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Abstract—Adaptive filtering based feedback cancellation is
a widespread approach to acoustic feedback control. However,
traditional adaptive filtering algorithms have to be modified in
order to work satisfactorily in a closed-loop scenario. In particular,
the undesired signal correlation between the loudspeaker signal
and the source signal in a closed-loop scenario is one of the major
problems to address when using adaptive filters for feedback
cancellation. Slow convergence speed and limited tracking
capabilities are other important limitations to be considered.
Additionally, computationally expensive algorithms as well as long
delays should be avoided, for instance, in hearing aid applications,
because of power constraints, important to extend battery life,
and real-time implementations requirements, respectively. We
present an algorithm combining good decorrelation properties, by
means of the prediction-error method based signal prewhitening,
fast convergence, good tracking behavior, and low computational
complexity by means of the frequency-domain Kalman filter, and
low delay by means of a partitioned-block implementation.

Index Terms—Adaptive feedback cancellation (AFC), acous-
tic feedback control, frequency-domain adaptive filter (FDAF),
Kalman filter, prediction-error method (PEM).

I. INTRODUCTION

COUSTIC feedback control is of critical importance in
several systems dealing with acoustic signals, such as pub-
lic address (PA) systems and HAs. A lack of acoustic feedback
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Fig. 1. General AFC scenario.

control can lead to system instabilities causing annoying arti-
facts and sound degradation. Mainly in the last three decades,
several methods have been developed to cope with the problem
of acoustic feedback [1]. An important class of such meth-
ods is characterized by the use of adaptive filters and, more
specifically, by the use of the adaptive filters to model the un-
known feedback path. adaptive feedback cancellation (AFC) is
the usual name by which these methods are identified. An il-
lustration of a typical acoustic feedback scenario including an
AFC approach is shown in Fig. 1; the adaptive filter F'(q,t)
represents the estimated feedback path model which should,
ideally, perfectly match the true feedback path Fi (g, t), in order
to reduce the feedback artifact. F'(q, t) and F} (g, t) are assumed
linear and possibly time-varying and will be further defined in
Section II. Here, ¢ is the discrete time index and (f1 is the de-
lay operator, i.e., ¢ *u(t) = u(t — k), which allows a compact
definition of the different TFs and will be used throughout the
paper. The nature of the problem can be seen by noticing that
the microphone signal y(t) is not only composed of the source
signal v(t), i.e., the desired signal to be amplified and sent to
the loudspeaker, but also of the undesired interference z(t),
originating from the presence of the acoustic feedback, i.e.,
y(t) = x(t) + v(t). A similar situation also characterizes the
standard acoustic echo scenario; what differentiates the acous-
tic feedback scenario from the acoustic echo scenario is the
presence of the forward path transfer function G(g, t), turning
the system into a closed-loop system, and introducing a signal
correlation between the loudspeaker signal u(t) and the source
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signal v(t). This correlation makes the estimation of the feed-
back path more problematic than in the acoustic echo scenario
and, as a consequence, employing a standard adaptive filtering
algorithm, e. g. the normalized least mean squares (NLMS),
returns a biased estimate of F; (g, t) [2], [3], thus limiting the
cancellation properties of F (g, t). Additionally, system insta-
bilities can be induced by the closed-loop, leading to a series
of acoustic artifacts such as howling. In order to reduce these
problems and obtain a reliable estimate, a procedure for decor-
relating v(t) and u(¢) should be included.

Different approaches have been proposed in the literature to
reduce the signal correlation in the acoustic feedback scenario,
and thus produce better estimates of the feedback path trans-
fer function (TF), such as the introduction of an external probe
noise [4], [5], modifications of the forward path TF by means
of nonlinear processing [6], [7], time-varying processing [6],
[8] and added delays [9], two-microphones strategies [10], and,
more recently, the use of a prewhitening filter used for decor-
relation [11]-[15]. The latter approach relies on the use of an
appropriate model for the disturbance of the identification pro-
cedure which, in the AFC context, is represented by the source
signal v(t).

The prewhitening filter-based AFC has been shown to be
advantageous since it provides limited perceptual distortions,
unlike the other aforementioned approaches [1], [16]. However,
the need for a source signal model introduces a new challenge
from the identification point of view, since the unknown source
signal v(t) is usually a nonstationary speech or audio signal.
Nonstationarity implies that the source signal model for v(t)
must be concurrently estimated alongside the estimation of the
feedback path model. Therefore, the identifiability conditionss
(ICs) of the system, which now counts two models to be identi-
fied, are inevitably changed [3], [17].

