V. CONCLUSION

Based on the extended nonquadratic Lyapunov function and the non-PDC law, three new stabilization results for T–S fuzzy systems are obtained by rehandling the slack matrices and the collection matrices. Each of the new results is either less conservative and computationally less expensive, or less conservative, than some of the existing results. To further improve the results, the technique given in [9] can be utilized; however, this is not the aim of this paper, while Ding and Huang [3] have utilized the technique given in [9].

REFERENCES

Ke Zhang, Bin Jiang, and Marcel Staroswiecki

Abstract—This paper addresses the problem of robust fault estimation and fault tolerant control (FTC) for Takagi–Sugeno (T–S) fuzzy systems. A fuzzy-augmented fault estimation observer (AFEO) design is proposed to achieve fault estimation of T–S models with actuator faults. Furthermore, based on the information of online fault estimation, an observer-based dynamic output feedback-fault tolerant controller (DOFFTC) is designed to compensate for the effect of faults by stabilizing the closed-loop system. Sufficient conditions for the existence of both AFEO and DOFFTC are given in terms of linear matrix inequalities. Simulation results of an inverted pendulum system are presented to illustrate the effectiveness of the proposed method.

Index Terms—Dynamic output feedback, fault estimation, fault-tolerant control (FTC), Takagi–Sugeno (T–S) fuzzy models.

I. INTRODUCTION

Fault detection and isolation (FDI) and fault-tolerant control (FTC) have been the subjects of intensive investigations over the past two decades [1], [2]. However, since most real systems are nonlinear in nature, FDI/FTC applications to industrial and commercial processes require nonlinear models to be specifically taken into account. Takagi–Sugeno (T–S) fuzzy models are based on a set of IF–THEN rules, which give a local linear representation of an underlying nonlinear system, and it is well known that such models can describe or approximate a wide class of nonlinear systems. This is why they have

Manuscript received March 19, 2016; revised July 10, 2016 and September 22, 2016; accepted October 12, 2016. First published November 6, 2016. This version published February 5, 2017. This work was supported by National Natural Science Foundation of China under Grant 90816023 and Grant 60811120024, National 973 Program of China under Grant 2017CB320600, the China Scholarship Council under Grant 2017683023, the Graduate Research and Innovation Project of Jiangsu Province under Grant CX08B_0902Z, and the Doctoral Dissertation Innovation and Excellence Foundation of Nanjing University of Aeronautics and Astronautics under Grant BCXJ08-03. K. Zhang and B. Jiang are with the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China (e-mail: zhang_ke2008@yahoo.com.cn; binjiang@nuaa.edu.cn). M. Staroswiecki is with the Systèmes et applications des technologies de l’information et de l’énergie, Ecole Normale Supérieure de Cachan, Université Lille I Sciences et Technologies, Centre National de la Recherche Scientifique, UniverSud, 94235 Cachan Cedex, France (e-mail: marcel.staroswiecki@univ-lille1.fr).

Digital Object Identifier 10.1109/TFUZZ.2017.2036005
attracted considerable attention and given rise to many important results [3]–[8]. However, most address stability analysis and feedback stabilization, and very few address the issue of fault estimation and FTC.

Based on passive FTC idea in [9] and [10], a reliable fault-tolerant controller using T–S fuzzy models was developed against actuator faults, while issues of fault detection and estimation were not involved. Robust fault detection for T–S fuzzy systems was studied in [11]–[13], but the issue of fault estimation was not included. The problem of robust fault estimation for time-delay T–S fuzzy models was dealt with in [14], but under a restrictive assumption on the faults, i.e., \(f(t) \in L_2[0, \infty) \).

A sliding-mode observer (SMO) and an adaptive observer (AO) were proposed to achieve fault estimation in [6] and [15], but their design needed very restrictive conditions to be satisfied.

Based on the aforementioned works, this paper further investigates the issue of robust fault estimation and FTC for T–S fuzzy systems. Restrictive constraints are relaxed through a general observer-based dynamic output feedback-fault tolerant controller (DOFFTC) design for a class of T–S fuzzy systems under actuator faults. First, a multijective fuzzy augmented fault-estimation observer (AFEO), including a regional pole placement and a \(H_\infty \) performance level, is proposed, not only to guarantee the convergence speed of fault estimation but to restrict the influence of disturbances as much as possible as well. Then, using the online fault estimate, a fuzzy DOFFTC is guarantied to guarantee the system stability in the presence of actuator faults. In the design process, the AFEO and the DOFFTC are independently designed, and their performance is considered simultaneously, which is convenient for calculating the design parameters and can avoid the coupling problem generated by the observer-based state feedback control.

II. SYSTEM DESCRIPTION

The T–S fuzzy model is described by fuzzy IF–THEN rules, whose collection represent the approximation of the nonlinear system. The \(\theta \) rule of the T–S fuzzy model is of the following form.

