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I. INTRODUCTION  

A linear control system is designed for the flight control of an 

insect robot. Insect sized robots try to mimic biological insects 

thereby providing insights into their behavior [1]. The insects 

are able to perform high performance maneuvers like agile 

motions, make precise landings on ceilings etc. [2,3] .  But 

they perform these operations with very small nervous 

systems. Thus by reverse engineering their techniques, a 

robust insect robotic design can be implemented.  

 

In this project, a linear control system for the insect robot is 

formed. For simplicity the 2-D planar case is considered. We 

try to control the Roll angle and lateral velocity of the robot 

which are as shown in figure 1. We take the nonlinear ODE, 

linearize it around a fixed point and form a state space linear 

time invariant system (LTI), test its stability and assess 

controllability and observability. We also make various 

computations on the LTI system as explained in section IV 

and try applying the results obtained from the computations on 

the nonlinear system. 

II. MODEL 

The continuous nonlinear dynamics (CNL) for the 3-D case is 

as shown below 

 

 ̇= W(Ø)ω 

J ̇=τ-ω x Jω 

M ̇=f-ω x Mv 

 

The quantity W(Ø) is a matrix that relates the angular velocity 

ω to the rate of change in Euler angles and J, v are the moment 

of inertia and velocity vectors. M is the mass of the robot.  

 

The Diagram for the 2-D case is as shown in figure 1. A drag 

force    acts at a point above the centre of mass. The ODE 

after all approximations in drag force calculations is as shown. 
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Figure 1: 2-D planar model from [1] 

 

 

 
 
where,     is the drag factor , g is the acceleration due to 
gravity and     is the distance the drag force acts from the 
centre of mass and J is the Moment of Inertia around the x-
axis. The values for all constants can be found in the 
appendix. 
 

A. States 

  

 Ø  - The Roll angle as shown in figure 1. 

                     ω  -The angular velocity 
                        -The lateral velocity of centre of mass. 

 

B. Inputs 

The inputs to the system are a control torque    and a control 

force    that produced by the flapping of the wings. The 

Mechanism of flapping wings can be found in [4]. 

 

C. Outputs 

The outputs from the system are the Roll angle Ø and angular 

velocity ω and lateral velocity  . The output function is of the 

form  ̇=     ). 
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D. Assumptions. 

The following assumptions have been made to simplify the 

system for making a linear analysis.  The system is powered 

from an off board power source and the torques and forces due 

to the wirings are considered to be negligible. The wind that 

causes the drag force is always kept steady. 

 

III. ANALYSIS 

A. Equillibrium 

The equilibrium points for a system can be found by equating 

the ODE  ̇=         )=0, where   is the state vector and   is 

the input vector.  

 

The system in the project has various equilibrium points. One 

such point is [0,0,0], where the insect robot stays completely 

upright and without lateral shift at a position. Another 

interesting point would be [π,0,0] but we consider the first 

point as our point of interest because the desired action we 

want the insect to perform is to stay at the upright position. 

The inputs at equilibrium point is [0,0]. 

 

B. Linearization 

The CNL can be linearized around the equilibrium point to 

make an analysis of the system. The continuous linear time 

invariant system is of the form as shown.  

 

 ̇= A  + B  

 ̇= C  + D  

 

Where the matrices A and B are obtained by taking the 

Jacobian of      ) with respect to   and   respectively and 

the matrices C and D are obtained by taking the Jacobian of 

     ) with respect to   and   respectively around the 

equilibrium points. The matrices at the equilibrium point for 

the project system are as shown. 

 

 

A =  [
   
            

              
] 

 

                           

                          B = [
  
  
  

] 

                  

                           

                         C = [
   
   
   

] 

 

                          

                         D = [0] 

 

C. Stability Analysis 

 

The stability of a CLTI system can be assessed using the 

eigenvalues of the A matrix. The eigenvalues of the A matrix 

for the project system are [7.6+19.41i, 7.6-19.41i, -28.5]. We  

see that the system has a complex conjugate pair of 

eigenvalues with positive real part and a negative real 

eigenvalue. The eigenvalue analysis suggests that the Roll 

angle and angular velocity spiral outwards and are unstable 

but the lateral velocity is stable. But the overall system is 

unstable as even a single unstable eigenvalue makes the 

overall system unstable [5]. 

 

D. Controllability and Observability 

Since it is a time invariant system we can compute the 

Controllability and Observability matrices using the A, B and 

C matrices. We can conclude that the system is completely 

controllable and observable as the rank of both the matrices is 

equal to the size of the A matrix. The Controllabilility and 

Observability matrices are as shown. 
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IV. COMPUTATIONS 

 

The computations are performed by scaling down the values 

of the constants so that the higher powers of matrices don’t 

have large values in their elements. The various computations 

performed are as follows. 

 

A. Open Loop Control 

 

An open loop controller is implemented for the LTI which 

steers the system states from a given initial condition to a final 

condition using its inputs. It is done by using the 
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controllability matrix. Doing an SVD decomposition of the 

matrix makes it easy to invert it to get the inputs at each time 

step. The formula for calculating input at each time step t is as 

shown. 

 

 

   )         (Xf-  
 X(0)) 

 

where V,        are obtained by decomposing the 

controllability matrix, Xf, X(0) are the given final condition 

and initial condition respectively and   =    ). For this 

project, the initial condition is taken as [π, π, 3] and the final 

condition is [0, 0, 0]. The plot for the trajectories of the states 

is as shown in Figure 2A, 2B, 2C. 

 

 

B. Closed loop control 

 

The closed loop control is established by giving an input that 

varies proportional to the state feedback. The input provided at 

each step is equal to –  . The formula for the closed loop 

control is given as shown. 

