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Abstract—Adaptive filtering based feedback cancellation is
a widespread approach to acoustic feedback control. However,
traditional adaptive filtering algorithms have to be modified in
order to work satisfactorily in a closed-loop scenario. In particular,
the undesired signal correlation between the loudspeaker signal
and the source signal in a closed-loop scenario is one of the major
problems to address when using adaptive filters for feedback
cancellation. Slow convergence speed and limited tracking
capabilities are other important limitations to be considered.
Additionally, computationally expensive algorithms as well as long
delays should be avoided, for instance, in hearing aid applications,
because of power constraints, important to extend battery life,
and real-time implementations requirements, respectively. We
present an algorithm combining good decorrelation properties, by
means of the prediction-error method based signal prewhitening,
fast convergence, good tracking behavior, and low computational
complexity by means of the frequency-domain Kalman filter, and
low delay by means of a partitioned-block implementation.

Index Terms—Adaptive feedback cancellation (AFC), acous-
tic feedback control, frequency-domain adaptive filter (FDAF),
Kalman filter, prediction-error method (PEM).

I. INTRODUCTION

ACOUSTIC feedback control is of critical importance in
several systems dealing with acoustic signals, such as pub-

lic address (PA) systems and HAs. A lack of acoustic feedback

Manuscript received April 20, 2017; accepted June 13, 2017. Date of publi-
cation June 15, 2017; date of current version July 12, 2017. This research work
was carried out at the ESAT Laboratory and at the ExpORL Laboratory of KU
Leuven, in the frame of the IWT O&O Project 110722 “Signal processing and
automatic �tting for next generation cochlear implants,” KU Leuven Research
Council CoE PFV/10/002 (OPTEC), the Interuniversity Attractive Poles Pro-
gramme initiated by the Belgian Science Policy Of�ce: IUAP P7/19 “Dynamical
systems control and optimization” (DYSCO) 2012–2017. The associate editor
coordinating the review of this manuscript and approving it for publication was
Dr. Richard Christian Hendriks.(Corresponding author: Giuliano Bernardi.)

G. Bernardi and M. Moonen are with the Department of Electrical Engineer-
ing, ESAT-STADIUS, KU Leuven, B-3001 Leuven, Belgium (e-mail: giuliano.
bernardi@esat.kuleuven.be; marc.moonen@esat.kuleuven.be).

T. van Waterschoot is with the Department of Electrical Engineering, ESAT-
STADIUS, KU Leuven, B-3001 Leuven, Belgium, and also with the Department
of Electrical Engineering, ESAT-ETC, AdvISe Lab, B-2440 Geel, Belgium
(e-mail: toon.vanwaterschoot@esat.kuleuven.be).

J. Wouters is with the Department of Neurosciences, Laboratory ExpORL,
KU Leuven, B-3000 Leuven, Belgium (e-mail: jan.wouters@med.kuleuven.be).

Color versions of one or more of the �gures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identi�er 10.1109/TASLP.2017.2716188

Fig. 1. General AFC scenario.

control can lead to system instabilities causing annoying arti-
facts and sound degradation. Mainly in the last three decades,
several methods have been developed to cope with the problem
of acoustic feedback [1]. An important class of such meth-
ods is characterized by the use of adaptive �lters and, more
speci�cally, by the use of the adaptive �lters to model the un-
known feedback path. adaptive feedback cancellation (AFC) is
the usual name by which these methods are identi�ed. An il-
lustration of a typical acoustic feedback scenario including an
AFC approach is shown in Fig. 1; the adaptive �lter̂F (q, t)
represents the estimated feedback path model which should,
ideally, perfectly match the true feedback pathFt(q, t), in order
to reduce the feedback artifact.F̂ (q, t) andFt(q, t) are assumed
linear and possibly time-varying and will be further de�ned in
Section II. Here,t is the discrete time index andq−1 is the de-
lay operator, i.e.,q−ku(t) = u(t − k), which allows a compact
de�nition of the different TFs and will be used throughout the
paper. The nature of the problem can be seen by noticing that
the microphone signaly(t) is not only composed of the source
signalv(t), i.e., the desired signal to be ampli�ed and sent to
the loudspeaker, but also of the undesired interferencex(t),
originating from the presence of the acoustic feedback, i.e.,
y(t) = x(t) + v(t). A similar situation also characterizes the
standard acoustic echo scenario; what differentiates the acous-
tic feedback scenario from the acoustic echo scenario is the
presence of the forward path transfer functionG(q, t), turning
the system into a closed-loop system, and introducing a signal
correlation between the loudspeaker signalu(t) and the source

2329-9290 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publicationsstandards/publications/rights/index.html for more information.



BERNARDI et al.: AFC USING A PARTITIONED-BLOCK FREQUENCY-DOMAIN KALMAN FILTER APPROACH 1785

signalv(t). This correlation makes the estimation of the feed-
back path more problematic than in the acoustic echo scenario
and, as a consequence, employing a standard adaptive �ltering
algorithm, e. g. the normalized least mean squares (NLMS),
returns a biased estimate ofFt(q, t) [2], [3], thus limiting the
cancellation properties of̂F (q, t). Additionally, system insta-
bilities can be induced by the closed-loop, leading to a series
of acoustic artifacts such as howling. In order to reduce these
problems and obtain a reliable estimate, a procedure for decor-
relatingv(t) andu(t) should be included.

Different approaches have been proposed in the literature to
reduce the signal correlation in the acoustic feedback scenario,
and thus produce better estimates of the feedback path trans-
fer function (TF), such as the introduction of an external probe
noise [4], [5], modi�cations of the forward path TF by means
of nonlinear processing [6], [7], time-varying processing [6],
[8] and added delays [9], two-microphones strategies [10], and,
more recently, the use of a prewhitening �lter used for decor-
relation [11]–[15]. The latter approach relies on the use of an
appropriate model for the disturbance of the identi�cation pro-
cedure which, in the AFC context, is represented by the source
signalv(t).

The prewhitening �lter-based AFC has been shown to be
advantageous since it provides limited perceptual distortions,
unlike the other aforementioned approaches [1], [16]. However,
the need for a source signal model introduces a new challenge
from the identi�cation point of view, since the unknown source
signalv(t) is usually a nonstationary speech or audio signal.
Nonstationarity implies that the source signal model forv(t)
must be concurrently estimated alongside the estimation of the
feedback path model. Therefore, the identi�ability conditionss
(ICs) of the system, which now counts two models to be identi-
�ed, are inevitably changed [3], [17].

The application of the prediction-error method (PEM) to
prewhitening �lter-based AFC has been widely studied [3],
[17]–[21], resulting in several different algorithms, e. g. the
PEM-based adaptive �ltering with row operations (PEM-
AFROW), as well as interesting results regarding model iden-
ti�ability. In the time-invariant case, with a true source signal
generation systemHt(q) de�ned by an autoregressive (AR)
process with a white noise excitation signale(t), see Fig. 2,
Sprietet al. [3] have proved that identi�ability can be achieved
if suf�cient delay is included in the forward path or in the feed-
back cancellation path, as well as if a time-varying or nonlinear
processing forward path TF is considered. This identi�ability
analysis has subsequently been extended to a wider range of
source signal models [17].

