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t a novel unbiased and normalized adaptive noise reduction (UNANR) system to suppress random noise in electrocardiographic
ls. The system contains procedures for the removal of baseline wander with a two-stage moving-average filter, comb filtering of
nterference with an infinite impulse response (IIR) comb filter, an additive white noise generator to test the system’s performance
ignal-to-noise ratio (SNR), and the UNANR model that is used to estimate the noise which is subtracted from the contaminated

s. The UNANR model does not contain a bias unit, and the coefficients are adaptively updated by using the steepest-descent
he corresponding adaptation process is designed to minimize the instantaneous error between the estimated signal power and the
e-free signal power. The benchmark MIT-BIH arrhythmia database was used to evaluate the performance of the UNANR system
t levels of input noise. The results of adaptive filtering and a study on convergence of the UNANR learning rate demonstrate that
noise-reduction system that includes the UNANR model can effectively eliminate random noise in ambulatory ECG recordings,
igher SNR improvement than that with the same system using the popular least-mean-square (LMS) filter. The SNR improvement

the proposed UNANR system was higher than that provided by the system with the LMS filter, with the input SNR in the range
ver the 48 ambulatory ECG recordings tested.
right © 2018 Published by Elsevier Ltd on behalf of IPEM. All rights reserved.
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ctrocardiographic (ECG) signal is the electrical
ion of the heart’s activity. Computerized ECG
widely used as a reliable technique for the diag-
rdiovascular diseases, and the ECG signal is the
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only used biomedical signal in clinical practice
wever, ambulatory ECG recordings obtained by

ctrodes on the subject’s chest are inevitably con-
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y several different types of artifacts. Commonly
d artifacts include baseline wander, power-line
e, physiological signals generated by other organs

or induced by muscular contractions related to
and high-frequency random noise.
oval of artifacts in ECG signals is an essential

prior to further diagnostic analysis in many clin-
tions, e.g., detection of QRS complexes [10,13],
n of ectopic beats [1,9], analysis of asymptomatic
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[19], extraction of the fetal ECG signal from the
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traction of high-resolution ECG signals from
contaminated with background noise is an impor-
to investigate [4]. The goal for ECG signal
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undesired artifacts, so as to present an ECG
tes easy and accurate interpretation [2]. Despite
tion of several previous studies in the literature
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liable implementation of methods for the filtering
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t years, adaptive filtering has become one of the
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mework of nonlinear Bayesian filtering for ECG
llation.
h the advantages of adaptive filters for ECG anal-
idely accepted, many such algorithms require
dy of the features of a given ECG signal, e.g.,

on of P-QRS-T waves [23], windowing of QRS
[17], delineation of artifacts [3], or filter-band
ion [2]. These methods consume a significant
time for modeling, and are not flexible for appli-

one patient or condition to another. In this
resent a novel unbiased and normalized adaptive

ction (UNANR) system for the efficient cancel-
igh-frequency random noise in ambulatory ECG

aining parts of this paper are organized as follows.
provides a description of the adaptive noise-

ystem and the adaptation algorithm of the UNANR
tion 3 presents the experimental results obtained
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tential applications with the proposed UNANR

biased and normalized adaptive noise
system

view of the proposed UNANR system is provided
The system contains procedures for signal pro-
t include a two-stage moving-average filter for the
baseline wander, and an infinite impulse response

filter for the removal of periodic power-line
e, which are different in relation to our pre-

[24]. A noise generator is placed before the
odel in the system, because the focus of the

dy is on the reduction of random noise in noisy
ECG recordings. The details of the aforemen-

edures, together with the adaptation process of
R model, are presented in the following subsec-

ne wander removal with a moving-average

oving-average filter [4], the first- and second-stage
window lengths are set to be 1/3 and 2/3 of the
e input signal in samples, respectively. This filter

xtract the baseline drift and place the output signal
lectric line of the ECG recording.

filtering with an IIR comb filter

sfer function of the IIR comb filter with the coef-
1

−6

502

cified to 4-decimal-digit word length is

1 − z

1 + z − 0.9004z−1 −6

factor (Q factor) parameter of the IIR comb filter,
as the ratio of the frequency to be removed, f , to

bandwidth, bw, i.e., q = (2πf )/bw. The order of
b filter is determined by the ratio f /f , in which
ts the sampling rate of the ECG recordings. For
cordings sampled at 360 Hz, which were studied
eriments in Section 3, the IIR comb filter with
360/60 = 6 and a Q factor q = 30 provides the

esponse as shown in Fig. 2, which presents a comb
rejection bands around 60, 120, and 180 Hz. The
oles of the IIR comb filter are displayed in Fig. 3.
e order of the IIR comb filter is low, the regions

. (1)

0

0

s 0
s on the IIR comb filter, and found the magnitude and phase
he filter to be stable in the finite-word-length implementation.

