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a b s t r a c t

This paper presents a novel policy iteration approach for finding online adaptive optimal controllers for
continuous-time linear systems with completely unknown system dynamics. The proposed approach
employs the approximate/adaptive dynamic programming technique to iteratively solve the algebraic
Riccati equation using the online information of state and input, without requiring the a priori knowledge
of the systemmatrices. In addition, all iterations can be conducted by using repeatedly the same state and
input information on some fixed time intervals. A practical online algorithm is developed in this paper,
and is applied to the controller design for a turbocharged diesel engine with exhaust gas recirculation.
Finally, several aspects of future work are discussed.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The adaptive controller design for unknown linear systems
has been intensively studied in the past literature (e.g. Ioannou
and Sun (1996), Mareels and Polderman (1996) and Tao (2003)).
A conventional way to design an adaptive optimal control law
can be pursued by identifying the system parameters first and
then solving the related algebraic Riccati equation. However,
adaptive systems designed this way are known to respond slowly
to parameter variations from the plant.

Inspired by the learning behavior from biological systems,
reinforcement learning (Sutton & Barto, 1998) and approximate/
adaptive dynamic programming (ADP) (Werbos, 1974) theories
have been broadly applied for solving optimal control problems
for uncertain systems in recent years. See, for example, Lewis
and Vrabie (2009) and Wang, Zhang, and Liu (2009) for two
review papers, and Al-Tamimi, Lewis, and Abu-Khalaf (2017),
Bhasin, Sharma, Patre, and Dixon (2017), Dierks and Jagannathan
(2018), Doya (2000), Ferrari, Steck, and Chandramohan (2008),
Jiang and Jiang (2017), Vamvoudakis and Lewis (2017), Vrabie,
Pastravanu, Abu-Khalaf, and Lewis (2009), Werbos (1998, 2009),
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Among all the different ADP approaches, for discrete-time
systems, the action-dependent heuristic dynamic programming
(ADHDP) (Werbos, 1989), or Q -learning (Watkins, 1989), is an
online iterative scheme that does not depend on the model to
be controlled. Recently, the methodology has been extended and
applied to many different areas, such as nonzero-sum games
(Al-Tamimi et al., 2017), networked control systems (Xu et al.,
2018), and optimal output feedback control designs (Lewis &
Vamvoudakis, 2017), as well as multi-objective optimal control
problems (Wei, Zhang, & Dai, 2009).

Due to the different structures of the algebraic Riccati equations
between discrete-time and continuous-time systems, results de-
veloped for the discrete-time setting cannot be directly applied
for solving continuous-time problems. In Baird (1994), the ad-
vantage updating technique for sampled continuous-time system
was proposed. In Murray, Cox, Lendaris, and Saeks (2012), two
model-free algorithms were developed, but the measurements of
state derivatives must be used. An exact method was developed
in Vrabie et al. (2009), where neither knowing the internal sys-
tem dynamics nor measuring the state derivatives was neces-
sary. However, a common feature of all the existing ADP-based
results is that partial knowledge of the system dynamics is as-
sumed to be exactly known in the setting of continuous-time
systems.

Theprimary objective of this paper is to remove this assumption
on partial knowledge of the system dynamics, and thus to develop
a truly model-free ADP algorithm. More specifically, we propose
a novel computational adaptive optimal control methodology
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that employs the approximate/adaptive dynamic programming
technique to iteratively solve the algebraic Riccati equation using
the online information of state and input, without requiring the a
priori knowledge of the system matrices. In addition, all iterations

information on some fixed time intervals. It should be noticed that

related problems for continuous-time systems.

duce the standard linear optimal control problem for continuous-
time systems and the policy iteration technique. In Section 3, we

mal controller designproblemof a turbochargeddiesel enginewith
exhaust gas recirculation. Concluding remarks as well as potential
future extensions are contained in Section 5.