The AFC has been also formulated in the frequency do-
main, i.e., as a frequency-domain adaptive �lter (FDAF), and
combined with a time-domain prewhitening �lter, i.e., the PEM-
based frequency-domain adaptive �lter (PEM-FDAF) [19], [22].
More recently, a PEM-based prewhitening �lter has been used
in combination with a frequency-domain Kalman �lter (FDKF)
applied to a state-space structure, leading to the so-called PEM-
based frequency-domain Kalman �lter (PEM-FDKF) [18], to
achieve better convergence and tracking properties compared to
the PEM-FDAF [22], [23]. An advantage of the PEM-FDKF

Fig. 2. Complete AFC algorithm with prediction-error method (PEM) stage.

is the inherent optimal choice of the step-size parameter [24]
which usually needs to be �xed as design parameter of the
PEM-FDAF algorithm or adaptively estimated using variable
step-size algorithms [14], [23], [25].

In this paper, we provide the complete derivation of the
PEM-FDKF algorithm, which was not included in [18], to-
gether with a complexity analysis and a study of the ICs for
the closed-loop identi�cation. Additionally, we propose an ex-
tension of the PEM-FDKF by means of a partitioned-block
(PB) frequency-domain implementation, referred to as the PEM-
based partitioned-block frequency-domain Kalman �lter (PEM-
PBFDKF), allowing to reduce the algorithmic delay, as needed
in, e. g., hearing aid (HA) applications. The paper is organized as
follows. In Section II, we review the PEM for direct closed-loop
system identi�cation. In Section III, we introduce the PEM-
FDKF, providing a complete derivation of the algorithm. In
Section IV, we study the ICs, allowing to obtain a unique and
unbiased model estimate for both the feedback path and the
source signal generation system. In Section V, we present the
extension of the PEM-FDKF relying on partitioned-block (PB)
processing, the PEM-PBFDKF. In Section VI, we provide a
computational complexity and memory requirements compar-
ison of the proposed algorithms. In Section VII, we illustrate
the performance of the proposed algorithms in terms of con-
vergence speed, added stability and sound quality by means
of simulation results. Finally, the conclusions are drawn in
Section VIII.

II. PREDICTION ERRORMETHOD IDENTIFICATION

The PEM is widely used in direct closed-loop system identi-
�cation [2], [3]. For the case illustrated in Fig. 2, the PEM can
be used to provide a direct closed-loop identi�cation [2], [26] of
both the true feedback pathFt(q, t) and the true source signal
generation systemHt(q, t). Throughout the paper, we use the
following notation system: a symbol with the subscriptt refers
to the true system, a regular symbol refers to the model, and a
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symbol with a hat refers to the model estimate; e. g.,Ft(q, t) is
the true feedback path,F (q, t) is the feedback path model, and
F̂ (q, t) is the feedback path model estimate.

AssumingF (q, t) and H(q, t) to be parametric difference
equation models, and de�ning a new modelJ(q, t) satisfying
the equationJ(q, t)H(q, t) = 1 for later use, we introduce the
parameter vectorsθ(t), f(t), andj(t):

θ(t) = [fT(t) jT(t)]T (1)

f(t) = [f0(t) f1(t) . . . fnF −1(t)]
T (2)

j(t) = [1 j1(t) . . . jnJ −1(t)]
T , (3)

wherenθ = nF + nJ . Assuming the true system is contained
in the model set [26], the true system can be described using the
true values off(t), i.e.,ft(t), as

Ft(q, t) = F (q, t)
∣
∣
f (t)=ft (t)

(4a)

= ft,0(t) + ft,1(t)q−1 + . . . + ft,nF −1(t)q−nF +1

(4b)

and thus

y(t) = Ft(q, t)u(t) + Ht(q, t)e(t). (5)

Similarly to (4), the true value ofj(t), i.e.,jt(t), can be used to
write Jt(q, t) = J(q, t)

∣
∣
j(t)=jt (t)

, with Jt(q, t)Ht(q, t) = 1.
We can now de�ne the prediction error (PE) using the one-

step ahead predictor fory(t), ȳ[t|f(t), j(t)], as

ε[t,θ(t)] = y(t) − ȳ[t|θ(t)] (6a)

= J(q, t) [y(t) − F (q, t)u(t)] , (6b)

and �nd the true values of the parameter vectorsf(t) andj(t),
by minimizing the variance of the PE

min
θ(t)

E{ε2 [t,θ(t)]}, (7)

whereE{·} denotes statistical expectation and the measured
ε[t,θ(t)] is considered to be a realization of the PE, deriving
from a realization of the white noise excitatione(t), being the
only random variable in this scenario.

The ICs, i.e., the conditions that allow to uniquely estimate
Ft(q, t) andJt(q, t), have been derived in literature [3] by con-
verting the nonlinear PEM cost function (7) into a linear cost
function, by means of the transformation:

A(q, t) = J(q, t) (8)

B(q, t) = −J(q, t)F (q, t) (9)

with A(q, t) andB(q, t) parameterized by

ξ(t) = [aT(t) bT(t)]T (10)

a(t) = [1 a1(t) . . . anA
(t)]T (11)

b(t) = [b0(t) b1(t) . . . bnB
(t)]T , (12)

allowing to rewrite (6b) as

ε[t, ξ(t)] = A(q, t)y(t) + B(q, t)u(t). (13)

and (7) as the constrained optimization problem

min
ξ(t)

E{ε2 [t, ξ(t)]} (14a)

subject to A(q, t) is a divisor ofB(q, t), (14b)

where the constraint follows from (8) and (9). The �rst tap
parameter ofA(q, t) is always set to 1, i.e.,A(q, t) = 1 +
q−1Ā(q, t), in order to avoid the trivial solutionA(q, t) =
B(q, t) = 0 in (14). The PE de�nition in (13) is used in the
�rst part of Section IV, where we provide the ICs for the opti-
mization problem leading to the proposed PEM-FDKF. Unlike
in the derivation in [3], hereA(q, t) andB(q, t) are considered
to be time-varying quantities. Later in Section IV, we use again
the PE de�nition in (6b) from the derivation [it will also be clear
that the constraint (14b) may be removed] as the solution of
(14a) alone satis�es the constraint (14b) and hence the solution
of (14a) is also equal to the solution of (7).

In the next section, describing the algorithmic derivation of
the PEM-FDKF, we also use (6b) to describeε[t,θ(t)]. Fol-
lowing the PEM, the optimization in (7), w.r.t.f(t) and j(t),
is carried out in an alternating fashion [21], i.e., estimating, at
each iteration, in a �rst step the coef�cients ofJ(q, t) with �xed
estimates forF (q, t) and in a second step the coef�cients of
F (q, t) with �xed estimates forJ(q, t).