The application of the prediction-error method (PEM) to
prewhitening filter-based AFC has been widely studied [3],
[17]-[21], resulting in several different algorithms, e. g. the
PEM-based adaptive filtering with row operations (PEM-
AFROW), as well as interesting results regarding model iden-
tifiability. In the time-invariant case, with a true source signal
generation system H;(q) defined by an autoregressive (AR)
process with a white noise excitation signal e(t), see Fig. 2,
Spriet et al. [3] have proved that identifiability can be achieved
if sufficient delay is included in the forward path or in the feed-
back cancellation path, as well as if a time-varying or nonlinear
processing forward path TF is considered. This identifiability
analysis has subsequently been extended to a wider range of
source signal models [17].

The AFC has been also formulated in the frequency do-
main, i.e., as a frequency-domain adaptive filter (FDAF), and
combined with a time-domain prewhitening filter, i.e., the PEM-
based frequency-domain adaptive filter (PEM-FDAF) [19], [22].
More recently, a PEM-based prewhitening filter has been used
in combination with a frequency-domain Kalman filter (FDKF)
applied to a state-space structure, leading to the so-called PEM-
based frequency-domain Kalman filter (PEM-FDKF) [18], to
achieve better convergence and tracking properties compared to
the PEM-FDAF [22], [23]. An advantage of the PEM-FDKF
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Fig. 2. Complete AFC algorithm with prediction-error method (PEM) stage.

is the inherent optimal choice of the step-size parameter [24]
which usually needs to be fixed as design parameter of the
PEM-FDAF algorithm or adaptively estimated using variable
step-size algorithms [14], [23], [25].

In this paper, we provide the complete derivation of the
PEM-FDKF algorithm, which was not included in [18], to-
gether with a complexity analysis and a study of the ICs for
the closed-loop identification. Additionally, we propose an ex-
tension of the PEM-FDKF by means of a partitioned-block
(PB) frequency-domain implementation, referred to as the PEM-
based partitioned-block frequency-domain Kalman filter (PEM-
PBFDKEF), allowing to reduce the algorithmic delay, as needed
in, e. g., hearing aid (HA) applications. The paper is organized as
follows. In Section II, we review the PEM for direct closed-loop
system identification. In Section III, we introduce the PEM-
FDKEF, providing a complete derivation of the algorithm. In
Section IV, we study the ICs, allowing to obtain a unique and
unbiased model estimate for both the feedback path and the
source signal generation system. In Section V, we present the
extension of the PEM-FDKF relying on partitioned-block (PB)
processing, the PEM-PBFDKEF. In Section VI, we provide a
computational complexity and memory requirements compar-
ison of the proposed algorithms. In Section VII, we illustrate
the performance of the proposed algorithms in terms of con-
vergence speed, added stability and sound quality by means
of simulation results. Finally, the conclusions are drawn in
Section VIIIL.

II. PREDICTION ERROR METHOD IDENTIFICATION

The PEM is widely used in direct closed-loop system identi-
fication [2], [3]. For the case illustrated in Fig. 2, the PEM can
be used to provide a direct closed-loop identification [2], [26] of
both the true feedback path F; (¢, ) and the true source signal
generation system H;(q,t). Throughout the paper, we use the
following notation system: a symbol with the subscript  refers
to the true system, a regular symbol refers to the model, and a
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symbol with a hat refers to the model estimate; e. g., Fi (g, t) is
the true feedback path, F'(q, t) is the feedback path model, and
F(q,t) is the feedback path model estimate.

Assuming F'(q,t) and H(g,t) to be parametric difference
equation models, and defining a new model J(q,t) satisfying
the equation J(q,t)H (q,t) = 1 for later use, we introduce the

parameter vectors 0(t), £(¢), and j(¢):

o(t)=[f"(t) j )" (1
£(t) = [fo(t) fi(t) Faea (@] )
&) =1 a) Gy 1 (0] 3)

where ng = np + ny. Assuming the true system is contained
in the model set [26], the true system can be described using the
true values of f(t), i.e., i (¢), as

E(Qat) = F(q’t)’f(t):ft(t)

= fio®)+ fia()g + .o finy ()
(4b)

(4a)

and thus

y(t) = Fi(g, t)u(t) + Hi (g, t)e(t). Q)

Similarly to (4), the true value of j(t), i.e., j; (), can be used to
write J; (q,t) = J(q,t) |j<t>:jt(t), with Ji (¢, t)Hi (g, t) = 1.