Notation. Throughout this paper, we use R and Z to denote
the sets of real numbers and non-negative integers, respectively.

n×m

T T T T n
i

m×n

˙

matrix A− BK is Hurwitz.

x = Ax+ Bu (1)

which minimizes the following performance index
∞

T T

0

T T 1/2

By linear optimal control theory (Lewis & Syrmos, 1995), when
both A and B are accurately known, the solution to this problem

equation (ARE)
T −1 T

∗ ∗

in (2) can thus be determined by

can be conducted by using repeatedly the same state and input

our approach may serve as a computational tool to study ADP

This paper is organized as follows. In Section 2, we briefly intro-

develop our computational adaptive optimal control method and
show its convergence. A practical online algorithm will be pro-
vided. In Section 4, we apply the proposed approach to the opti-

+

Vertical bars ∥ · ∥ represent the Euclidean norm for vectors, or
the induced matrix norm for matrices. We use ⊗ to indicate the
Kronecker product, and vec(A) is defined to be the mn-vector
formed by stacking the columns of A ∈ R on top of one another,
i.e., vec(A) = [a a · · · a ] , where a ∈ R are the columns of A. A
control law is also called a policy. A feedback gainmatrix K ∈ R
is said to be stabilizing for linear systems x = Ax+Bu if the feedback

2. Problem formulation and preliminaries

Consider a continuous-time linear system described by

˙

n

m n×n

n×m

is assumed to be stabilizable.
The design objective is to find a linear optimal control law in the

form of

u = −Kx (2)


J = (x Qx+ u Ru)dt (3)

where Q = Q ≥ 0, R = R > 0, with (A,Q ) observable.

can be found by solving the followingwell-known algebraic Riccati

A P + PA+ Q − PBR B P = 0. (4)

By the assumptions mentioned above, (4) has a unique symmetric
positive definite solution P . The optimal feedback gain matrix K

∗ −1 T ∗

Since (4) is nonlinear in P , it is usually difficult to directly
∗

many efficient algorithms have been developed to numerically
approximate the solution of (4). One of such algorithms was
developed in Kleinman (1968), and is introduced in the following:

1 2 m

where x ∈ R is the system state fully available for feedback
control design; u ∈ R is the control input; and A ∈ R and
B ∈ R are unknown constant matrices. In addition, the system

K = R B P . (5)

solve P from (4), especially for large-size matrices. Nevertheless,
T
k k k k

k

k k−1

Then, the following properties hold:

k
2. P ≤ P ≤ P ,

∗ ∗
k→∞ k k→∞ k

For the purpose of solving (6) without the knowledge of A, in

T T
k k

T T
k

excitation (PE) condition (Vrabie et al., 2009). However, as we
can see from (7), the exact knowledge of system matrix B is still
required for the iterations. Also, to guarantee the PE condition, the
statemay need to be reset at each iteration step, but thismay cause
technical problems for stability analysis of the closed loop system

(e.g. Al-Tamimi et al. (2017), Bradtke, Ydstie, and Barto (1994),
Vamvoudakis and Lewis (2017) and Xu et al. (2018)) such that u =
−K x + e, with e the exploration noise, is used as the true control
input in (8). As a result, P solved from (8) and the one solved from
(6) are not exactly the same. In addition, after each time the control
policy is updated, information of the state and input must be re-
collected for the next iteration. This may slow down the learning
process, especially for high-dimensional systems.

3. Computational adaptive optimal control design with com-

m×n −1 T
k+1 k+1 k

where A = A− BK .

T T
k k

t+δt
T T T T

k k k k k
t  

T T
k k k+1

t t

T
k k

Theorem 1 (Kleinman, 1968). Let K ∈

k

A− BK P + P A− BK + Q + K RK = 0 (6)

K = R B P . (7)

k k

 
k

k k
interval t, t + δt .

k

k

0 +

k

x = A x+ B(K x+ u)


= x (A P + P A )x+ 2(u+ K

k

0

k

R be any stabilizingm×n

feedback gain matrix, and let P be the symmetric positive definite
solution of the Lyapunov equation

T
k

where K , with k = 1, 2, . . . , are defined recursively by:

−1 T

1. A− BK is Hurwitz,
∗

k+1 k
3. lim K = K , lim P = P .

