᾱ = −W J {k�x − ζ¯ + T
√

kx} + (I − W W )k . (43)˙
+

9 e
¯ ¯
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Figure 21. Middle-range reaching movement with only a virtual
spring when k = 10.0, k = 25.0 and ζ = 0.0.e

Figure 24. End-point trajectories of all range-reaching move-
ments with a virtual spring-damper.
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Figure 22. Transient responses of the muscle’s output forces of
middle-range reaching with a virtual spring-damper.
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Figure 23. Transient responses of the muscle’s output forces of
middle-range reaching with only a virtual spring.
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Figure 25. End-point trajectories of all range-reaching move-
ments with only a virtual spring.

Also, the closed-loop dynamics can be expressed as

{
¨H(θ) θ + 1

2
√

Ḣ(θ ) + S(θ, θ ) θ + J˙ ˙
}

Tk�x

+{J JζT k + W P( AC+C )W }T
0 θ̇ = �u = 0, (44)

where the first term of the right-hand side of Equation (43)
represents the virtual spring-damper and the second term
represents the internal forces generated by redundant mus-
cles.

Table 4 shows each parameter for a virtual spring-
damper k and ζ used in the numerical simulations, and
these results are shown below. Figure 20 shows the sim-
ulation results with a virtual spring-damper, and Figure 21
shows those results without spring-damper. We see from
these figures that the trajectories of the end point in these
two cases converge to the desired point smoothly. The fi-
nal orientation of the wrist joint in the case of using a vir-
tual spring-damper is more natural than that without one.
In contrast, Figures 22 and 23 show the transient responses
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Figure 26. End-point velocities of all range-reaching move-
ments with a virtual spring-damper.
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Figure 27. End-point velocities of all range-reaching move-
ments with only a virtual spring.

of the muscle’s output forces. We see from these figures
that the output forces in the case of using a virtual spring-
damper are obviously reduced compared with those with-
out a virtual spring-damper, even though both end points
converge to the desired point smoothly. Figures 24 and 25
show the simulation results for reaching movements of all
ranges. We see from these figures that when the desired po-
sition is in the extension direction from the initial position
(especially F, G, H in Figure 25), there is excessive over-
shoot, which depends on the configuration of the muscles.
However, this excessive overshoot can be reduced by intro-
ducing a virtual damper (see Figure 24). Figures 26 and 27
show the end-point velocities of all range-reaching move-
ments with and without a virtual spring-damper. We see
from these figures that the velocity profiles become more
smooth when a virtual spring-damper is used. In paticular,
F, G, H in Figure 26, the oscillation is decreased. These
simulation results led us to suppose that reaching move-
ments made before the movements were learned need a
certain level of internal force to generate the joint damping
effect because there is no adequate virtual damper at the
end point. After learning, the internal forces can be reduced
by obtaining pro-prioceptive information in the CNS, so an
adequate virtual damper can be generated at the end point.
However, in order to discuss this more, we need to compare
a human’s movements and our scheme.

7. Conclusion

This paper treated reaching movements by using the
musculo-skeletal redundant arm model composed of three
joints and nine muscles with physiological non-linear mus-
cle properties to mimic a human arm. Asymptotic con-
vergence of the closed-loop dynamic system was obtained
based on the concept of stability theory on a manifold. We
finally confirm through numerical simulation results that
the end point of the musculo-skeletal redundant arm could
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converge to the desired point using only task-space feed-
back control with internal force adjustment under the exis-
tence of both joint and muscle redundancies, without any
complex mathematical computation. In addition, we intro-
duced the dynamic damping elipse to determine the inter-
nal force vector and evaluated it. We extended our control
scheme to the virtual spring-damper hypothesis proposed
by Arimoto et al. (2016). By introducing a virtual damper
in addition to the virtual spring at the end point, we can
reduce the internal forces. Moreover, the heterogeneity of
convergence depending on the initial state and desired po-
sition is also reduced. These results lead us to the under-
standing that learning of human movements might be in-
terpreted as acquisition of adequate coordination of a vir-
tual spring and damper in the task coordinates. However,
we have not treated the problem of learning of movements
in this paper yet. Therefore, in order to claim that our con-
trol scheme is reasonable, we should gain a more phys-
ical insight into determination of the internal force vec-
tor k . In addition, we have only modeled co-contraction
of agonist and antagonist muscles from the viewpoint of
their configurations and contractile velocities, but did not
present dynamics of muscle co-activation which might be
given as a dynamic system of more complex differential
equations. By introducing such a dynamic model of co-
activation, the structure of the internal force space de-

+
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contraction would be disclosed in a more explicit form.
Fortunately, since modeling of skeletal muscles is a hot
topic in physiology (Houdijk et al. 2016; Perreault et al.
2013) and many new models will be proposed hereafter,
we would like to introduce such skeletal muscle models
into our control strategy for redundant joint and musculo-
skeletal systems. On the other hand, one of the advantages
of our proposed method is that any planning of end-point
trajectories is unnecessary in advance. Similarly, Todorov
and Jordan (2012) have also proposed an optimal feedback
control theory that does not need end-point trajectories.
Our control method presented here may be interpreted as
one of such optimal feedback control schemes by regard-
ing an artificial potential energy produced by the virtual
spring as one of the possible cost functions. The equiva-
lence of both methods will be treated in our future works.
We would also like to introduce a learning strategy for the
internal force to investigate human-like multi-body control
mechanisms based on our control strategy.
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