Plant Rule i:

IF \(z_i(t) \) is \(\mu_{i,1} \) and, ..., and \(z_i(t) \) is \(\mu_{i,q} \), THEN

\[
\dot{x}(t) = A_i x(t) + B_i (u(t) + f(t)) + D_{i1} \omega(t) \\
y(t) = C_i x(t) + D_{i2} \omega(t)
\]

where \(x(t) \in \mathbb{R}^n \) is the state, \(u(t) \in \mathbb{R}^m \) is the input, \(y(t) \in \mathbb{R}^p \) is the output, \(f(t) \in \mathbb{R}^q \) represents the additive actuator fault, and \(\omega(t) \in \mathbb{R}^s \) is the disturbance, which is assumed to belong to \(L_2[0, \infty) \). A, B, C, D, and \(D_{i1} \) are constant real matrices of appropriate dimensions. It is supposed that matrices \(B_i \) are of full column rank, i.e., rank(\(B_i \)) = \(m \), the pairs \((A_i, B_i)\) are controllable, and the pairs \((A_i, C_i)\) are observable. \(z_i(t) \) (\(j = 1, \ldots, s \)) are the premise variables, \(\mu_{i,j}(\cdot) \) is the grade of the membership function of \(\mu_{i,j} \). We assume that

\[
\sigma_i(z(t)) \geq 0, \quad i = 1, \ldots, q, \quad \sum_{i=1}^q \sigma_i(z(t)) > 0 \tag{5}
\]

for any \(z(t) \). Hence, \(h_i(z(t)) \) satisfies

\[
h_i(z(t)) \geq 0, \quad i = 1, \ldots, q, \quad \sum_{i=1}^q h_i(z(t)) = 1 \tag{6}
\]

for any \(z(t) \).

For simplicity, we introduce the following notations:

\[
h_i = h_i(z(t)), \quad A(h) = \frac{\sum_{i=1}^q h_i A_i}{\sum_{i=1}^q h_i}, \quad B(h) = \frac{\sum_{i=1}^q h_i B_i}{\sum_{i=1}^q h_i}
\]

Then, the T–S fuzzy model (3) and (4) can be rewritten as

\[
\dot{x}(t) = A(h)x(t) + B(h)(u(t) + f(t)) + D_{i1}(h) \omega(t) \tag{7}
\]

\[
y(t) = C(h)x(t) + D_{i2}(h) \omega(t). \tag{8}
\]

Before ending this section, a lemma related to quadratic \(d \)-stabilizability is presented [16].

Lemma 1: For a given matrix \(A \in \mathbb{R}^{n \times n} \), the eigenvalues of \(A \) belong to the circular region \(D(\alpha, \rho) \) with center \(\alpha + j\beta \) and radius \(r \), if and only if there exists a symmetric positive definite matrix \(P \in \mathbb{R}^{n \times n} \) such that

\[
- \rho \leq \rho(A - \alpha I_n) \rho \leq -\rho^2 \tag{9}
\]

where here and everywhere in the sequel, \(\rho \) denotes the symmetric elements in a symmetric matrix.

III. MAIN RESULTS

A. Fuzzy AFEO Design

Now, we are ready to express our main results. In order to detect and estimate faults, the following fault estimation observer is constructed:

\[
\dot{x}(t) = A(h) \dot{x}(t) + B(h)(u(t) + f(t)) - L(h)(\dot{y}(t) - y(t)) \tag{10}
\]

\[
\dot{y}(t) = C(h) \dot{x}(t) \tag{11}
\]

\[
\dot{f}(t) = - F(h)(\dot{y}(t) - y(t)) \tag{12}
\]

where \(\dot{x}(t) \in \mathbb{R}^n \) is the observer state, \(\dot{y}(t) \in \mathbb{R}^p \) is the observer output, and \(\dot{f}(t) \in \mathbb{R}^q \) is an estimate of the fault \(f(t) \). \(L(h) \in \mathbb{R}^{n \times p} \) and \(F(h) \in \mathbb{R}^{q \times p} \) are the gain matrices to be designed. \(L(h) = \sum_{i=1}^q h_i L_i, \quad F(h) = \sum_{i=1}^q h_i F_i \).

Denote \(e_x(t) = \dot{x}(t) - x(t), \quad e_y(t) = \dot{y}(t) - y(t), \quad \) and \(e_f(t) = \dot{f}(t) - f(t) \); then, the error dynamics is given by

\[
\dot{e}(t) = (\dot{A}(h) - L(h) \dot{C}(h)) \dot{e}(t) + (\dot{L}(h) \dot{D}_2(h) - \dot{D}_1(h))(v(t)
\]

\[
e_y(t) = \dot{C}(h)e(t) - \dot{D}_2(h)v(t) \tag{13}
\]

\[
e_x(t) \quad e_y(t) \quad e_f(t)
\]
where
\[
\dot{\epsilon}(t) = \begin{bmatrix} e_x(t) \\ e_y(t) \end{bmatrix}, \quad \nu(t) = \begin{bmatrix} \omega(t) \\ f(t) \end{bmatrix},
\]
\[
\bar{A}(h) = \begin{bmatrix} A(h) & B(h) \\ 0 & 0 \end{bmatrix}, \quad \bar{L}(h) = \begin{bmatrix} L(h) \\ F(h) \end{bmatrix},
\]
\[
C(h) = \begin{bmatrix} C(h) & 0 \end{bmatrix}, \quad D_i(h) = \begin{bmatrix} D_i(h) & 0 \\ 0 & I_m \end{bmatrix},
\]
\[
\bar{D}_i(h) = \begin{bmatrix} D_i(h) \end{bmatrix}.
\]

Assumption 1: \(f(t)\) belongs to \(L_2[0, \infty)\).