In Kleinman (1968), by iteratively solving the Lyapunov equa-
tion (6), which is linear in P , and updating K by (7), the solution
to the nonlinear equation (4) is numerically approximated.

Vrabie et al. (2009), (6) was implemented online by

x (t)P x(t)− x (t + δt)P x(t + δt)
t+δt

= x Qx+ u Ru dτ (8)
t

where u = −K x is the control input of the system on the time
[ ]

Since both x and u can be measured online, a symmetric
solution P can be uniquely determined under some persistent

(Vrabie et al., 2009). An alternative way is to add exploration noise

k

k
k

pletely unknown dynamics

In this section, wewill present our new online learning strategy
that does not rely on either A or B. First, we assume a stabilizing
K is known. Then, for each k ∈ Z , we seek to solve a symmetric
positive definitematrix P satisfying (6), and obtain a feedback gain
matrix K ∈ R using K = R B P .

To this end, we rewrite the original system (1) as

˙ (9)

k k
Then, along the solutions of (9) by (6) and (7) it follows that

x(t + δt) P x(t + δt)− x(t) P x(t) 
x) B P x dτ

t+δt t+δt

= − x Q x dτ + 2 (u+ K x) RK x dτ (10)

where Q = Q + K RK .

( ) ( )

k k

k
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T
k k k

T
k

T
k

involving B is replaced by RK , in which K is treated as an-
other unknown matrix to be solved together with P . Therefore,
(10) plays an important role in separating the system dynamics
from the iterative process. As a result, the requirement of the sys-
tem matrices in (6) and (7) can be replaced by the state and input
information measured online.

Remark 3. It is also noteworthy that in (10) we always have exact
equality if P ,K satisfy (6), and (7), and x is the solution of system
(9) with arbitrary control input u. This fact enables us to employ
u = −K x + e, with e the exploration noise, as the input signal
for learning, without affecting the convergence of the learning
process.

Next, we show that given a stabilizing K , a pair of matrices
T

k k+1 k
determined without knowing A or B, under certain condition. To
this end, we define the following two operators:

1 1
2 2

where
T

11 12 1n 22 23 n−1,n nn
2 2 2 T

1 2 1 n 2 3 n−1 n

In addition, by Kronecker product representation, we have 
k k

and
T

k k+1
T T T T T

n n k+1

1
2

2
xx xu

T
xx 1 0 2 1 l l−1

T
1 2 l

I = x⊗ x dτ , x⊗ x dτ , . . . , x⊗ x dτ ,

t t t 
t t t

I = x⊗ u dτ , x⊗ u dτ , . . . , x⊗ u dτ ,

Remark 2. Notice that in (10), the term x

k

ˆ

P = [p , 2p , . . . , 2p , p , 2p , . . . , 2p , p ] ,

x = [x , x x , . . . , x x , x , x x , . . . , x

x Q x = x ⊗ x vec(Q ),

 
( )

Further, for positive integer l, we define matrices δ ∈ R ,
I ∈ R , I ∈ R , such that

[  
  

0 1 l−1

0 1 l

k

ˆ
(11)

l× n(n+1)+mn 
Θ

k xx k

k

ˆ
(12)

T
k

ing on the unknownmatrices A and B is replaced by−x Q x, which
can be obtained by measuring the state online. Also, the term B P

k+1 k+1

k

k k+1

0

k
(P , K ), with P = P > 0, satisfying (6) and (7) can be uniquely

n×n n(n+1) n n(n+1)

ˆ

¯ x , x ] .

T T T

(u+ K x) RK x
= (x ⊗ x )(I ⊗ K R)+ (x ⊗ u ) I ⊗ R vec(K ).

l× n(n+1)
xx

l×n l×mn

¯ ¯ ¯ ¯ ¯ ¯ ] 
t t t

xx
0 1 l−1

T
1 2 l

xu
t t t

where 0 ≤ t < t < · · · < t .
Then, for any given stabilizing gain matrix K , (10) implies the

following matrix form of linear equations 
P

k k
k+1  

1
l

k k

T
k xx xx n xu n

Ξ = −I vec(Q ).

