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Abstract— This paper provides a new design of robust Itera-
tive Learning Control (ILC) for the purpose of output tracking
using second-order sliding mode technique. The main feature of
the design is that the controller signal is continuous; therefore it
is chattering-free compared with the robust ILC using classical
first-order sliding mode technique. The continuous and non-
chattering control signals can prevent actuators from being
damaged. This can not be realized by the discontinuous and
chattering control inputs if the conventional sliding-mode con-
trol is applied. The robust ILC is suggested and the convergence
of output-tracking error is proven. An illustrative example
is presented to demonstrate the effectiveness of the proposed
second-order continuous sliding mode ILC.

I. INTRODUCTION

Iterative Learning Control (ILC) is to use the repetitive ac-

tions to improve the system performance, particularly output

tracking performance without seeking accurate system model

knowledge. Conventionally, ILC is to steer system output to

track the desired one while rejecting periodic disturbances

via repetitive trails. In other words, ILC is a robust control

scheme that can suppress the effect of disturbances on system

performance.

The classical research regarding robust ILC is presented

in [1] where the effect of state disturbances, initial errors

and output noise on a class of learning algorithms are

investigated. The presented learning algorithm exhibits the

bounds on asymptotic trajectory errors for the learned input

and the corresponding state and output trajectories.

In recent years, various robust ILC schemes have been ad-

dressed. A nonlinear learning control scheme was developed

in [2] by integrating iterative learning and adaptive robust

control schemes for nonlinear systems. The main purpose of

the paper [3] is to provide ILC designers with guidelines to

select the learning gains to achieve arbitrarily high precision

of output tracking regardless of measurement errors. In [4],

a robust ILC problem for a class of nonlinear systems with

structured periodic and unstructured aperiodic uncertainties

is addressed. The backstepping idea is proposed to design

the robust ILC systems. More research papers related to this

topic can be found in [5]- [13], just to name a few.

Particularly, a robust ILC synthesizing learning control and

sliding mode technique with the help of Lyapunov direct

method is proposed in [14]. The learning control is applied

to the structured uncertainties while the variable structure
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scheme is to handle the unknown unstructured uncertainties

to ensure the global asymptotic stability. Another similar

work is suggested in [15] where a learning variable structure

control is formalized by combining variable structure control,

as the robust part, and learning control, as the intelligent

part. The proposed LVSC system achieves both uniform

convergence of the tracking-error sequences to zero and

the convergence of the learning control sequences to the

equivalent control.

In the aforementioned two research papers, to avoid the

undesired chattering of a traditional Sliding Mode Control

(SMC), continuous approximations, using saturation func-

tions, is employed to reduce the chattering caused by the

signum function. The problem is that once the error signals

excess the designated boundary layer, a signum function

is back to be in charge of the control action. Hence, the

saturation function itself can reduce the chattering to an

extent that when the tracking-error signal is within the

boundary, the control signal is continuous. In short, the

saturation function can not eliminate the chattering com-

pletely. Therefore, the adopted variable structure schemes are

essentially first-order sliding mode measures that inevitably

causes chattering though a saturation function has been used

to replace the signum function. The actuators, however,

cannot respond sometimes to the chattering input signals,

let alone the possible damage caused by the discontinuous

and chattering input signals.

Higher-order sliding mode is a quality idea to hide the

discontinuity of control in its higher derivatives. It turns out

to be of enhanced accuracy and robustness to disturbances

[16]–[20]. In other words, compared with the saturation

approximation of the traditional SMC, the continuous SMC

via second-order sliding mode technique will require less

amount of control to maintain the operation on the region of

convergence due to noises and disturbances.

This paper is to suggest a continuous robust ILC using

second-order sliding mode technique so that the chattering

of control signals can be eliminated eventually; thus, the con-

tinuous robust ILC can be applied broadly without damaging

actuation devices.

This paper is organized as follows: in Section II, the

considered nonlinear system is illustrated and the objective

of this paper is also addressed. The switching surface and

the controller design are described in Section III. The con-

vergence of the output-tracking error is also proven using

Lyapunov direct method in the same section. An illustrative

example is employed to demonstrate the effectiveness of

the proposed chattering-free robust ILC. At last, concluding
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remarks are made in Section V.