Remark 1: In [14] and [17], the fault estimation filter is designed under the assumption \(f(t) \in L_2[0, \infty)\). In general, SMO-based fault estimation requires the preliminary knowledge of the upper bound of \(f(t)\) [6], [18]. However, in many practical systems, there is a transient period during which the fault establishes itself, after which, it remains more or less constant, meaning that the derivatives of the faults are energy-bounded, i.e., \(\dot{f}(t) \in L_2[0, \infty)\). This is stated by Assumption 1, which is more general than those used in the aforementioned design methods.

Remark 2: From the augmented systems (13) and (14), it can be seen that \(\bar{A}(h), \bar{C}(h), \bar{D}_i(h), \text{ and } \bar{D}_i(h)\) are known matrices, while \(\bar{L}(h)\) and \(F(h)\) to be designed. Therefore, we can see that a necessary condition for the existence of fuzzy AFEO is that the pairs \((A_i, C_i)\) are observable, and globally robust stability of fuzzy AFEO can be guaranteed by the following Theorem 1.

Next, a multiobjective AFEO design method under regional pole placement and \(H_{\infty}\) performance specifications is proposed to achieve robust fault estimation.

Theorem 1: For two given positive scalars \(\alpha\) and \(\gamma\), the eigenvalues of \((\bar{A}(h) - \bar{L}(h)\bar{C}(h))\) belong to \(D(\alpha, \gamma)\), and the error dynamics (13) satisfy the \(H_{\infty}\) performance index \(\|e_f(t)\|_2 < \gamma \|\nu(t)\|_2\) if there exists a symmetric positive definite matrix \(P \in \mathbb{R}^{(n \times m)}\times(n \times m)\) and matrices \(\bar{Y}_i \in \mathbb{R}^{(n \times m)}\times(p\times n)\) such that
\[
\begin{align*}
\min \gamma & \text{ subject to } \\
\Psi_{ii} & < 0, \quad i = 1, \ldots, q \quad (15) \\
\Psi_{ij} & < 0, \quad 1 \leq i < j \leq q \quad (16) \\
\Phi_{ii} & < 0, \quad i = 1, \ldots, q \quad (17) \\
\Phi_{ij} & < 0, \quad 1 \leq i < j \leq q \quad (18)
\end{align*}
\]
where
\[
\Psi_{ij} = \begin{bmatrix} -\bar{P} & \bar{Y}_i \bar{D}_j - \bar{Y}_j \bar{D}_i + \alpha \bar{P} \\ \ast & -\gamma \bar{I}_{d+m} \end{bmatrix}, \quad \bar{I}_m = \begin{bmatrix} 0 \\ \bar{I}_m \end{bmatrix}
\]
\[
\Phi_{ij} = \begin{bmatrix} \phi_{11} & \bar{Y}_i \bar{D}_j - \bar{Y}_j \bar{D}_i + \alpha \bar{P} \\ \ast & -\gamma \bar{I}_{d+m} \end{bmatrix}, \quad \bar{Y}_i = \bar{P} \bar{L}_i
\]
\[
\phi_{11} = \bar{P} \bar{A}_i + \bar{A}_i^T \bar{P} - \bar{Y}_i \bar{C}_j - \bar{C}_j^T \bar{Y}_i^T.
\]

Proof: Constraints (15) and (16): Setting \((\bar{A}(h) - \bar{L}(h)\bar{C}(h)) \rightarrow \bar{A}\) and \(\bar{P} \rightarrow \bar{P}\) in Lemma 1, one gets
\[
\Psi := \begin{bmatrix} -\bar{P} & \bar{P} (\bar{A}(h) - \bar{L}(h)\bar{C}(h)) - \alpha \bar{P} \\ \ast & -\gamma \bar{P} \end{bmatrix} < 0 \quad (19)
\]
which can be rewritten as
\[
\Psi = \sum_{i=1}^{q} h_i^2 \Psi_{ii} + \sum_{i=1}^{q} \sum_{i<j} h_i h_j (\Psi_{ij} + \Psi_{ji}) < 0. \quad (20)
\]
Therefore, if (15) and (16) hold, then the eigenvalues of \((\bar{A}(h) - \bar{L}(h)\bar{C}(h))\) belong to \(D(\alpha, \gamma)\).