III. T HE PEM-BASED FREQUENCYDOMAIN KALMAN FILTER

(PEM-FDKF)

The PEM-FDKF algorithm [18] is an extension of the
algorithm proposed by Enzner and Vary [24] for acoustic echo
cancellation (AEC). It relies on a dynamical model for the feed-
back path and a model for the recorded microphone signal to
de�ne a state-space representation to which the Kalman �lter
procedure can be applied. The simple frequency-domain dy-
namical model chosen for the feedback path employs a �rst-
order Markov model as an abstraction of the true feedback path
dynamics. Similar models have also been proposed in the time-
domain [27]–[29]; however, the use of a block-wise procedure
has an impact on the calculation of the model time constant. The
main change introduced to the algorithm by Enzner and Vary
consists of the decorrelation stage, by means of a PEM-based
prewhitening �lter already seen in the PEM-FDAF [23], [30],
[31]. In this way, the frequency-domain Kalman �lter (FDKF)
framework can be successfully applied to AFC, leading to the
PEM-FDKF.

The two main advantages of a frequency-domain approach
are the lower computational complexity and the good decorre-
lation properties of the discrete Fourier transform (DFT) [19],
[32], [33]. In HA applications, where short �lters are usually em-
ployed, the computational complexity advantage is smaller than
in PA applications, but it can be still relevant, as we will show
in Section VI, especially if the DFT calculations are shared by
other processing stages of the HA. In addition to these two ad-
vantages, the formulation of the problem based on a state-space
representation allows to optimally estimate the FDAF stepsize
as part of the Kalman �lter procedure [24], [34], leading to a
signi�cantly improved convergence [18].
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It should be emphasized that this approach employs the im-
plicit assumption thatFt(q, t) and Ht(q, t) are slowly time-
varying [withFt(q, t) varying more slowly thanHt(q, t)], since
these are modeled byF (q, κ) andH(q, κ), whereκ ∈ Z is the
time frame index, which hence can only vary at the frame rate
[24], [35]. Therefore, we will assume time invariance ofFt(q, t)
andHt(q, t) over each frame, i.e., effectively over each frame
shift of R samples, and use the notationFt(q, κ) andHt(q, κ).
Similarly, Jt(q, κ) is de�ned such thatJt(q, κ)Ht(q, κ) = 1.

The discrete frequency indexl will be used, together with
the frame indexκ, to describe the time-frequency components
of the different variables. The �rst introduced variable is the
M -samples loudspeaker signal for frameκ,

u(κ) = [u(κR − M + 1) . . . u(κR)]T , (15)

whereR denotes the frame shift.
Assuming the true valueJt(q, κ) to be available, the pre-

�ltered version of the loudspeaker signal for frameκ is

uJt (κ) = [Jt(q, κ)u(κR − M + 1) . . . Jt(q, κ)u(κR)]T

= [uJt (κR − M + 1) . . . uJt (κR)]T . (16)

The frequency-domain version of the pre�ltered loudspeaker
signal is then given in matrix form as

UJt (κ) = diag {FM uJt (κ)} , (17)

whereFM is the unitary DFT matrix of sizeM × M , i.e.,
F−1

M = FH
M , and thediag{·} operator either maps anM × 1

vector to the diagonal of anM × M diagonal matrix, or maps
anM × M matrix to theM × 1 vector given by its diagonal.
The dimension parametersR andM should be chosen prop-
erly, taking into consideration the length of the true feedback
path or an estimate thereof. A common choice isR = nF̂ (as-
sumingnF̂ = nF ) andM = 2R [23], [32]; if the algorithmic
delay, equal to2R − 1, is not acceptable, a PB solution (also
known as multidelay �lter) [22], [33], [37] can be chosen, see
Section V.

With R = nF̂ , the frequency-domain version of the true feed-
back path parameter vectorft(κ) is

Ft(κ) = G10
M ×RFR ft(κ) (18a)

= FM W01
M ×R ft(κ). (18b)

The rectangular matricesG10
M ×R andW01

M ×R are used to ob-
tain theM × 1 frequency-domain version of theR × 1 vector
ft(κ). The smaller of the two matrix dimensionsR always indi-
cates the dimension of the identity matrixIR ×R appearing in the
matrix de�nitions. The simpli�ed de�nitions of these matrices,
considering the standard caseM = 2R, are shown in Table I
along with the other matrices needed to compactly describe
the algorithm in the frequency-domain as de�ned by Benesty
et al. [36]. Despite the two classes of de�nitions for frequency-
domain quantities, e. g. using (18a) or (18b), we will only use
the class of de�nitions including the linearization matricesG··

· × ·
in the rest of the paper.

Finally, we introduce theR-samples pre�ltered microphone
signal and the source excitation signal for frameκ, i.e.,

yJt (κ) = [Jt(q, κ)y(κR − R + 1) . . . Jt(q, κ)y(κR)]T

= [yJt (κR − R + 1) . . . yJt (κR)]T (19)

e(κ) = [e(κR − R + 1) . . . e(κR)]T , (20)

and their frequency-domain versions:

YJt (κ) = (G01
R ×M )HFRyJt (κ) (21)

E(κ) = (G01
R ×M )HFRe(κ). (22)

The quantities introduced so far can be combined into a state-
space representation using the frequency-domain Markov model
for the feedback pathFt(κ) as a state equation and the linear
model for the frequency-domain pre�ltered microphone signal
YJt (κ) as a measurement equation:

Ft(κ + 1) = αtFt(κ) + Nt(κ) (23a)

YJt (κ) = CJt (κ)Ft(κ) + E(κ) (23b)

whereCJt (κ) = G01
M ×M UJt (κ) includes the linear transfor-

mation to be applied toUJt (κ) to linearize the circular con-
volution betweenuJt (κ) and ft(κ), cf. Table I,Nt(κ) is the
process noise describing the unpredictability of the feedback
path dynamics andαt is the transition factor accounting for
the time-variability of the feedback path [24]. The total num-
ber of linear convolution samples resulting from the circular
convolution, given the chosen signal dimension parameters, is
M − R + 1 = R + 1 [32]. However, we retain onlyR samples
to match the frame shift and simplify the notation, as commonly
done in the literature [24], [32], [36], [38].

AssumingJt(q, κ) is indeed available, the use of pre�ltered
variables in (23b) guarantees the decorrelation between the
pre�ltered loudspeaker signaluJt (κ) and the source excita-
tion signale(κ) in the measurement equation, thus achieving
the necessary requirements to employ a Kalman �lter for the
estimation ofFt(κ). The linear minimum mean-square error
(MMSE) estimate of the state vectorFt(κ) corresponds to the
solution of a Bayesian optimization problem [39, ch. 13], and
is given by the well-known set of equations referred to as the
(block) Kalman �lter:

K(κ) = P(κ)CH
Jt

(κ)
[

CJt (κ)P(κ)CH
Jt

(κ) + ΨEE(κ)
]−1

(24a)

F̂+(κ) = F̂(κ) + K(κ)[YJt (κ) − CJt (κ)F̂(κ)] (24b)

P+(κ) = [IM ×M − K(κ)CJt (κ)]P(κ) (24c)

F̂(κ + 1) = αt · F̂+(κ) (24d)

P(κ + 1) = α2
t · P+(κ) + ΨNt Nt (κ), (24e)

whereK(κ) is the frequency-domain Kalman gain, the super-
script + indicates a posteriori estimates and, �nally,ΨEE(κ)
andΨNt Nt (κ) are the covariance matrices ofE(κ) andNt(κ)
[24], [35], respectively, assumed to be known.