Notice that if Θ has full column rank, (11) can be directly solved
as follows: 

P
k k

k+1

Now, we are ready to give the following computational adaptive
optimal control algorithm for practical online implementation. A
flowchart of Algorithm 1 is shown in Fig. 1.

(A P + P A )x depend-

¯

n

= x(t )− x(t ), x(t )− x(t ), . . . , x(t )− x(t ) ,

k
vec K

2

= δ ,−2I (I ⊗ K R)− 2I (I ⊗ R) ,

T −1 T
k k

P ∈ R → P ∈ R , and x ∈ R

1 2

k

δ

Θ = Ξ

where Θ ∈ R and Ξ ∈ R

k

k
vec K

→ x ∈ R

are defined as:

( )

= (Θ Θ ) Θ Ξ .
( )
Fig. 1. Flowchart of Algorithm 1.

Algorithm 1 (Computational Adaptive Optimal Control Algorithm).
1. Employ u = −K x + e as the input on the time interval [t , t ],

where K is stabilizing and e is the exploration noise. Compute
δ , I and I until the rank condition in (13) below is satisfied.
Let k = 0.

2. Solve P and K from (12).
3. Let k← k+1, and repeat Step 2 until ∥P −P ∥ ≤ ε for k ≥ 1,

where the constant ε > 0 is a predefined small threshold.
4. Use u = −K x as the approximated optimal control policy.

Remark 4. Computing the matrices I and I carries the main
burden in performing Algorithm 1. The two matrices can be

1
2

system to collect information of the state and the input.

Remark 5. In practice, numerical error may occur when comput-
ing I and I . As a result, the solution of (11) may not exist. In
that case, the solution of (12) can be viewed as the least squares
solution of (11).

Next, we show that the convergence of Algorithm 1 can be
guaranteed under some rank condition. The proof of the following
lemma is postponed to the Appendix.

Lemma 6. If there exists an integer l > 0, such that, for all l ≥ l ,

n(n+ 1)
[ ]

0 0 l

0
xx xx xu

k k+1

k k−1

k

xx xu

implemented using n(n + 1) + mn integrators in the learning

xx xu

0 0

rank I , I =( )xx xu 2
then Θ has full column rank for all k ∈ Z

Theorem 7. Starting from a stabilizing K ∈

condition of Lemma 6 is satisfied, the sequences {P
obtained from solving (12) converge to the optimal values P and K ,
respectively.

Proof. Given a stabilizing feedback gainmatrix K , if P = P is the
solution of (6), K is uniquely determined by K = R B P . By
(10), we know that P and K satisfy (12). On the other hand, let

T n×n m×n 
P

k k

Then, we immediately have P = P and vec(K) = vec(K ). By
T

ˆ

Therefore, the policy iteration (12) is equivalent to (6) and (7).
By Theorem 1, the convergence is thus proved. �

+mn,

ˆ ˆ

(13)

R , when the
∞ ∞

i j
∗ ∗

T
k k

−1 T
k+1 k

k k+1

k

k+1

k k+1
P = P ∈ R and K ∈ R , such that

ˆ

vec(K)

k k+1

+.

0

Lemma 6, P = P and K are unique. In addition, by the definitions
of P and vec(K), P = P and K = K are uniquely determined.

m×n

} and {K }

k

i=0 j=1

Θ = Ξ .
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Remark 8. It can be seen that Algorithm 1 contains two separated
phases. First, an initial stabilizing control policy with exploration
noise is applied and the online information is recorded in matrices
δ , I , and I until the rank condition in (13) is satisfied. Second,
without requiring additional system information, the matrices δ ,
I , and I are repeatedly used to implement the iterative process.
A sequence of controllers, that converges to the optimal control
policy, can be obtained.