For constraints (17) and (18), consider the following Lyapunov function:
\[
V(t) = \dot{\epsilon}^T(t) \bar{P} \dot{\epsilon}(t).
\]
Its derivative with respect to time is
\[
\dot{V}(t) = \dot{\epsilon}^T(t) \left(\bar{P} (\bar{A}(h) - \bar{L}(h)\bar{C}(h)) \right) + (\bar{A}(h) - \bar{L}(h)\bar{C}(h))^T \bar{P} \dot{\epsilon}(t)
\]
\[
+ 2\dot{\epsilon}^T(t) \bar{P} (\bar{L}(h)\bar{D}_i(h) - \bar{D}_i(h)) \nu(t).
\]
(22)

Now, let us define
\[
J = \int_{t_f}^{\infty} \left[\frac{1}{\gamma} \dot{\epsilon}^T(t) \dot{\epsilon}(t) - \gamma \nu^T(t) \nu(t) \right] dt
\]
\[
= \int_{t_f}^{\infty} \frac{1}{\gamma} \dot{\epsilon}^T(t) \bar{I}_m \bar{P} \bar{P}_i \dot{\epsilon}(t) - \gamma \nu^T(t) \nu(t) \right] dt
\]
(23)
where \(t_f\) denotes the fault occurrence time. Then, under zero initial condition at time \(t_f\), it can be shown that
\[
J \leq \int_{t_f}^{\infty} \left[\dot{V}(t) + \frac{\gamma}{\gamma} \dot{\epsilon}^T(t) \bar{I}_m \bar{P} \bar{P}_i \dot{\epsilon}(t) - \gamma \nu^T(t) \nu(t) \right] dt.
\]
(24)

Substituting (22) into (24), one gets
\[
\dot{V}(t) + \frac{1}{\gamma} \dot{\epsilon}^T(t) \bar{I}_m \bar{P} \bar{P}_i \dot{\epsilon}(t) - \gamma \nu^T(t) \nu(t)
\]
\[
= \dot{\epsilon}^T(t) (\bar{P} (\bar{A}(h) - \bar{L}(h)\bar{C}(h))
\]
\[
+ (\bar{A}(h) - \bar{L}(h)\bar{C}(h))^T \bar{P} \dot{\epsilon}(t)
\]
\[
+ 2\dot{\epsilon}^T(t) \bar{P} (\bar{L}(h)\bar{D}_i(h) - \bar{D}_i(h)) \nu(t)
\]
\[
+ \frac{1}{\gamma} \dot{\epsilon}^T(t) \bar{I}_m \bar{P} \bar{P}_i \dot{\epsilon}(t) - \gamma \nu^T(t) \nu(t)
\]
\[
= \zeta^T(t) \Omega \zeta(t)
\]
\[
= \sum_{i=1}^{q} \sum_{j=1}^{q} h_i h_j \zeta_i^T(t) \Omega_{ij} \zeta_j(t)
\]
\[
= \sum_{i=1}^{q} h_i^2 \zeta_i^T(t) \Omega_{ii} \zeta_i(t) + \sum_{i=1}^{q} \sum_{i<j} h_i h_j \zeta_i^T(t) (\Omega_{ij} + \Omega_{ji}) \zeta_j(t)
\]
(25)

where
\[
\zeta(t) = \begin{bmatrix} \dot{\epsilon}(t) \\ \nu(t) \end{bmatrix}, \quad \Omega = \begin{bmatrix} \eta_{11} & \bar{P} \bar{L}(h) \bar{D}_i(h) - \bar{D}_i(h) \\ \ast & -\gamma \bar{I}_{d+m} \end{bmatrix}
\]
\[
\bar{\Omega}_{ij} = \begin{bmatrix} \phi_{11} & \bar{Y}_i \bar{D}_j - \bar{Y}_j \bar{D}_i + \alpha \bar{P} \\ \ast & -\gamma \bar{I}_{d+m} \end{bmatrix}, \quad \eta_{11} = \bar{P} (\bar{A}(h) - \bar{L}(h)\bar{C}(h))
\]
\[
+ (\bar{A}(h) - \bar{L}(h)\bar{C}(h))^T \bar{P} + \frac{1}{\gamma} \bar{I}_m \bar{P} \bar{P}_i \end{bmatrix}.
\]

By the Schur complement, (17) and (18) are equivalent to \(\Omega_{ii} < 0\) and \(\Omega_{ij} + \Omega_{ji} < 0\). It follows that the error dynamics (13) are robustly
stable with a H_{∞} performance index $\|e_f(t)\|_2 < \gamma\|\mu(t)\|_2$, provided (17) and (18) hold true.

Remark 3: In Theorem 1, the purpose of introducing the disk constraints (15) and (16) is to improve the transient performance of fault estimation. Note that, other pole-placement constraints, such as α-stability, vertical strips, sectors, and the intersection thereof can also be considered [19], [20].