For implementation purposes, we drop some of the assump-
tions initially made for the state space model, similarly to what
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TABLE I
DEFINITIONS OF THECONSTRAINT AND LINEARIZATION MATRICESUSED IN THEPAPER, AS DEFINED IN BENESTYet al. [36]

Constraint rectangular matrix Constraint square matrix Linearization rectangular matrix Linearization square matrix

W01
R ×M =

[
0R ×R IR ×R

]
W01

M ×M =
[

0R ×R 0R ×R

0R ×R IR ×R

]

G01
R ×M = FR W01

R ×M F−1
M

G01
M ×M = (G01

R ×M )H G01
R ×M

= FM W01
M ×M F−1

M

W01
M ×R =

[
IR ×R

0R ×R

]

W01
M ×M =

[
IR ×R 0R ×R

0R ×R 0R ×R

]

G10
M ×R = FM W01

M ×R F−1
R

G10
M ×M = G10

M ×R (G10
M ×R )H

= FM W01
M ×M F−1

M

is done in the PEM-FDAF in order to carry out the optimization
in an alternating fashion [22]:

1) The pre�ltering operation is performed by means of the
estimatedĴ(q, κ), instead of the trueJt(q, κ); therefore,
the pre�ltered variables will be, from now on, indicated
using the subscript̂J , instead ofJt . Following a common
assumption found in literature [22], [40], [41], the sys-
temHt(q, κ) generating the source signalv(t) is assumed
to be time-varying, monic, inversely stable, and AR. The
Jt(q, κ) is then estimated as the linear prediction �lter
for the time-domain error signal frame, i.e.,d[κ|̂f(κ)] =
[

d[κR − R + 1|̂f(κ)] . . . d[κR|̂f(κ)]
]T

at the current

and the previous frame, i.e.,[dT[κ|̂f(κ)] dT[κ −
1|̂f(κ − 1)]]T , using the Levinson-Durbin algorithm [42,
pp. 254-264] and represented byĵ(κ).

2) The use of estimated prewhitening �lter parameters moti-
vates the replacement of[YJt (κ) − CJt (κ)F̂(κ)] in (24b)
by the frequency-domain PE frameE[κ, Θ̂(κ)], related to
the time-domain PE frameε[κ, θ̂(κ)] via

ε[κ, θ̂(κ)] =
[

ε[κR − R + 1, θ̂(κ)] . . . ε[κR, θ̂(κ)]
]T

(25)

E[κ, Θ̂(κ)] = (G01
R ×M )HFRε[κ, θ̂(κ)] (26)

with Θ̂(κ) containing the frequency-domain versions of
f̂(κ) and ĵ(κ) [cf. (46) to (50)]. Furthermore, we add
the linearization constraintG10

M ×M (cf. Table I) in (24b)
[cf. (31b)], similarly to what is done in the FDAF, given
the improved sound quality provided by a constrained
FDAF version [32]. Naturally, such a constraint causes a
computational complexity increase.

Additionally, we use the approximations introduced by
Enzner and Vary [24], in order to address both the problem of
high computational complexity and the possible ill-posedness
of the solution, via diagonal operations, as follows:

1) The linearization square matrixG01
M ×M in the de�nition

of CĴ (κ) is approximated by a diagonal matrix, allowing
to write G01

M ×M ≈ (R/M)IM ×M and, less intuitively,
G01

M ×M Δ(G01
M ×M )H ≈ (R/M)Δ, if Δ is a diagonal

matrix [36, ch. 8].
2) The covariance matricesΨEE(κ) and ΨNt Nt (κ) are

replaced by the estimatesΨÊÊ (κ) andΨN̂N̂ (κ), respec-
tively, which are assumed to be diagonal [24]. These
are related to the corresponding time-varying power
spectral densitiesΦÊÊ (κ) and ΦN̂N̂ (κ), adaptively

estimated using the procedures described in [35], [38],
[43], assuming that the feedback path is slowly time
varying.

3) Given the assumed low correlation between different fre-
quency components of the estimation error [24], the ma-
trix P(κ) is a nearly diagonal matrix; the diagonalilty is
enforced by initalizingP(0) ∝ IM ×M .

The last three approximations are used to write the following
simpli�ed expressions:

CĴ (κ) ≈ R

M
· UĴ (κ) (27)

CĴ (κ)P(κ)CH
Ĵ (κ) ≈ R

M
· UĴ (κ)P(κ)UH

Ĵ (κ) (28)

ΨÊÊ (κ) ≈ R · diag{ΦÊÊ (κ)} (29)

ΨN̂N̂ (κ) ≈ M · diag{ΦN̂N̂ (κ)}. (30)

With the approximations discussed so far, the complete set of
equations describing the PEM-FDKF update is as follows:

K(κ) = P(κ)UH
Ĵ (κ)

[

UĴ (κ)P(κ)UH
Ĵ (κ)

+ M · diag{ΦÊÊ (κ)}]−1
(31a)

F̂+(κ) = F̂(κ) + G10
M ×M K(κ)E[κ, Θ̂(κ)] (31b)

P+(κ) =
[

IM ×M − R

M
K(κ)UĴ (κ)

]

P(κ) (31c)

F̂(κ + 1) = α · F̂+(κ) (31d)

P(κ + 1) = α2 · P+(κ) + M · diag{ΦN̂N̂ (κ)}. (31e)

IV. PEM-FDKF IDENTIFIABILITY CONDITIONS

The ICs for the optimization problem solved by the PEM-
FDKF will be derived in three steps, as follows.

The �rst step, providing ICs for (7) and (14), is similar to
the derivation in [3], but now introducing time variability in the
signal models. The following expressions fory(t) andu(t) hold
(cf. Fig. 2):

y(t) = Ft(q, t)u(t) + v(t) (32)

u(t) = G(q)
[

y(t) − F̂ (q, t)u(t)
]

, (33)

whereG(q) = q−dG Ḡ(q) anddG ≥ 1, i.e., the forward path has
to have at least a one-sample delay to avoid a delay-less loop.
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Using (32) and (33), the PE in (13) can be rewritten as

ε[t, ξ(t)] = A(q, t)v(t) + [A(q, t)Ft(q, t) + B(q, t)] × u(t)

= A(q, t)v(t) + [A(q, t)Ft(q, t) + B(q, t)]

× q−dG Ḡ(q)
[

y(t) − F̂ (q, t)u(t)
]

. (34)

The PEε[t, ξ(t)] can be expressed as a function ofv(t) only,
by using (32) and (33) repeatedly, in (34), i.e.,

ε[t, ξ(t)] = A(q, t)v(t) + Z(q, t)Ḡ(q)v(t − dG )

+ Z(q, t)
∞∑

�=2

Ḡ�(q)

[
�−1∏

i=1

Fr(q, t − idG )

]

× v(t − �dG ) (35)

where

Fr(q, t) = Ft(q, t) − F̂ (q, t) (36)

Z(q, t) = A(q, t)Ft(q, t) + B(q, t). (37)

As is done for the time-invariant case in [3], we consider the
suf�cient order condition forA(q, t) andB(q, t), i.e.,nA ≥ nJ

and nB ≥ nJ + nF − 1, and the causality of̄G(q), Ft(q, t),
Jt(q, t) and F̂ (q, t) and study the conditions under which the
minimization in (14a) leads to the unique solution

A(q, t) = Jt(q, t) (38)

B(q, t) = −Jt(q, t)Ft(q, t). (39)

This solution satis�es (14b), hence making this constraint indeed
redundant.