Remark 9. The choice of exploration noise is not a trivial task
for general reinforcement learning problems and other related
machine learning problems, especially for high-dimensional
systems. In solving practical problems, several types of exploration
noise have been adopted, such as random noise (Al-Tamimi et al.,
2007; Xu et al., 2018), and exponentially decreasing probing noise
(Vamvoudakis & Lewis, 2017). For the simulations in the next
section, we will use the sum of sinusoidal signals with different
frequencies, as in Jiang and Jiang (2071).

Remark 10. In some sense, our approach is related to the
ADHDP (Werbos, 1989), or Q -learning (Watkins, 1989) method for
discrete-time systems. Indeed, it can be viewed that we solve the
following matrix H at each iteration step   

P P B
k T

21,k 22,k

Once this matrix is obtained, the control policy can be updated by
−1

k+1 21,k k
be found in Bradtke et al. (1994) and Lewis and Vrabie (2009).

4. Application to a turbocharged diesel enginewith exhaust gas
recirculation

In this section, we study the controller design for a tur-
bocharged diesel engine with exhaust gas recirculation (Jung,
Glover, & Christen, 2005). The open loop model is a sixth order
continuous-time linear system. The system matrices A and B are
directly taken from Jung et al. (2005) and shown in Box I.

In order to illustrate the efficiency of the proposed computa-
tional adaptive optimal control strategy, the precise knowledge of
A and B is not used in the design of optimal controllers. Since the
physical system is already stable, the initial stabilizing feedback
gain can be set as K = 0.

The weighting matrices are selected to be

Q = diag 1, 1, 0.1, 0.1, 0.1, 0.1 , R = I .

In the simulation, the initial values for the state variables are
randomly selected around the origin. From t = 0 s to t = 2 s,
the following exploration noise is used as the system input

100

e = 100 sin(ω t) (15)
i=1

where ω , with i = 1, . . . , 100, are randomly selected from
[ ]

State and input information is collected over each interval of
0.01 s. The policy iteration started at t = 2 s, and convergence
is attained after 16 iterations, when the stopping criterion ∥P −
P ∥ ≤ 0.03 is satisfied. The formulated controller is used as the
actual control input to the system starting from t = 2 s to the
end of the simulation. The trajectory of the Euclidean norm of all
the state variables is shown in Fig. 2. The system output variables
y = 3.6x and y = x , denoting the mass air flow (MAF) and
the intakemanifold absolute pressure (MAP) (Jung et al., 2005), are
plotted in Fig. 3.

xx

xx xx xu

xx xu

k

H H
H H

K = H H . The discrete-time version of the H matrix can

0

( )


i

i
−500, 500 .

k

k−1

1 6 2 4

H = 11,k 12,k

22,k

= . (14)
k

k k

B P R

2

Fig. 2. Trajectory of the Euclideannormof the state variables during the simulation.

Fig. 3. Trajectories of the output variables from t = 0 s to t = 10 s.

The proposed algorithm gives the cost and the feedback gain
matrices as shown below:
P

127.5331 0.5415 16.8284 1.8305 1.3966 0.0117 
16.8284 0.0378 18.8105 −0.3317 4.1648 0.0012
1.8305 0.0293 −0.3317 0.5041 −0.1193 −0.0001
1.3966 0.0440 4.1648 −0.1193 3.3985 0.0004
0.0117 0.0001 0.0012 −0.0001 0.0004 0.0006

K

−0.7952 −0.0684 −0.0725 0.0242 −0.0488 −0.0002
1.6511 0.1098 0.0975 0.0601 0.0212 0.0002

By solving directly the algebraic Riccati equation (4), we obtain the
optimal solutions:
∗  

16.8300 0.0376 18.8063 −0.3323 4.1558 0.0012
1.8307 0.0292 −0.3323 0.5039 −0.1209 −0.0001
1.4004 0.0436 4.1558 −0.1209 3.3764 0.0004
0.0117 0.0001 0.0012 −0.0001 0.0004 0.0006

∗ 
= .