Remark 4: Achieving the estimation of actuator faults by the SMO-based and AO-based approaches proposed in [6] and [15] would require that the constraints $\text{rank}(C_i, B_i) = \text{rank}(B_i)$ and $C_i(sI - A_i)^{-1} B_i$ be minimum phase to be satisfied. Details on the conservativeness of these constraints can be found in [21] and [18]. It is seen that no equality constraint is used in the design process of the proposed fuzzy AFEQ, which resumns in finding matrices $\hat{L}(h)$ such that (13) is robustly stable.

Remark 5: Note that a fault-estimation filter followed from the design idea in [14] and [17] is constructed as

$$ \dot{x}_f(t) = A_f(h)x_f(t) + B_f(h)y(t) \quad (26) $$

$$ \dot{f}_i(t) = C_f(h)x_f(t) + D_f(h)y(t) \quad (27) $$

where $x_f(t) \in R^{n_i}$ is the filter state, and $\dot{f}_i(t) \in R^{n_i}$ is an estimate of the fault $f(t)$. $A_f(h)$, $B_f(h)$, $C_f(h)$, and $D_f(h)$ are the filter gain matrices of appropriate dimensions to be designed. Then, substituting (7) and (8) into (26) and (27), we obtain

$$ \dot{x}_f(t) = A_f(h)x_f(t) + B_f(h)\rho(t) \quad (28) $$

$$ e_f(t) = C_f(h)x_f(t) + D_f(h)\rho(t) \quad (29) $$

where

$$ x_f(t) = \begin{bmatrix} x(t) \\ x_f(t) \end{bmatrix}, \quad \rho(t) = \begin{bmatrix} u(t) \\ f(t) \\ \omega(t) \end{bmatrix} $$

$$ A_f(h) = \begin{bmatrix} A(h) & 0 \\ B_f(h)C(h) & A_f(h) \end{bmatrix} $$

$$ B_f(h) = \begin{bmatrix} B(h) & B(h) \\ 0 & B_f(h)D_f(h) \end{bmatrix} $$

$$ C_f(h) = \begin{bmatrix} D_f(h)C(h) & C_f(h) \end{bmatrix} $$

$$ D_f(h) = \begin{bmatrix} 0 & -I_n \\ D_f(h) & D_f(h) \end{bmatrix}. $$

Under the H_{∞} performance $\|e_f(t)\|_2 < \gamma\|\rho(t)\|_2$, the fault-estimation filter design requires the assumption $\dot{f}(t) \in L_2[0, \infty)$. From (28) to (29), it is shown that, since the observed fault is viewed as an “disturbance,” it is impossible to realize asymptotical estimation of the constant fault (except for $f(t) = 0$ that is of no interest). Meanwhile, from system matrices $A_f(h)$, it can be seen that the filter design is only suitable for open-loop stable systems. However, in practical situations, most systems are open-loop unstable, and therefore, such a constraint limits its application scopes.

B. Fuzzy DOFTTC Design

On the basis of the obtained online fault-estimation information, we design a fault-tolerant controller to guarantee stability in the presence of faults. Since the state $x(t)$ is unmeasurable, we use the fuzzy dynamicaloutput feedback-controller scheme [8], [22] to construct the DOFTTC for T-S fuzzy models as

$$ \dot{\xi}(t) = A_K(h, h)\xi(t) + B_K(h)y(t) \quad (30) $$

$$ u(t) = C_K(h)\xi(t) + D_Ky(t) - \dot{f}(t) \quad (31) $$

where $\xi(t)$ is the state, $A_K(h, h) \in R^{n_x \times n_x}$, $B_K(h) \in R^{n_x \times p}$, $C_K(h) \in R^{n_y \times n_x}$, and $D_K \in R^{n_y \times p}$ are the designed DOFTTC matrices, and $A_K(h, h) = \sum_{i=1}^{q} \sum_{j=1}^{q} h_i h_j A_{Ki,j}$, $B_K(h) = \sum_{i=1}^{q} h_i B_{Ki}$, $C_K(h) = \sum_{i=1}^{q} h_i C_{Ki}$.

Substituting (8) into (30) and (31), one obtains

$$ \dot{\xi}(t) = A_K(h, h)\xi(t) + B_K(h)C(h)x(t) + B_K(h)D_2(h)\omega(t) $$

$$ u(t) = C_K(h)\xi(t) + D_KC(h)x(t) + D_2D_2(h)\omega(t) - \dot{f}(t). $$

Then, one gets

$$ \dot{x}(t) = \dot{A}(h, h)x(t) + \dot{D}(h, h)u(t) \quad (32) $$

$$ y(t) = \dot{C}(h)x(t) + \dot{D_2}(h)\mu(t) \quad (35) $$

where

$$ \dot{x}(t) = \begin{bmatrix} x(t) \\ \xi(t) \end{bmatrix}, \quad \mu(t) = \begin{bmatrix} \omega(t) \\ e_f(t) \end{bmatrix} $$

$$ \dot{A}(h, h) = \begin{bmatrix} A(h) + B(h)D_2(h)C(h) & B(h)C(h) \end{bmatrix} $$