The unique desired solution can be derived if at least one of
the following conditions, similar to the conditions found in the
time-invariant case [3], is ful�lled:

C1: The forward path delaydG satis�esdG ≥ nA ;
C2: The cancellation path delaydF , where B(q, t) =

q−dF B̄(q, t) and henceFt(q, t) = q−dF F̄t(q, t), satis-
�es dG + dF ≥ nA ;

C3: The TFḠ(q) is nonlinear.
The proofs resemble those in [3], with the difference that

the assumed time variability of the signal models does not al-
low to compactly rewrite (35). Speci�cally, the �rst condition,
C1, turns the minimization in (14) into a linear prediction of
v(t), i.e.,A(q, t) = Jt(q, t), given thata0(t) = 1. Additionally,
sincenA ≥ nJ , the equationZ(q, t) = 0 must hold, leading
to B(q, t) = −Jt(q, t)Ft(q, t). The second condition, C2, can
be proved similarly, by includingB(q, t) = q−dF B̄(q, t), and
henceFt(q, t) = q−dF F̄t(q, t), in (35), i.e.,

ε[t, ξ(t)] = A(q, t)v(t) + q−dG −dF
[

A(q, t)F̄t(q, t) + B̄(q, t)
]

× Ḡ(q)
[

y(t) − F̂ (q, t)u(t)
]

. (40)

If dG + dF ≥ nA , the unique solution of (40) is given by (38)
and (39). The last condition, C3, can be understood considering
that a nonlinearḠ(q) introduces additional decorrelation be-
tween the �rst and the other terms in (35), thus decoupling these
terms in the minimization of (7). Such decoupled minimization

yields, again, the values ofA(q, t) andB(q, t) in (38) and (39).
Following these results, which hold for any time-varying be-
havior ofJt(q, t) andFt(q, t) ful�lling the initial assumptions
as well as the ICs, we can go back to the simpli�ed notation
of the unconstrained optimization problem in (7), parameter-
ized inθ(t). Under the same ICs, the minimization in (7) then
leads to the solutionJ(q, t) = Jt(q, t) andF (q, t) = Ft(q, t)
[the equivalent of (38) and (39)].

The second step describes the transition from the current op-
timization problem (7) to a new optimization problem including
the speci�c model (23), for which then the Kalman �lter (alter-
nating with the Levinson-Durbin algorithm) is seen to provide a
suitable algorithm, and derive the ICs for this new optimization
problem. We start by expressing (7) as a length-R frame-based
expression, through the frame indexκ. Assuming time invari-
ance ofFt(q, t) andHt(q, t) over each frame, the sample-based
estimation of the parameter vectorθ(t) is replaced by the frame-
based estimation of the parameter vectorθ(κ), found by solving
at eachκ

min
θ(κ)

E{‖ε[κ,θ(κ)]‖2
ζ−1 (κ)}, (41)

where‖z‖W =
√

zHWz =
∥
∥W1/2z

∥
∥

2 is the weighted norm
of z induced by the positive de�nite matrixW, andζ−1(κ) =
ζ−1(κ)IR ×R will be used to compensate for power variations
in the excitation signale(κ). ε[κ,θ(κ)] is the length-R PE
frame obtained from (6b) assuming the parameter vectorθ(κ)
is constant int = κR − R + 1, . . . , κR. Under the same time-
invariance assumption, it has been pointed out in [32] that
minimizing the frame-based cost function vs. the sample-based
cost function leads to the same mean-square error performance;
therefore, the same ICs hold for the (41) and (7).

We now assume a frame-based state-space model for the
true system using a simple Markov model to describe the state
(i.e., the true feedback path) dynamics [12], and the linear model
for the time-domain pre�ltered microphone signal frameyJt (t)
as the measurement equation:

ft(κ + 1) = αtft(κ) + nt(κ) (42a)

yJt (κ) = Ft(q, κ)uJt (κ) + e(κ), (42b)

cf. (16), (19) and (20), and we describe the random vari-
ables of (42) asnt(κ) ∼ N (0,Λt(κ)), e(κ) ∼ N (0,Σt(κ))
and ft(0) ∼ N (μft (0) ,Πt(0)), whereN (·, ·) indicates a nor-
mal distribution with speci�ed mean and covariance.

The Kalman �lter corresponding to the state-space model (42)
effectively solves the optimization problem [44]–[46]

min
{f (n), n(n)}κ

n = 0

1
2

∥
∥f(0) − μft (0)

∥
∥

2
Π−1

t (0)

+
1
2

κ−1∑

n=0

‖n(n)‖2
Λ−1

t (n)

+
1
2

κ∑

n=0

‖ε[n,θ(n)]‖2
Σ−1

t (n) (43a)

subject to f(n + 1) = αtf(n) + n(n). (43b)
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This formulation combines the different optimization prob-
lems in (41) for successive framesn = 0, . . . , κ into a single
optimization framework, with the constraint (43b) de�ning the
time evolution off(n), and three terms characterizing the cost
function:

1) A regularization term depending onf(0) and on the ma-
trix Πt(0) = E{[f(0) − μft (0)

] [

f(0) − μft (0)
]T}, with

μft (0) an initial guess of the initial statef(0);
2) A term depending on the unknown state noise process

n(n), with n(n) being a new variable to optimize, and on
Λt(n) = E{n(n)n(n)T};

3) A term depending on the PEε[n,θ(n)], similar to the
term in (41), where the expectation on the single frame is
replaced by a summation over the different frames, and
ζ−1(κ) in (41) is replaced by the matrixΣt(n) [44], [47].

With (43) effectivelyf(n) is estimated under the assumption
that j(n) is known [asj(n) is included inθ(n) in the third
term of (43a)]. Ifj(n) = jt(n), then the Kalman �lter (subject
to technical full-rank conditions) provides the unique MMSE
estimate offt(κ), which itself (subject to the above ICs) is
included in the unique minimizer of the third term of (43a) with
the expectation reintroduced.