 

                                  ̇ =       )  

 

K is designed in such a way to make matrix      ) to 

asymptotically stabilize the above equation. If the system is 

continuous, the eigenvalues of the matrix      ) should 

have negative real parts and if the system is discrete, it should 

have eigenvalues with real parts less than 1.  The trajectories 

of each state are as shown in figure 2A, 2B, 2C. 

 

 

 

 
 

Figure 2A: Open and closed loop control of Angle (state1) 

 

Figure 2B: Open and closed loop control of Angular velocity 

(state2) 

 

 

Figure 2C: Open and closed loop control of Lateral velocity 

(state3) 

 

We see from figure 2A, 2B, 2C that the open loop drives the 

states to the desired end conditions and the closed loop 

asymptotically stabilizes the states and makes them go to zero. 

The closed loop is more robust in stabilizing the system during 

perturbations. In the project scenario the insect robot is more 

prone to such perturbations from sudden gust of wind and 

forces from the power line. Thus the closed loop control is 

more desirable. 
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C. State estimation 

 

In section IV A and B, we had constructed controllers 

assuming that the states were fully observable. Now we can 

construct the estimate of our initial states using our output 

given by the formula below. 

 

   )          
   

   
 

where X(0) is the estimate of initial states,        
    

  are 

matrices obtained by doing an SVD of the observability matrix 

and Y is the output. The estimate of states at each time step 

can be found by making the simulation to run from that 

particular time step and using the above formula. There is an 

error that occurs in the estimation of state and this can be 

decreased by constructing the asymptotic state constructor as 

shown in the next section. 

 

D. Asymptotic State Estimator 

 

To make the state estimation process much more accurate, we 

construct the asymptotic state estimator using the following 

formulae. 

 

       ⏞ 

 

 ̇ =      )  

 

 ⏞̇ =   ⏞ +    –    ⏞   ) 
 

where, e is the error in the estimation of state.   ⏞ and   ⏞ are 

the estimates of the state and output respectively and L is 

designed in such a way to make matrix      ) to 

asymptotically stabilize the above equation. By making    ̇ go 

to zero we bring the estimated states equal to the actual states. 

The plots for the original and estimated states are as shown in 

Figure 3A, 3B, 3C. 

 

 
Figure 3A: original and estimated angle (state 1) 

 
Figure 3B: original and estimated angular velocity (state 2) 

 

 

 

 
 

Figure 3C: original and estimated lateral velocity (state 3) 

 

From the plots we see that the error in the estimated states go 

down to zero and make the estimated states coincide with the 

original state.  

 

E. Closed Loop Estimator/Controller 

 

We had stabilized the error between the estimated states and 

the original state in the previous sections. Now we can apply 

this to the equation in IV B and get a closed loop estimator/ 

controller. The equation for that would be as follows. 

 

 ̇=      ) ⏞ +     

 

 ̇ =      )  

The equation simultaneously stabilizes the error to zero and 

gets the state to its equilibrium point. The plots for the three  
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states for the closed loop estimator/controller is as shown in 

Figure 4. 

 

 

 
Figure 4: Closed Loop Estimator/Controller 

 

From the plot we see that the system has lesser oscillations 

before stabilizing for states 1 and 3 compared to the closed 

loop control plots in Figure 2A, 2C.  

 

 

V.  APPLICATIONS 

A. Nonlinear System 

In section IV we had linearized our non-linear system and 

constructed a closed loop estimator/controller for it. Now we 

try to apply this estimator to our non-linear system and see if it 

still stabilizes the system.  Thus we feed in the estimated states 

into the simulation of the non-linear dynamics. The plots for 

the trajectories obtained are as shown in Figure 5.  

 

 
Figure 5: Estimator/controller applied to the nonlinear system 

  

We see that the system stabilizes to the equilibrium point but it 

takes a longer time and oscillates more before it reaches the 

equilibrium. 

 

B. Non-linear System with Disturbance 

 

Now we introduce a parameter variation into the system. In 

real life scenarios the insect robot need not always have the 

same drag coefficient. It may vary according to the 

environmental conditions. Thus we try changing the value of 

the drag coefficient in the non-linear model and try testing the 

estimator/ controller. We get the plots shown in Figure 6A, 

6B, 6C. We see that initially the simulations are different but 

they eventually coincide and stabilize to the equilibrium point. 

 

 
Figure 6A: Estimator for non-linear case with disturbance 

(state 1) 

 

 

 

 
Figure 6B: Estimator for non-linear case with disturbance 

(state 2) 
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Figure 6C: Estimator for non-linear case with disturbance

(state 3)

VI. DISCUSSIONS

In the project we had considered the flight control of an insect

robot and tried to develop a linear control for the 2-D case. We

had linearized the system about an interesting equilibrium

point. We found that the system was completely observable

and controllable. We had then constructed a closed loop

estimator/ controller for the linear case and found that it was

more realistic and stabilized the system quicker than the open

loop controller. We had also tested this on the non-linear

dynamics and also by changing the drag parameter. The

results showed that the estimator worked well in both cases.

In further work we can try to reduce the assumptions and

consider the forces given by the wirings. We can also go

towards making an optimal controller that would make the

insect use much lesser energy in stabilizing. We could also try

to access the system at other equilibrium points.
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VIII.APPENDIX

All computations and simulations were done in Matlab.

Controllability and Observability were found by using inbuilt

commands in Matlab. Other inbuilt commands such as SVD

and Place were used for doing Computations.

The values of various constants involved are given in table 1.

Mass m 81 x kg    

Mass of ocelli 25 x kg    

Moment of inertia (J) 1.42 x kg      

Wing drag factor (bw ) 2.0 x Ns      

Distance from CoM to wings (rw) 9 x m    

Table 1: Values for constants