$$ \dot{D}(h, h) = \begin{bmatrix} D_2(h) & -B(h) \\ B_2(h)D_2(h) & 0 \end{bmatrix} $$

$$ \dot{C}(h) = \begin{bmatrix} C(h) & 0 \end{bmatrix} $$

$$ \dot{D_2}(h) = \begin{bmatrix} D_2(h) & 0 \end{bmatrix}. $$

Theorem 2: Assume a fault $f(t)$ occurs at some unknown time t_f, and let α and r be two positive scalars. The eigenvalues of $\dot{A}(h, h)$ belong to $D(\alpha, r)$, and the system dynamics (34) and (35) satisfy the H_{∞} performance index $\|y(t)\|_2 < \gamma\|\mu(t)\|_2$, if there exist two symmetric positive definite matrices $X, Y \in R^{n_x \times n_x}$ and matrices $\hat{A}_{ij} \in R^{n_x \times n_x}$, $\hat{B}_{ij} \in R^{n_x \times n_y}$, $C_i \in R^{n_y \times n_x}$, and $D \in R^{n_y \times p}$ such that

$$ \min \gamma \text{ subject to} $$

$$ \Pi_{ij} < 0, \quad i = 1, \ldots, q \quad (36) $$

$$ \Pi_{ij} + \Pi_{ji} < 0, \quad 1 \leq i < j \leq q \quad (37) $$

$$ \Xi_{ij} < 0, \quad i = 1, \ldots, q \quad (38) $$

$$ \Xi_{ij} + \Xi_{ji} < 0, \quad 1 \leq i < j \leq q \quad (39) $$

where

$$ \Pi_{ij} = \begin{bmatrix} -X & -I_n & \pi_{13} & A_i + \hat{B}_i\hat{D}_iC_j - \alpha I_n & Y \hat{A}_i - \alpha I_n & Y A_i + \hat{B}_iC_i - \alpha Y \\ -Y & \hat{A}_i - \alpha I_n & Y A_i + \hat{B}_iC_i - \alpha Y & -I_n \\ * & -r^2 X & -r^2 I_n & * & * \end{bmatrix} \in R^{(n_x + n_y) \times (n_x + n_y)} $$

and

$$ \Xi_{ij} = \begin{bmatrix} \chi_{11} & \chi_{12} & D_{1i} + \hat{B}_i\hat{D}_{2j} - B_iC_i^{T} \\ \chi_{12} & \chi_{22} & Y D_{1i} + \hat{B}_i\hat{D}_{2i} - Y B_iC_i^{T} \\ * & * & -\gamma I_m \end{bmatrix} \in R^{(n_x + n_y) \times (n_x + n_y)} $$

with

$$ \pi_{13} = A_iX + B_i\hat{C}_j - \alpha X $$

$$ \chi_{11} = A_iX + XA_i^{T} + B_i\hat{C}_j + \hat{C}_j^{T}B_i^{T}. $$
The parameter matrices of the DOFFTC are given by

$$D_K = \hat{D}$$

$$C_{Ki} = (\hat{C}_i - D_K C_i X) M^{-T}$$

$$B_{Ki} = N^{-1} (\hat{B}_i - YB_i D_K)$$

$$A_{Kij} = N^{-1} (\hat{A}_{ij} - Y (A_i + B_i D_K C_j) X) M^{-T} - B_K C_i X M^{-T} - N^{-1} Y B_i C_{Kij}$$

where $M, N \in R^{n \times n}$ satisfy $M N^T = I_n - XY$.

Proof: We start with the proof of (38) and (39), and (36) and (37) will be considered subsequently. For constraints (38) and (39), consider the following Lyapunov function:

$$V(t) = \tilde{x}^T(t) \hat{P} \tilde{x}(t).$$

(40)

Its derivative with respect to time is

$$\dot{V}(t) = \tilde{x}^T(t) (\hat{P} \hat{A}(h, h) + \tilde{A}^T(h, h) \hat{P}) \tilde{x}(t) + 2 \tilde{x}^T(t) \hat{P} \hat{D}_1(h, h) \mu(t).$$

(41)

Let us introduce

$$J = \int_{t}^{\infty} \left[\frac{1}{\gamma} y^T(t) y(t) - \gamma \mu^T(t) \mu(t) \right] dt.$$

(42)

It can be shown that

$$J \leq \int_{t}^{\infty} \left[\dot{V}(t) + \frac{1}{\gamma} y^T(t) y(t) - \gamma \mu^T(t) \mu(t) \right] dt.$$

(43)