II. PRELIMINARIES

Consider the following higher-order single-input and

single-output nonlinear dynamical system described by

ẋi(t) = xi+1(t), i = 1, · · · ,m− 1
ẋm(t) = θ⊤(x, t)ξ(x, t) + b(x, t)u(t) + d(t)
y(t) = x1(t), t ∈ [0, T ]

(1)

where the measurable system state x(t) =
[x1, x2, · · · , xm]⊤, u(t) and y(t) are the control input

and system output, respectively, b(x, t) is a known non-zero

function, θ(x, t) is a p × 1 unknown and time-varying

function to be learnt, ξ(x, t) is a known vector-valued

function with dimension of p × 1. The variable d(t)
represents the unknown disturbance.

Assumption 1: The desired output trajectory yd(t) is dif-

ferentiable with respect to time t up to the mth order on

a finite time interval [0, T ], and all of the higher-order

derivatives are available.

Assumption 2: The unknown disturbance variable d(t) is

bounded such that

|d(t)| ≤ bd, ∀t ∈ [0, T ],

where bd is a known constant.

Assumption 3: The initial condition e(0) = ė(0) =
ë(0) = · · · = e(m)(0) = 0 at any iteration ∀t ∈ [0, T ],
such that the switching surface σ(0) = 0, where e(t) is the

output tracking error that is defined as e(t) = yd(t)− y(t).
The control objective is to design a continuous second-

order sliding-mode iterative learning controller u(t) for the

uncertain nonlinear system (1) such that system output can

follow a desired one with a prescribed accuracy ǫ as follows:

∀t ∈ [0, T ], |yd(t)− y(t)| ≤ ǫ.

III. MAIN RESULTS

The underlying robust ILC is to learn and approach the

unknown state-dependent function and leave the remaining

unknown function to the robust control. The global asymp-

totic convergence with respect to iteration is established by

Lyapunov direct method.

A. Switching Surface

For the considered system (1), a switching surface is

defined as follows:

σ(t) = c1e(t)+c2ė(t)+ · · ·+cme(m−1) =

m
∑

i=1

cie
(i−1) (2)

where cm = 1, c′is (i = 1, · · · ,m− 1) are coefficients of a

Hurwitz polynomial, and e(t) = yd(t)−y(t) = yd(t)−x1(t).
Taking derivatives with respect to time t on both sides of

(2), it is obtained:

σ̇(t) = c1ė(t) + c2ë(t) + · · ·+ cme(m) =

m
∑

i=1

cie
(i). (3)

Considering the fact that e(t) = yd(t)− x1(t), the above

equation can be further expanded:

σ̇(t) = c1 [ẏd(t)− x2(t)] + c2 [ÿd(t)− x3(t)] + · · ·

+
[

y
(m)
d (t)− θ⊤(x, t)ξ(x, t) − b(x, t)u(t)− d(t)

]

=

m
∑

i=1

ciy
(i)
d −

m−1
∑

i=1

cixi+1 − θ⊤(x, t)ξ(x, t)

−b(x, t)u(t)− d(t).
(4)

The above equation can be further interpreted as the

sliding variable dynamics. The condition, σ(t) = 0, defines

the system motion on the sliding surface. The control signal,

u(t), is to be designed as an iterative and continuous control

input signal. The task of this work is to design such a

continuous and iterative control input to steer the sliding

surface to be zero in finite time interval.

B. Robust ILC using Continuous Second-order Sliding Mode

In [17] and [18], the second-order sliding-mode concept

is originated. It is further developed in [19]. In reference to

these work, the proposed continuous second-order sliding-

mode ILC at kth iteration is designed as follows:

uk(t) = b−1(xk, t)

(

m
∑

i=1

ciy
(i)
d (t)−

m−1
∑

i=1

cixi+1,k

−θ̂⊤k (t)ξ(xk, t)− vk(t) + α1|σk|
2

3 sgn(σk)

+α3σk(t))
(5)

where k indicates the number of iterations, xk(t) =
[x1,k, x2,k, · · · , xm,k]

⊤, α1, α2, and α3 are positive con-

stants, | · | is the absolute value, sgn is the signum function,

θ̂(t) is the recursive control part that is used to learn the

unknown function θ(x, t) and generated by the following

update law

θ̂k(t) = θ̂k−1(t)− qξ(xk, t)

(

4η

3
|σk|

1

3 sgn(σk) + γσk(t)

)

(6)

where q, η and γ are positive constants.