When the Kalman Filter operations [to estimatef(n)] are al-
ternated with the Levinson-Durbin algorithm [to estimatej(n)],
as in Section III, the optimization problem that is effectively
solved is

min
{θ(n), n(n)}κ

n = 0

1
2

∥
∥f(0) − μft (0)

∥
∥

2
Π−1

t (0)

+
1
2

κ−1∑

n=0

‖n(n)‖2
Λ−1

t (n)

+
1
2

κ∑

n=0

‖ε[n,θ(n)]‖2
Σ−1

t (n) (44a)

subject to f(n + 1) = αtf(n) + n(n). (44b)

The alternation minimization then provides a (possibly sub-
optimal) estimate ofθt(κ) = [fT

t (κ) jTt (κ)]T , which itself (sub-
ject to the above ICs) is included in the unique minimizer of
the third term of (44a) with the expectation reintroduced. If
the Kalman �lter is applied withj(n) = jt(n), then (subject to
technical full-rank conditions) it provides the unique MMSE
estimate offt(κ). Similarly, if the Levinson-Durbin algorithm
is applied withf(n) = ft(n) it provides the unique MMSE es-
timate ofjt(κ).

The third step is that of formulating the optimization problem
in the frequency domain, i.e.,

min
{Θ(n),N(n)}κ

n = 0

1
2

∥
∥F(0) − μF t (0)

∥
∥

2
P−1

t (0)

+
1
2

κ−1∑

n=0

‖N(n)‖2
L−1

t (n)

+
1
2

κ∑

n=0

‖E[n,Θ(n)]‖2
S−1

t (n) (45a)

subject to F(n + 1) = αtF(n) + N(n). (45b)

We will now show that the ICs of the frequency-domain prob-
lem in (45) correspond to those derived for the frame-based
time-domain problem in (44). To this end, we introduce some
suitable variable transformations in the optimization problem;
namely, the different frequency-domain variables are related to
their time-domain counterparts using different constraint matri-
ces de�ned in Table I [36], as follows:

f(n) = F−1
R (G10

M ×R )H F(n) (46)

F(n) = G10
M ×RFR f(n) (47)

j(n) = F−1
nJ

(G10
M ×nJ

)HJ(n) (48)

J(n) = G10
M ×nJ

FnJ
j(n) (49)

Θ(n) = [FT(n) JT(n)]T (50)

n(n) = F−1
R (G10

M ×R )H N(n), (51)

N(n) = G10
M ×RFRn(n). (52)

Here we have assumed thatf(n), j(n) andn(n) have lengthsR,
nJ andR, respectively, while all the frequency-domain variables
have lengthM .

In addition to the transformations (47), (49) and (52), the four
steps necessary to rewrite (45) as (44) are the following:

1) The frequency-domain and time-domain feedback path
model and process noise are related via (47) and (52);
substituting (47) and (52) in (45b) and premultiplying
with F−1

R (G10
M ×R )H leads to (44b).

2) The �rst term of (45a) can be rewritten in terms off(0)
andΠ−1

t (0) using (47) and the following relation:

(G10
M ×R )H P−1

t (0) = FRΠ−1
t (0)F−1

R (G10
M ×R )H ,

(53)

resulting in the �rst term of (44a).
3) The second term of (45a) can be rewritten in terms of

n(n) andΛ−1
t (n) using (52) and the following relation:

(G10
M ×R )H L−1

t (n) = FRΛ−1
t (n)F−1

R (G10
M ×R )H ,

(54)

resulting in the second term of (44a).
4) The third term of (45a) can be rewritten in terms of

ε[n,θ(n)] andΣ−1
t (n), using the following relations:

E[n,Θ(n)] = (G01
R ×M )HFRε[n,θ(n)] (55)

G01
R ×M S−1

t (n) = FRΣ−1
t (n)F−1

R G10RM, (56)

resulting in the third term of (44a).
Overall, the transformations (47), (49) and (52) to (56) can

be used to link the frequency-domain problem and solutions in
(45) to the frame-based time-domain problem and solutions in
(44). Thus the ICs C1 to C3 and the considerations drawn for the
frame-based time-domain problem (44) hold for the frequency-
domain problem (45), too.

V. THE PEM-BASED PARTITIONED-BLOCK FREQUENCY

DOMAIN KALMAN FILTER (PEM-PBFDKF)

Even though the use of FDAF algorithms has been shown to
be bene�cial compared to time-domain algorithms for several
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aspects, an important issue that might limit the applicability of
FDAF algorithms is the use of excessive �lter lengths. High-
order �lters, motivated by long echo or feedback paths and/or
high sampling frequencies, can lead to algorithmic noise [43].
Additionally, high-order �lters increase the algorithmic delay,
potentially making real-time solutions unfeasible. Even though
the feedback path of a HA is usually relatively short, the very low
delay requirements generally make FDAF algorithms unsuitable
for HA applications.

A way to overcome this problem involves the use of a PB
structure, i.e., the so-called partitioned-block frequency-domain
adaptive �lter (PBFDAF) [33], [37]. The PBFDAF requires the
division of the feedback path model intoP partitions of length
L ≤ R = nF , thus allowing to lower the algorithmic delay from
2nF − 1 to 2L − 1 [22]. The PBFDAF has been successfully
applied in both AEC [34], [48] and AFC [22], [49], [50]. Specif-
ically, for AFC, the PBFDAF has been combined with a PEM-
based prewhitening �lter, giving rise to the (PEM-PBFDAF)
[22], [23]. More recently, a state-space version of the PBFDAF
algorithm for AEC has been proposed [38], [43], which will be
referred to as partitioned-block frequency-domain Kalman �lter
(PBFDKF) in the following.

In this section, we propose a modi�ed version of the PBFDKF
including the same decorrelation stage employed for the FDKF
presented in Section III, by means of a PEM-based prewhiten-
ing, i.e., the PEM-PBFDKF.

We �rst de�ne the partitioned version of the time-domainM -
samples loudspeaker signal and theL-samples true feedback
path, at frameκ for blockp = 0, . . . , P − 1, as follows

up(κ) = [u(κR − pL − M + 1) . . . u(κR − pL)]T (57)

ft,p(κ) = [ft(pL, κ) . . . ft(pL + L − 1, κ)]T . (58)

The partitioned signal vectors can be de�ned in a similar
way to the non-partitioned ones, adding the speci�c block in-
dex; in the following de�nitions, we are always considering
the time frameκ for block p. The time- and frequency-domain
version of the pre�ltered loudspeaker signal can be de�ned as
follows:

uJt ,p(κ) = [uJt (κR − pL − M + 1) . . . uJt (κR − pL)]T

(59)

UJt ,p(κ) = diag {FM uJt ,p(κ)} , (60)

with the constraintM ≥ R + L − 1, to ensure proper oper-
ations [22]. The partitioned-block frequency-domain (PBFD)
representation of the true feedback path can be de�ned, simi-
larly to (18a), as follows:

Ft,p(κ) = G10
M ×LFL ft,p(κ). (61)

Finally, the time- and frequency-domain versions of the pre-
�ltered microphone signal and source signal frame can be de-
�ned as follows, withV = M − L:

yJt (κ) = [yJt (κR − V + 1) . . . yJt (κR)]T (62)

YJt (κ) = (G01
V ×M )HFV yJt (κ) (63)

e(κ) = [e(κR − V + 1) . . . e(κR)]T (64)

E(κ) = (G01
V ×M )HFV e(κ). (65)

As in the non-partitioned case, one of theM − L + 1 = V + 1
samples from the fast frequency-domain linear convolution is
dropped to simplify the notation, resulting in aV -samples length
for both yJt (κ) ande(κ) [38]. A common choice [33], [36],
[38] for the parameters isL = V = M/2, recalling that now
L = nF /P . The frame shiftR and the signal block lengthV
can be related viaR = V/γ, whereγ is the overlapping factor,
usually chosen to be an integer [33].