Substituting (41) into (43), one obtains

$$\dot{V}(t) + \frac{1}{\gamma} y^T(t) y(t) - \gamma \mu^T(t) \mu(t) = \tilde{x}^T(t) (\hat{P} \hat{A}(h, h) + \tilde{A}^T(h, h) \hat{P}) \tilde{x}(t) + 2 \tilde{x}^T(t) \hat{P} \hat{D}_1(h, h) \mu(t)$$

$$= \tilde{x}^T(t) (\hat{P} \hat{A}(h, h) + \tilde{A}^T(h, h) \hat{P}) \tilde{x}(t) + 2 \tilde{x}^T(t) \hat{P} \hat{D}_1(h, h) \mu(t)$$

$$+ \frac{1}{\gamma} y^T(t) \tilde{C}^T(h) \tilde{C}(h) \tilde{x}(t) + 2 \tilde{x}^T(t) \tilde{C}^T(h) \tilde{D}_2(h) \mu(t)$$

$$+ \frac{1}{\gamma} \mu^T(t) \tilde{D}^T_2(h) \tilde{D}_2(h) \mu(t) - \gamma \mu^T(t) \mu(t) = \zeta^T(t) \Theta \zeta(t)$$

(44)

where

$$\zeta(t) = \begin{bmatrix} \tilde{x}(t) \\ \mu(t) \end{bmatrix}$$

and

$$\Theta = \begin{bmatrix} \theta_{11} & \theta_{12} \\ * & \theta_{22} \end{bmatrix}$$

with

$$\theta_{11} = \hat{P} \hat{A}(h, h) + \tilde{A}^T(h, h) \hat{P} + \frac{1}{\gamma} \tilde{C}^T(h) \tilde{C}(h)$$

$$\theta_{12} = \hat{P} \hat{D}_1(h, h) + \frac{1}{\gamma} \tilde{C}^T(h) \tilde{D}_2(h)$$

and

$$\theta_{22} = \frac{1}{\gamma} \tilde{D}^T_2(h) \tilde{D}_2(h) - \gamma I_{d+s}.$$
This can be rewritten as

\[
\Pi = \sum_{i=1}^{q} \sum_{j=1}^{q} h_i h_j \Pi_{ij} = \sum_{i=1}^{q} h_i^2 \Pi_{ii} + \sum_{i=1}^{q} \sum_{j<i}^{q} h_i h_j \left(\Pi_{ij} + \Pi_{ji} \right) < 0. \tag{50}
\]

Therefore, if (36) and (37) hold, then the eigenvalues of \(\tilde{A}(h, h) \) belong to \(D(\alpha, \pi) \).

Remark 6: From the top left subblock \([-X \; \; -I_q \; \; \; \; \; \; \; \; \; 0\]

\[
\begin{bmatrix}
- X & - I_q & \cdots & 0 \\
\end{bmatrix}
\]

in (36), we can obtain \(Y > 0 \) and \(X - Y^{-1} > 0 \), which imply that \(I_n - XY \) is nonsingular. Therefore, we can always find nonsingular matrices \(M \) and \(N \) satisfying \(MN^T = I_n - XY \), and they can be calculated by the qr function of MATLAB toolbox.

Remark 7: In the whole design process, the AFEO and DOFFTC are designed separately, and their performances are considered simultaneously, which can avoid design difficulties caused by the coupling between the fault-diagnosis observer and the observer-based state feedback fault-tolerant controller. It is the coupling that makes the separate principle that does not hold [15], [23], [24].

Remark 8: It is noted that more fuzzy rules can approximate nonlinear systems more accurately. However, as the number of fuzzy rules increases, computation burden and design conservatism are unavoidable such that there might be no solution. Therefore, the two conditions are partially conflicting with each other, and a tradeoff between the number of fuzzy rules and design conservatism should be made.

IV. SIMULATION RESULTS

Consider the problem of balancing and swing-up of an inverted pendulum on a cart [7], [22]. The equations of the pendulum motion are given by

\[
\begin{aligned}
\dot{x}_1(t) &= x_2(t) \\
\dot{x}_2(t) &= \frac{g \sin(x_1(t)) - a m l x_2^2(t) \sin(2x_1(t)) / 2 - a \cos(x_1(t)) u(t)}{4l/3 - a m l \cos^2(x_1(t))} \\
y(t) &= x_1(t)
\end{aligned}
\]

where \(x_1(t) \) is the angle (rad) of the pendulum from the vertical, and \(x_2(t) \) is the angular velocity (rad/s). Note that, we assume only the first state to be measured, rather than all states [7], to achieve the actuator faults estimation, thus setting a more restrictive problem; \(g = 9.8 \text{ m/s}^2 \) is the gravity constant, \(m \) is the pendulum mass, \(M \) is the cart mass, \(2l \) is the pendulum length, and \(a = 1/(m + M) \). In all simulations, \(m = 2.0 \text{ kg} \), \(M = 2.0 \text{ kg} \), and \(2l = 1.0 \text{ m} \).

First, we represent the system by using a two-rule T–S fuzzy model.