The variable v(t) is an integral term that is defined below:

v̇k(t) = −β1σk(t)− β2 |σk|
1

3 sgn(σk) (7)

where β1 and β2 are positive constants.

Controller (5), together with (6) and (7), defines the

continuous second-order sliding-mode ILC.

Inserting the ILC law (5) into the sliding surface dynamics

(4) yields:
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σ̇k(t) = −α3σk(t) + θ̃⊤k (t)ξ(xk, t) + vk(t)− dk(t)

−α1|σk|
2

3 sgn(σk)
(8)

where θ̃k(t) = θ̂k(t)− θk(t).
The integral term v(t) is used to attenuate the effect of

the unknown disturbance d(t).
Remark 1: According to [20], the second-order SMC is

more robust to noises and disturbances than the saturation

approximation of the traditional SMC because the control

amount required to maintain the regision of convergence is

less.

Theorem 1: The robust ILC law using second-order con-

tinuous sliding surface proposed in (5), (6), and (7) can

guarantee that the system output of the considered system

(1) follows the desired trajectory asymptotically while all

system state variables are bounded.

Proof: To evaluate the convergence property of the

output tracking error e(t), we define the following composite

energy function at kth iteration:

Vk(t) = V 1
k (t) + V 2

k (t) + V 3
k (t) + V 4

k (t) (9)

where V 1
k (t) =

vk(t)vk(t)

2
, V 2

k (t) = η|σk(t)|
4

3 , V 3
k (t) =

γ
σk(t)σk(t)

2
, and V 4

k (t) =
1

2q

∫ t

0

Φ⊤

k (τ)Φk(τ)dτ , where

Φ(t) = θ̂k(t)− θ̂k−1(t).
The proof consists two parts. The first part is to derive

the difference of the energy function between two iterations;

meanwhile the other part is to evaluate the convergence of

the output tracking error.

1) Differences of the Energy Function: In the following

derivations, the reset condition shown in Assumption 3 will

be used.

The difference of the first energy function between kth

and (k−1)th iterations is represented by ∆V 1
k (t) = V 1

k (t)−
V 1
k−1(t) and has the following form:

∆V 1
k (t) =

vk(t)vk(t)

2
−

vk−1(t)vk−1(t)

2

=

∫ t

0

vk(τ)v̇k(τ)dτ −
vk−1(t)vk−1(t)

2
.

(10)

Substituting the integral term v(t) proposed in (7) into

(10), it is obtained:

∆V 1
k = −β1

∫ t

0

vk(τ)σk(τ)dτ

−β2

∫ t

0

vk(τ)|σk|
1

3 sgn(σk)dτ

−
vk−1(t)vk−1(t)

2
.

(11)

The difference of the second energy function between kth

and (k − 1)th iterations can be expressed as:

∆V 2
k (t) = η|σk(t)|

4

3 − η|σk−1(t)|
4

3 . (12)

Take derivative on |σk(t)|
4

3 with respect to time t, we

have:

d

dt

(

|σk(t)|
4

3

)

=
4

3
|σk(t)|

1

3 sgn(σk)σ̇k(t). (13)

Based on (13), (12) has an alternative form:

∆V 2
k (t) =

4

3
η

∫ t

0

|σk|
1

3 sgn(σk)σ̇k(τ)dτ − η|σk−1|
4

3 .

(14)

Combining (8) into (14) yields

∆V 2
k (t) = −

4α3η

3

∫ t

0

|σk|
1

3 sgn(σk)σkdτ

+
4η

3

∫ t

0

|σk|
1

3 sgn(σk)θ̃
⊤

k (τ)ξ(xk , τ)dτ

+
4η

3

∫ t

0

|σk|
1

3 sgn(σk)vk(τ)dτ

−
4η

3

∫ t

0

|σk|
1

3 sgn(σk)dk(τ)dτ

−
4α1η

3

∫ t

0

|σk|
1

3 sgn(σk)|σk|
2

3 sgn(σk)dτ

−η|σk−1(t)|
4

3

(15)

Considering the fact that

sgn(σk)σk = |σk|, |sgn(σk)| = 1, (16)

and

sgn(σk)sgn(σk) = 1, (17)

(15) can be simplified as:

∆V 2
k (t) ≤ −η|σk−1(t)|

4

3 −
4α3η

3

∫ t

0

|σk(τ)|
4

3 dτ

+
4η

3

∫ t

0

|σk(τ)|
1

3 sgn(σk)θ̃
⊤

k (τ)ξ(xk , τ)dτ

+
4η

3

∫ t

0

|σk(τ)|
1

3 sgn(σk)vk(τ)dτ

+
4bdη

3

∫ t

0

|σk(τ)|
1

3 dτ −
4α1η

3

∫ t

0

|σk(τ)|dτ.