We can now define the prediction error (PE) using the one-
step ahead predictor for y(¢), g[t|f(t),j(t)], as

elt, 0(t)] = y(t) — y[t|6(t)]
= J(q,t) [y(t) — F(q,t)u(t)],

and find the true values of the parameter vectors f(¢) and j(¢),
by minimizing the variance of the PE

E{e’[t,0(t)]}, ©)

(6a)
(6b)

min
o(t)

where E{-} denotes statistical expectation and the measured
e[t,0(t)] is considered to be a realization of the PE, deriving
from a realization of the white noise excitation e(t), being the
only random variable in this scenario.

The ICs, i.e., the conditions that allow to uniquely estimate
Fi(q,t) and J; (g, 1), have been derived in literature [3] by con-
verting the nonlinear PEM cost function (7) into a linear cost
function, by means of the transformation:

Alg,t) = J(q,1) ®)
B(g,t) = —J(q,t)F(q,1) )

with A(q,t) and B(q, t) parameterized by

£t)=1[a"(@t) b (10)

a(t) =[1 a(t) an, (0] (1)

b(t) = [bo(t) bi(t) by (1)) (12)
allowing to rewrite (6b) as

elt, &(t)] = Alq, t)y(t) + B(g, t)u(t). (13)
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and (7) as the constrained optimization problem

min E{*[t, (1))} (14a)
t
subject to A(g,t) is a divisor of B(q,t), (14b)

where the constraint follows from (8) and (9). The first tap
parameter of A(q,t) is always set to 1, i.e., A(g,t) =1+
q¢ ' A(q,t), in order to avoid the trivial solution A(g,t) =
B(q,t) =0 in (14). The PE definition in (13) is used in the
first part of Section IV, where we provide the ICs for the opti-
mization problem leading to the proposed PEM-FDKEF. Unlike
in the derivation in [3], here A(q,t) and B(q,t) are considered
to be time-varying quantities. Later in Section IV, we use again
the PE definition in (6b) from the derivation [it will also be clear
that the constraint (14b) may be removed] as the solution of
(14a) alone satisfies the constraint (14b) and hence the solution
of (14a) is also equal to the solution of (7).

In the next section, describing the algorithmic derivation of
the PEM-FDKF, we also use (6b) to describe ¢[t, 6(t)]. Fol-
lowing the PEM, the optimization in (7), w.r.t. £(¢) and j(¢),
is carried out in an alternating fashion [21], i.e., estimating, at
each iteration, in a first step the coefficients of J(q, ) with fixed
estimates for F'(¢,t) and in a second step the coefficients of
F(q,t) with fixed estimates for .J(q, t).

III. THE PEM-BASED FREQUENCY DoOMAIN KALMAN FILTER
(PEM-FDKF)

The PEM-FDKF algorithm [18] is an extension of the
algorithm proposed by Enzner and Vary [24] for acoustic echo
cancellation (AEC). It relies on a dynamical model for the feed-
back path and a model for the recorded microphone signal to
define a state-space representation to which the Kalman filter
procedure can be applied. The simple frequency-domain dy-
namical model chosen for the feedback path employs a first-
order Markov model as an abstraction of the true feedback path
dynamics. Similar models have also been proposed in the time-
domain [27]-[29]; however, the use of a block-wise procedure
has an impact on the calculation of the model time constant. The
main change introduced to the algorithm by Enzner and Vary
consists of the decorrelation stage, by means of a PEM-based
prewhitening filter already seen in the PEM-FDAF [23], [30],
[31]. In this way, the frequency-domain Kalman filter (FDKF)
framework can be successfully applied to AFC, leading to the
PEM-FDKF.