Rule 1: If \(x_1(t) \) is about 0, THEN

\[
\begin{aligned}
\dot{x}(t) &= A_1 x(t) + B_1 u(t), \\
y(t) &= C_1 x(t).
\end{aligned}
\]

Rule 2: If \(x_1(t) \) is about \(\pm \frac{\pi}{2} (|x_1(t)| < \frac{\pi}{2}) \), THEN

\[
\begin{aligned}
\dot{x}(t) &= A_2 x(t) + B_2 u(t), \\
y(t) &= C_2 x(t).
\end{aligned}
\]

Fig. 1. Membership functions of the two-rule model.
First, it is assumed that a constant fault $f(t)$ is created as

$$f(t) = \begin{cases} 0, & 0 \leq t < 5 \\ 20(1 - e^{-(t-5)}), & 5 \leq t \leq 20. \end{cases}$$

It is supposed that $\omega(t)$ are band-limited white noise with power 0.001 and sampling time 0.01 s. Under initial value $(20\pi/180, 0)$, simulation results are displayed as follows. In the following simulation results, we apply the proposed design method to the original nonlinear system rather than T–S fuzzy models, whose purpose is to verify the robustness of the proposed method with respect to modeling errors. Fig. 2 illustrates fault-estimation simulation results. Simulation results for the system output response are shown in Fig. 3 (a 0.2-s detection delay is considered).

Then, a time-varying fault is simulated as

$$f(t) = \begin{cases} 0, & 0 \leq t < 5 \\ -97.6313 + 6546.8816(t-5), & 5 \leq t \leq 20. \end{cases}$$

Under initial value $(-20\pi/180, 0)$, Fig. 4 illustrates the simulation result of fault estimation, while the system output response is shown in Fig. 5.

From the above simulation results, we can see that, despite the fact that $\text{rank}(C, B) = \text{rank}(B)$ is not satisfied, and the open-loop system is unstable, the proposed design still achieves the performance under actuator faults, and the stability of the closed-loop system is guaranteed by the fuzzy DOFFTC. Note that, the proposed fuzzy AFEO design can achieve asymptotical estimation for constant fault, while for the time-varying fault, the fuzzy AFEO can almost realize accurate fault estimation.

V. Conclusion

In this paper, a detailed design framework for observer-based robust fault estimation and FTC is developed for a class of nonlinear systems described by a T–S fuzzy model. The framework includes a fuzzy AFEO and DOFFTC to guarantee given stability requirements, while limiting the influence of disturbances, in the presence of actuator faults. Simulation results of an inverted pendulum example are used to show the effectiveness of the obtained results. This paper focuses on fault-tolerant control design for T–S fuzzy systems with external disturbances, while approximation error of T–S fuzzy systems does exist [25]. Therefore, fault-tolerant control design for T–S fuzzy systems with approximation error and how to apply to practical nonlinear systems are meaningful and challenging issues, which will be studied in our future work.
H∞-Filter Design for a Class of Networked Control Systems Via T–S Fuzzy-Model Approach

Bin Jiang, Zehui Mao, and Peng Shi

Abstract—This paper is concerned with H∞-design for a class of networked control systems (NCSs) with multiple state-delays via the Takagi-Sugeno (T–S) fuzzy model. The transfer delays and packet loss that are induced by the limited bandwidth of communication networks are considered. The focus of this paper is on the analysis and design of a full-order H∞ filter, such that the filtering-error dynamics are stochastically stable, and a prescribed H∞ attenuation level is guaranteed. Sufficient conditions are established for the existence of the desired filter in terms of linear-matrix inequalities (LMIs). An example is given to illustrate the effectiveness and applicability of the proposed design method.

Index Terms—Filter, fuzzy systems, networked control systems (NCSs).

I. INTRODUCTION

Networked control systems (NCSs) are the control systems in which controller and plant are connected via a communication channel. The defining feature of an NCS is that information (input, plant output, control input, etc.) is exchanged using a network among control-system components (sensors, controller, actuators, etc.). NCSs are applicable to many fields like dc motors, advanced aircraft, spacecraft, automobile, and manufacturing processes. Therefore, increasing attention has been paid to the study of networked systems (see, for example, [1]–[5] and the references therein). It should be noted that the network itself is a dynamical system including some issues, such as data dropout, limited bandwidth, time delay, and quantization. Thus, conventional control theories for point-to-point control systems must be reevaluated before they can be applied to networked systems.

On the other hand, the existence of time delays is commonly encountered in many dynamic systems, and time delay has become one of the main causes of instability and poor performance of systems [1]. Therefore, the study of NCSs in the presence of network-induced delays has attracted great attention over the past few years. The delays of NCSs are generally described by stochastic process. Such systems have gained persistent attention in the last years, for which a lot of results can be found, such as [6] and [7]. Up until now, there have been three approaches to describe the data-dropout phenomenon, i.e., the Bernoulli process [8], the Markovian jump parameter [9], and the in-completeness matrix [10]. Corresponding literature can be found about filter design for NCSs under these approaches, for example, [3], [11], and [12]. It should be pointed out that most of the considered plants on the issues are linear systems, and to the best of our knowledge, H∞ filtering problem for NCSs has not been fully investigated, and only a few results are available in the literature, which motivates the present study.

References