The resulting PB state-space model is the following:

Ft,p(κ + 1) = αtFt,p(κ) + Nt,p(κ), p = 0, . . . , P − 1

(66a)

YJt (κ) =
P −1∑

p=0

CJt ,p(κ)Ft,p(κ) + E(κ) (66b)

whereCJt ,p(κ) = G01
M ×M UJt ,p(κ) is used to linearize thepth

circular convolution between the partitionsuJt ,p(κ) andft,p(κ),
similarly to the non-partitioned case. The partitioning of the state
equation (66a) requires the de�nition ofNt,p(κ), i.e., the pro-
cess noise for thepth partition; the transition factorαt , however,
is still partition invariant [38], [43].

As for the non-partitioned case, we can apply Kalman �lter
to the model de�ned in (66) to obtain the linear MMSE estimate
of the stateFt,p(κ); a set of equations very similar to (24) can
be written as follows, for each partitionp = 0, . . . , P − 1:

Kp(κ) = Pp(κ)CH
Jt ,p

(κ)
[

CJt ,p(κ)Pp(κ)CH
Jt ,p

(κ)

+ ΨEE(κ)]−1 (67a)

F̂+
p (κ) = F̂p(κ) + Kp(κ)

[

YJt (κ) −
P −1∑

p=0

CJt ,p(κ)F̂p(κ)

]

(67b)

P+
p (κ) =

[

IM ×M − Kp(κ)CĴ,p(κ)
]

Pp(κ) (67c)

F̂p(κ + 1) = αtF̂+
p (κ) (67d)

Pp(κ + 1) = α2
t P

+
p (κ) + ΨNt Nt ,p(κ). (67e)

The simpli�ed form of (67) relies on similar approximations
as in the non-partitioned case, whereR is replaced byV ,
i.e., G01

M ×M ≈ (V/M)IM ×M and G01
M ×M Δ(G01

M ×M )H ≈
(V/M)Δ, if Δ is a diagonal matrix [38], [43]. This allows
to adapt the approximations listed in Section III accordingly,
yielding the diagonalized version of the algorithm, i.e., the PEM-
PBFDKF:

Kp(κ) = Pp(κ)UH
Ĵ,p

(κ)
[

UĴ,p(κ)Pp(κ)UH
Ĵ,p

(κ)

+ M diag{ΦÊÊ (κ)}]−1
(68a)

F̂+
p (κ) = F̂p(κ) + G10

M ×M Kp(κ)E[κ, Θ̂(κ)] (68b)
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Algorithm 1: PEM-based partitioned-block frequency-
domain Kalman �lter (PEM-PBFDKF). The PEM-FDKF
can be obtained by settingP = 1.

1: Pp(0) = σIM ×M , F̂p(κ) = ΦN̂N̂ ,p(0) =

Φ̃F̂F̂ ,p(0) = 0M × 1 , ĵ(0) =
[
1 0nJ −1 × 1

]T

2: for κ = 0, 1, 2, . . . do
3: for p = 0, . . . , P − 1 do
4: Up(κ) = diag {FM up(κ)} ,
5: end for
6: ŷ(κ) = W01

V ×M F−1
M

∑P −1
p=0 Up(κ)F̂p(κ)

7: d(κ) = y(κ) − ŷ(κ)
8: uĴ (κR − pL − i) = Ĵ(q, κ)u(κR − pL − i)

i = 0, . . . ,M − 1, p = 0, . . . , P − 1
9: yĴ (κR − i) = Ĵ(q, κ)y(κR − i),

i = 0, . . . , V − 1
10: for p = 0, . . . , P − 1 do

11: UĴ,p(κ) = diag
{

FM uĴ,p(κ)
}

,

12: end for
13: ŷĴ (κ) = W01

V ×M F−1
M

∑P −1
p=0 UĴ,p(κ)F̂p(κ)

14: ε[κ, θ̂(κ)] = yĴ (κ) − ŷĴ (κ)
15: E[κ, Θ̂(κ)] = FM (W01

V ×M )Hε[κ, θ̂(κ)]
16: ΦÊ Ê(κ) = diag{E[κ, Θ̂(κ)]ET[κ, Θ̂(κ)]}/V
17: ΦÊÊ (κ) = ΦÊ Ê(κ)

− diag{∑ P −1
p = 0 U Ĵ , p (κ)Pp (κ)UH

Ĵ , p
(κ)}

M
18: ThresholdΦÊÊ (κ) with σ̂2

ε(κ)1M × 1
19: for p = 0, . . . , P − 1 do
20: Kp(κ) = Pp(κ)UH

Ĵ,p
(κ)

[

UĴ,p(κ)Pp(κ)UH
Ĵ,p

(κ)

+ M diag{ΦÊÊ (κ)}]−1

21: F̂+
p (κ) = F̂p(κ) + G10

M ×M Kp(κ)E [κ, Θ̂(κ)]
22: F̂p(κ + 1) = αF̂+

p (κ)
23: P+

p (κ) = [IM ×M − V
M Kp(κ)UĴ,p(κ)]Pp(κ)

24: ThresholdP+
p (κ) with 0M ×M

25: Pp(κ + 1) = α2P+
p (κ) + M diag{ΦN̂N̂ ,p(κ)}

26: Φ̃F̂F̂ ,p(κ + 1) = βΦ̃F̂F̂ ,p(κ)

+ (1−β )diag{F̂p (κ)F̂H
p (κ)}

M

27: ΦN̂N̂ ,p(κ + 1) = (1 − α2)Φ̃F̂F̂ ,p(κ + 1)
28: end for
29: ĵ(κ + 1) = Levinson− Durbin ([d(κ);d(κ − 1)])
30: end for

P+
p (κ) =

[

IM ×M − V

M
Kp(κ)UĴ,p(κ)

]

Pp(κ) (68c)

F̂p(κ + 1) = αF̂+
p (κ) (68d)

Pp(κ + 1) = α2P+
p (κ) + M diag{ΦN̂N̂ ,p(κ)}. (68e)

A summary of the PEM-PBFDKF is given in (1), where the
explicit calculations ofΦÊÊ (κ) andΦN̂N̂ (κ) follow the pro-
cedures described in [35], [38], [43]; in particular,ΦN̂N̂ (κ)
is estimated using a �rst-order recursive �lter, with forget-

ting factorβ = 0.91 [38]. Additionally,1M × 1 is de�ned as an
M × 1 vector of ones.