(18)

It is worth noting that the upper bound, bd, of the unknown

disturbance is inserted into the above inequality.

The difference of the third energy function between kth

and (k − 1)th iterations has the following form:
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∆V 3
k (t) = γ

σk(t)σk(t)

2
− γ

σk−1(t)σk−1(t)

2

= γ

∫ t

0

σk(τ)σ̇k(τ)dτ − γ
σk−1(t)σk−1(t)

2
.

(19)

Substituting (8) into the above equation and considering

(16), the above equation can be rearranged as:

∆V 3
k (t) ≤ −γ

σk−1(t)σk−1(t)

2
− γα3

∫ t

0

σk(τ)σk(τ)dτ

+γ

∫ t

0

σk(τ)θ̃
⊤

k (t)ξ(xk, t)dτ

+γ

∫ t

0

σk(τ)vk(τ)dτ

+bdγ

∫ t

0

|σk(τ)|dτ − γα1

∫ t

0

|σk(τ)|
5

3 dτ.

(20)

At last, the difference of the fourth energy function be-

tween kth and (k − 1)th iterations is shown below:

∆V 4
k (t) =

1

2q

∫ t

0

(

Φ⊤

k (τ)Φk(τ)
)

dτ

−
1

2q

∫ t

0

(

Φ⊤

k−1(τ)Φk−1(τ)
)

dτ.

(21)

According to the update law (6) and in reference to [21],

the following relationship also holds:

1

2q

(

Φ⊤

k Φk − Φ⊤

k−1Φk−1

)

=
1

2q

(

θ̂k − θ̂k−1

)⊤ (

θ̂k + θ̂k−1 − 2θ
)

=
1

q

(

θ̂k − θ
)⊤

(θ̂k − θ̂k−1)

−
1

2q

(

θ̂k − θ̂k−1

)⊤ (

θ̂k − θ̂k−1

)

= −
1

q
θ̃⊤k (t)ξ(xk, t)

(

4qη

3
|σk|

1

3 sgn(σk) + qγσk

)

−
1

2q

(

θ̂k − θ̂k−1

)⊤ (

θ̂k − θ̂k−1

)

= −
4η

3
|σk|

1

3 sgn(σk)θ̃
⊤

k ξ(xk, t)− γσkθ̃
⊤

k ξ(xk, t)

−
1

2q

(

θ̂k − θ̂k−1

)⊤ (

θ̂k − θ̂k−1

)

.

(22)

Therefore, (21) is related to sliding surface dynamics in

the following way:

∆V 4
k (t) = −

4η

3

∫ t

0

(

|σk|
1

3 sgn(σk)θ̃
⊤

k (τ)ξ(xk , τ)
)

dτ

−γ

∫ t

0

(

σk(τ)θ̃
⊤

k (τ)ξ(xk , τ)
)

dτ

−
1

2q

(

θ̂k − θ̂k−1

)⊤ (

θ̂k − θ̂k−1

)

.

(23)

On the basis of the difference between two iterations, we

go further to second part to prove the convergence of the

output tracking error.

2) Convergence of Output Tracking Error: Let γ = β1,

β2 = 4η
3 , and bdγ = 4α1η

3 , the sum of the differences of the

total energy function can be obtained by adding all of them:

∆Vk(t) = ∆V 1
k (t) + ∆V 2

k (t) + ∆V 3
k (t) + ∆V 4

k (t)

≤ −
vk−1(t)vk−1(t)

2
− η|σk(t)|

4

3

−
4α3η

3

∫ t

0

|σk(τ)|
4

3 dτ

−γ
σk−1(t)σk−1(t)

2
− α3γ

∫ t

0

σk(τ)σk(τ)dτ

+
4bdη

3

∫ t

0

|σk(τ)|
1

3 dτ − γα1

∫ t

0

|σk(τ)|
5

3 dτ.