the effect of the coefficients represented using 4, 8, and 16
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t (sample) n can be expressed as
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otes the reference input noise at the present (m =
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ld be normalized such that
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tituting (3) and (8) into the standard steepest-
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= w (n) − η∇ ε(n) = w (n) − 2η r(n − k + 1)[ ]
× w (n)r(n − m + 1) − p(n)

m=1

M

= w (n) + 2η r(n − k + 1) w (n)[p(n)
m=1

− r(n − m + 1)], (9)

> 0) represents the learning rate that indicates the
nitude in the negative gradient direction.

the UNANR model provides its response f (n +
to (2), at each time instant n + 1, the estimated
w (n + 1) should be normalized so as to meet the
t of (3). The UNANR coefficient normalization
is given by

k w k

M

m

∑
k m

ˆ

k

∑

k

Th
UNA
UNA
tation
gradi
be ob
lagge
imple
with
howe
with
erenc
digita
tory
meth
of no
propo
ECG
cant
by th
w (n + 1)k=
M

w (n + 1)
k=1

∑
k

. (10)

he UNANR coefficient initialization and adaptation procedures

parameters
ant, a unit of which equals to 1/f

t noise reference input sample
1): preceding m − 1, (1 < m ≤ M), noise reference input

nt noise-contaminated primary input sample
-rate parameter, a positive constant
antaneous value of the k th coefficient during the
n process
estimated value of the k th normalized coefficient for
ant n + 1
nse of the UNANR model at time instant (sample) n

n. Set the coefficients to uniformly distributed random
zero mean and unit variance. Normalize the coefficients

t sum
At time instant n, activate the UNANR model with noise
(n) and estimated values of the coefficients w (n)

(n)r(n − m + 1)

of coefficients. Update the coefficients for the next time
1

M

2η r(n − k + 1) w (n)[p(n) − r(n − m + 1)]

m=1
w (n + 1)

s

ˆ k

m

∑
m

k

M

w (n + 1)

k=1
n. Increment time instant n by one and go back to Step 2

∑
k

3. Experim

We used
[15] to eva
noise-reduc
excerpts of
were obtain
years, and
202 record
nal we stu
first chann
21,600 sam
over a 10 m

All of
®

the IIR com
of the Filte
noise gene
of the Com

®

system).
Fig. 5 g

first 10 s of
that the bas
filtered sig
input the d
filter, show

The eff
is shown i
the baselin
as shown

MATLAB

boxes are i
were perfo
Pentium M
RAM, unde
(2018) 17–26 21

cedures of initialization and adaptation of the
oefficients are summarized in Table 1. The
aptation procedure does not include the compu-

timating the signal power error ε(n), because the
scent of ε(n) during the convergence process can

with respect to the primary input and the time-
rence noise inputs, referring to (8). In real-time

ation, the UNANR model can provide its response
of only (M − 1) samples, or (M − 1)/f seconds;
e characteristic of updating coefficients directly
to the primary input and the time-lagged noise ref-
ts enables the UNANR model to perform faster
al processing (DSP) in applications of ambula-
onitoring, in comparison with the other popular

uch as the LMS filter. Moreover, the estimation
mponents ensures that the performance of the
NANR model is independent of the analysis of

res, which obviates the consumption of a signifi-
t of time for signal or noise modeling, as required
entional approaches.

s

ents and results

the benchmark MIT-BIH arrhythmia database
luate the performance of the proposed adaptive
tion system. The database consists of 48 half-hour
two-channel ambulatory ECG recordings, which
ed from 47 subjects, including 25 men aged 32–89
22 women aged 23–89 years (Tape Nos. 201 and
s are from the same male subject). The ECG sig-
died is the modified limb lead II (MLII) in the
el of the recording data, each of which contains
ples digitized at 360 Hz with 11-bit resolution
V range.
the ECG filtering experiments were run in

b filter were obtained with the iircomb function
r Design Toolbox v. 3.2, and the additive white
rator was implemented with the awgn function
munications Toolbox v. 3.1. Both of the tool-

®
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ives a sample result of baseline filtering with the
the ECG Tape No. 101 record. It can be observed
eline wander has been effectively removed in the
nal in Fig. 5(c), by subtracting from the original
rift extracted by the two-stage moving-average
n in Fig. 5(b).

v. 7.0 (The MathWorks, Inc.). The coefficients of

ncluded in MATLAB v. 7.0. All of the analyses
rmed on a DELL laptop computer with an Intel

processor of 1.86 GHz speed, and with 1.5 GB
r Microsoft Windows XP Professional (32-bit
ect of comb filtering with the IIR comb filter
n Fig. 6. The input to the IIR comb filter is
e-wander-free signal with the power spectrum,
in Fig. 6(a). It is clear from Fig. 6(b) that the
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wer spectrum of the ECG Tape No. 101 record after baseline
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Table 2
SNR improvement using the LMS filter and the UNANR model, with different levels of the input SNR

Input SNR (dB) SNR improvement using the LMS filter SNR improvement using the UNANR model

Mean (dB) S.D. Mean (dB) S.D.
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