Usually, in PBFDAF algorithms increasing the number of
partitions reduces the convergence speed [51], since this in-
crease results in smaller partitions, thus lowering the degree
of decorrelation introduced when working in the frequency do-
main. However, this behavior is not always observed in the AFC
case due to the closed-loop nature of the system. In a feedback
scenario, if the system is effectively subject to or close to in-
stability, the high power of the loudspeaker signal leads to a
faster identi�cation of the unknown feedback path and hence
increases the convergence speed [12].

Finally, as pointed out by Buchneret al. [52], [53],
PBFDAF algorithms relying on diagonal approximations re-
quire a stronger regularization than non-partitioned algorithms.
For this purpose, in our implementation we introduce an addi-
tional thresholding operation in the calculation ofP+

p (κ), since
the subtraction in (68c) may give rise to negative values in some
frequency bins with low signal-to-noise ratio (SNR).

VI. COMPUTATIONAL COMPLEXITY AND MEMORY

REQUIREMENTS

In this section, we provide a complexity analysis of the
proposed PEM-PBFDKF algorithm, in comparison with the
PEM-PBFDAF [22], the FDAF [32], as well as the time-domain
algorithms NLMS and PEM-AFROW [17], counting the num-
ber of per-output-sample real multiplications [32]. The follow-
ing assumptions are made: a real multiplication and a real divi-
sion have equal complexity; each length-M FFT/IFFT operation
has a complexity ofD = M log2(M) multiplications [32]; the
Levinsion-Durbin algorithm on a length-M signal vector has a
complexity ofn2

J + (5 + M)nJ + M multiplications. Table II
lists the per-output-sample computational complexity. The nor-
malization byR in the frequency-domain algorithms is only
included to simplify the comparison; in reality, the system im-
plementing the algorithms has a time equivalent toR samples
to carry out a whole algorithm iteration.

The complexity of the different algorithms as a function of
the pre�lter ordernJ is shown at the top of Fig. 3. The results
are obtained usingnF = L = V = R = M/2 = 80/P , P = 1
for the two non-partitioned algorithms (PEM-FDAF and PEM-
FDKF), P = {2, 4} for the two partitioned algorithms (PEM-
PBFDAF and PEM-PBFDKF), and �xing the overlapping factor
to γ = 1. A subscript is used to indicate the number of parti-
tions and overlapping factor, respectively, whenP > 1, e. g.
PEM-PBFDAF21 refers to the case withP = 2 andγ = 1.1 For
the PEM-AFROW,M andR are the window size and the hop
size used to estimate the source signal model. The grayed part
of the plots corresponds to values ofnJ between 10 and 20,
being common order values when using an AR source signal
model for speech signals [22], [23], [40]. The valuenJ = 15 is
highlighted in the plot since it is used in the simulations pre-
sented in the following section. Using these values, the number

1For the sake of simplicity, the PB entries in Table II include also the non-
partitioned algorithms, i.e., PEM-FDAF and PEM-FDKF, usingP = 1.
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TABLE II
PER-OUTPUT-SAMPLE COMPUTATIONAL COMPLEXITY AND MEMORY REQUIREMENTS OF THECOMPAREDALGORITHMS

Algorithm Computational complexity # Memory requirements #

NLMS 3R+2 322 4R+7 328

PEM-AFROW
n 2

J
+(M +3R+3)n J +(1+R )M +2R (2R+3)

R 568 5R+n H +15 430

FDAF 5D +13M
R 99 20M +R+4 3284

PEM-PBFDAF
(4P +3)D +3n 2

J
+(2M +R+7)n J +(2+17P )M +R

R 226| 307 | 457 8M +3R+n J +2(P − 1)L+19P M +4 4579 | 3899 | 3559

PEM-PBFDKF
(4P +3)D +3n 2

J
+(2M +R+7)n J +(5+25P )M +R

R 248 | 345 | 527 10M +3R+n J +2(P −1 )L+31P M +5 6820 | 5980 | 5560

A numerical value is given in both cases fornF = L = V = R = M/2 = 80/P , nJ = 15, andP = {1, 2, 4}.

Fig. 3. Per-output-sample computational complexity of the existing and pro-
posed algorithms as a function of the pre�lter ordernJ and the hop sizeR (top
and bottom, respectively).

of real multiplications for the different algorithms is also indi-
cated in Table II, showing that the FDAF is the cheapest, while
the PEM-AFROW is the most computationally expensive (even
more expensive than the PB algorithms with four partitions).
For the PEM-AFROW, a window length ofM = 160 (10 ms at
16 kHz) might be too short as common values are in the order
of 40–60 ms [17], but it was kept to simplify the comparison; by
using longer windows, the complexity of the algorithm would
be even higher.

The complexity of the different algorithms as a function of
the hop sizeR is shown at the bottom of Fig. 3. In this case,
nJ = 15 and the other parametersnF = L = V = R = M/2
vary with R. The grayed part of the plots corresponds to
values ofR yielding tolerable latency values in a HA sce-
nario [54]. As expected, one can see how the complexity of
time-domain algorithms increases far quicker than the com-
plexity of the frequency-domain algorithms, even within the
grayed part.

We conclude the section presenting a worst-case estimate of
the memory requirements for the considered algorithms (i.e.,
requiring the allocation of each variable, including temporary
ones), which is also given in Table II in terms of �oating-point
values to be allocated. UsingnF = L = V = R = M/2 =
80/P andnJ = 15, the exact number of �oating-point values
to be allocated is also given. This shows that the requirements
of frequency-domain algorithms are more than ten-fold those of
time-domain algorithms and, as expected for the PB algorithms,
the memory requirements decrease asP increases. Compared
to the PEM-PBFDAF, the PEM-PBFDKF requires roughly 50%
more memory.

VII. SIMULATIONS

In this section we provide simulation results in order to as-
sess the performance of the proposed algorithms. The algo-
rithms (proposed and baseline) are compared in terms of three
measures, assessing the estimation error, the achievable ampli-
�cation, and the sound quality.

The �rst measure is the misadjustment (Mis), de�ned as the
dB level of the normalized distance between the true and esti-
mated feedback path:

Mis(κ) = 20 log10
‖fr(κ)‖
‖ft(κ)‖ (69)

wherefr(κ) = ft(κ) − f̂(κ). Throughout the section, the vector
containing the true feedback path coef�cients will be referred
to as acoustic impulse response (AIR).

The second measure is based on the so-called maximum stable
gain (MSG), i.e., the maximum gain achievable at a given time
without compromising the system stability; if the forward path
G(q, κ) is spectrally �at, the MSG is given as:

MSG(κ) = −20 log10

[

max
l∈P(κ)

|Fr(κ, l)|
]

(70)

whereP(κ) is the set of frequencies satisfying the phase con-
dition of the Nyquist stability criterion [1], andFr(κ, l) is the
lth element ofFr(κ) = G10

M ×RFR fr(κ). The MSG is then nor-
malized according to the maximum stable gain of the system
when no feedback canceller is included, i.e.,KMSG(κ),

KMSG(κ) = −20 log10

[

max
l∈P(κ)

|F (κ, l)|
]

(71)
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