The convergence of P and K to their optimal values is illus-
trated in Fig. 4.

Notice that if B is accurately known, the problem can also be
solved using the method in Vrabie et al. (2009). However, that
method requires a total learning time of 32 s for 16 iterations, if
the state and input information within 2 s is collected for each

15

0.5415 0.0675 0.0378 0.0293 0.0440 0.0001  
15

= .

P
127.5325 0.5416 16.8300 1.8307 1.4004 0.0117

0.5416 0.0675 0.0376 0.0292 0.0436 0.0001  
K
−0.7952 −0.0684 −0.0726 0.0242 −0.0488 −0.0002
1.6511 0.1098 0.0975 0.0601 0.0213 0.0002

k k

 
 
= , 

 

 
= , 
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101.5873 −7.2651 2.7608 2.8068

A = 
0 0 0 −359.0000 187.5364 

0
0.0064 1.5849 0 0 −0.0168 0

−0.4125 −0.0248 0.0741 0.0089
−1.8414 0.0990 0 0 −0.0343

T

B = .

0.0704 0.0085 −0.0741 −0.0089
0
0
0

0.0878 0.2672 0 −0.3674 0.0044

−0.0042 −1.0360 0.0042 0.1261 0

0
0

0.3962


0.0200
−0.0330
−87.0316


,

Box I.
Fig. 4. Convergence of P and K to their optimal values P and K during the∗ ∗
k k

learning process.

iteration. In addition, the method in Vrabie et al. (2009) may need
to reset the state at each iteration step, in order to satisfy the PE
condition.

5. Conclusions and future work

A novel computational policy iteration approach for finding
online adaptive optimal controllers for continuous-time linear
systems with completely unknown system dynamics has been
presented in this paper. This method solves the algebraic Riccati
equation iteratively using system state and input information
collected online, without knowing the systemmatrices. A practical
online algorithm was proposed and has been applied to the
control design for a turbocharged diesel engine with unknown
parameters. The methodology developed in this paper may serve
as a computational tool to study the adaptive optimal control of
uncertain nonlinear systems (Krstić, Kanellakopoulos, & Kokotović,
1995). Some relatedwork has appeared in Vamvoudakis and Lewis
(2016), and Vrabie and Lewis (2009, 2016), which are developed
using neural networks (Ge, Lee, & Harris, 1998), and also in our
recent work Jiang and Jiang (2017) proposing a framework of
robust-ADP using the ISS small-gain theorem (Jiang, Teel, & Praly,
1994).
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Appendix. Proof of Lemma 6

This amounts to showing that the following linear equation
Θ X = 0 (A.1)

has only the trivial solution X = 0.
To this end, we prove by contradiction. Assume X =

1
2

1
2

m×n

ˆ

By (10), we have

Θ X = I vec(M)+ 2I vec(N) (A.2)

where
T T T T

k k

T

Notice that sinceM is symmetric, we have

ˆ

1
2 

t t t

¯ ¯ ¯

t t t

Then, (A.1) and (A.2) imply the following matrix form of linear
equations  

M
x xu  

Under the rank condition in (13), we know has full
ˆ

vec(N) = 0. As a result, we have M = 0 and N = 0.
−1 T

following Lyapunov equation

T
k

Since A is Hurwitz for all k ∈ Z , the only solution to (A.8) is
Y = 0. Finally, by (A.4) we have Z = 0.

In summary, we have X = 0. But it contradicts with the
assumption that X ≠ 0. Therefore, Θ must have full column rank
for all k ∈ Z . The proof is complete. �
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k


Y
Y
and a matrix Z ∈ R
Y = Y and vec(Z) = Z .

k xx xu

M = A Y + YA + K (B Y − RZ)+ (YB− Z R)K , (A.3)

N = B Y − RZ . (A.4)

I vec(M) = I M (A.5)

l× n(n+1)
x

T
1 2 l

I = xdτ , xdτ , . . . , xdτ . (A.6)
0 1 l−1

 
¯

I , 2I
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