(24)

The above inequality can be further simplified as

∆Vk(t) ≤ −α3γ

∫ t

0

σk(τ)σk(τ)dτ, ∀ |σk(t)| >
bd

α3
(25)

which is negative definite when σk(t) �= 0, t ∈ [0, T ].
This concludes that the energy function Vk(t) is convergent.

In addition, positive definiteness of Vk(t) can ensure the

convergence of the sliding surface dynamics σk(t) to the

region of |σk(t)| =
bd
α3

. Since the sliding surface dynamics

(2) is selected to be Hurwitz, then, the output-tracking error

is convergent asymptotically. This completes the proof of the

Theorem 1.

Remark 2: By selecting a large α3, the region of conver-

gence can be made small.

Remark 3: The region of convergence of the robust ILC

based on second-order SMC is greater than that for tra-

ditional SMC. The advantage is that the robust ILC is

continuous and chattering-free for practical implementation.

Remark 4: Future research could be pursued to use esti-

mated system states for the design of the robust ILC.
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IV. AN ILLUSTRATIVE EXAMPLE

Consider the following robotic manipulator example bor-

rowed from [21]:

ẋ1(t) = x2(t)

ẋ2(t) =
1

ml2 + I
(u− gl cos(x1) + d(t))

y(t) = x1(t)

(26)

where x1 is the joint angle, x2 is the angular velocity, m is

the mass, l is the length, I is the moment of inertia, u is the

joint input and d(t) is a disturbance being 0.2 sin(x1x2).
Further, the system output is x1 and the desired output

trajectory is sin2(t). The parameters take the values: m =
3kg, l = 1m, and I = 0.5kg.m2.

Inserting the parameter values, (26) has an alternative

form:

ẋ1(t) = x2(t)

ẋ2(t) = −2.8 cos(x1) + 0.2857u(t) + 0.2 sin(x1x2)

y(t) = x1(t)
(27)

Comparing the above system with the considered system

(1), we obtain: b = 0.2857, ξ(x, t) = −2.8, and θ(x, t) =
cos(x1) which is assumed unknown and to be learnt.

Following (2), a switching surface is design as:

σ(t) = c1e(t) + ė(t) (28)

where c1 = 1, and e(t) = sin2(t)− x1(t). Taking derivative

on the above switching surface yields:

σ̇(t) = c1ė(t) + ë(t) (29)

The proposed robust ILC can be designed as follows:

uk(t) = b−1(x, t) {2c1 sin(t) cos(t)− c1x2(t)
+2[cos(t) cos(t)− sin(t) sin(t)]

+2.8θ̂(t)− v(t) + α1|σk|
2/3sgn(σk)

+α3σk(t)}

(30)

The parameters take the following values: α1 =

0.15, α3 = 1, β1 = 0.1, η = 0.1, β2 = η ×
4

3
, q = 0.1, γ =

β1.

We first of all test the proposed ILC with the number

of trials being 50. The output-tracking errors at 5th , 20th,

30th, and 50th trials are shown in Figs. 1 through 4 where

the dashed lines are the desired trajectory while the solid

lines are the actual system outputs. It is clearly demonstrated

that the system output gradually converges to the desired

trajectory. Figure 5 further shows the convergence of the

output-tracking error.
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Fig. 1. System output and the desired trajectory at 5th iteration.
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Fig. 2. System output and the desired trajectory at 20th iteration.

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

30th iteration

S
y

st
em

 o
u

tp
u

t 
an

d
 t

h
e 

d
es

ir
ed

 t
ra

je
ct

o
ry

Time

Fig. 3. System output and the desired trajectory at 30th iteration.
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Fig. 4. System output and the desired trajectory at 50th iteration.
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Fig. 5. Maximum output-tracking error for 100 trials.

V. CONCLUSIONS

This paper has proposed a continuous robust iterative

learning control strategy for a class of nonlinear systems for

the purpose of output tracking. The insight of the chattering-

free design is the employment of the second-order sliding

mode technique that can completely remove the discontinuity

of the control signals. This continuous control signal is ben-

eficial to actuation devices. In other words, possible damage

of actuators resulted from the discontinuous control signals

is avoided. The design process has shown that the robustness

of the second-order sliding-mode control is maintained while

the chattering is eliminated at the same time. The simulation

example has clearly exhibited the excellent output-tracking

performance by the continuous second-order sliding-mode-

based robust iterative learning control.
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