The two main advantages of a frequency-domain approach
are the lower computational complexity and the good decorre-
lation properties of the discrete Fourier transform (DFT) [19],
[32], [33]. In HA applications, where short filters are usually em-
ployed, the computational complexity advantage is smaller than
in PA applications, but it can be still relevant, as we will show
in Section VI, especially if the DFT calculations are shared by
other processing stages of the HA. In addition to these two ad-
vantages, the formulation of the problem based on a state-space
representation allows to optimally estimate the FDAF stepsize
as part of the Kalman filter procedure [24], [34], leading to a
significantly improved convergence [18].
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It should be emphasized that this approach employs the im-
plicit assumption that Fi(q,t) and H;(q,t) are slowly time-
varying [with F} (g, t) varying more slowly than H; (g, t)], since
these are modeled by F'(q, ) and H(q, k), where x € Z is the
time frame index, which hence can only vary at the frame rate
[24], [35]. Therefore, we will assume time invariance of Fi (g, t)
and H;(q,t) over each frame, i.e., effectively over each frame
shift of R samples, and use the notation F}(q, x) and H;(q, k).
Similarly, J; (g, k) is defined such that .J; (¢, k) H; (¢, k) = 1.

The discrete frequency index [ will be used, together with
the frame index x, to describe the time-frequency components
of the different variables. The first introduced variable is the
M -samples loudspeaker signal for frame &,

u(r) = [u(kR — M +1) u(kR)" (15)
where R denotes the frame shift.

Assuming the true value J;(¢, x) to be available, the pre-
filtered version of the loudspeaker signal for frame & is

uy, (k) = J(q, k)u(rR)]"
= [ug, (kR — M +1) uy, (kR)]" (16)

[Ji(g,k)u(kR— M +1) ...

The frequency-domain version of the prefiltered loudspeaker
signal is then given in matrix form as

Uj, (k) = diag {Fyuy, (k) }, 17

where F',; is the unitary DFT matrix of size M x M, ie.,
F,/ = FI., and the diag{-} operator either maps an M x 1
vector to the diagonal of an M x M diagonal matrix, or maps
an M x M matrix to the M x 1 vector given by its diagonal.
The dimension parameters R and M should be chosen prop-
erly, taking into consideration the length of the true feedback
path or an estimate thereof. A common choice is R = n (as-
suming nz = nr) and M = 2R [23], [32]; if the algorithmic
delay, equal to 2R — 1, is not acceptable, a PB solution (also
known as multidelay filter) [22], [33], [37] can be chosen, see
Section V.

With R = n, the frequency-domain version of the true feed-
back path parameter vector f; (k) is

F(rk) = G}} , g Frfi(x)
=Fy WY} « pfi (k).

(18a)
(18b)

The rectangular matrices G1? , , and WY} _ ,, are used to ob-
tain the M X 1 frequency-domain version of the R x 1 vector
f; (k). The smaller of the two matrix dimensions R always indi-
cates the dimension of the identity matrix I . p appearing in the
matrix definitions. The simplified definitions of these matrices,
considering the standard case M = 2R, are shown in Table I
along with the other matrices needed to compactly describe
the algorithm in the frequency-domain as defined by Benesty
et al. [36]. Despite the two classes of definitions for frequency-
domain quantities, e. g. using (18a) or (18b), we will only use
the class of definitions including the linearization matrices G,
in the rest of the paper.

1787

Finally, we introduce the R-samples prefiltered microphone
signal and the source excitation signal for frame &, i.e.,

v, (k) = [J(@. ®)y(kR = R+1) ... Ji(q. ®)y(rR)]"
=l (RR=R+1) ...y (sR)]' (19)
e(k) = [e(kR— R+1) e(kR)]" (20)
and their frequency-domain versions:
Y3, (5) = (G a) " Fryy. () 21
E(r) = (GRx )" Fre(x). (22)

The quantities introduced so far can be combined into a state-
space representation using the frequency-domain Markov model
for the feedback path F (k) as a state equation and the linear
model for the frequency-domain prefiltered microphone signal
Y, (k) as a measurement equation:

Fi(k+1) = &F (k) + Ny (k)
Y; (k) = Cy, (k)Fi (k) + E(k)

where Cj, (k) = GY} . ;, Uy, (k) includes the linear transfor-
mation to be applied to Uy, (k) to linearize the circular con-
volution between uy, (k) and f;(k), cf. Table I, N¢(x) is the
process noise describing the unpredictability of the feedback
path dynamics and « is the transition factor accounting for
the time-variability of the feedback path [24]. The total num-
ber of linear convolution samples resulting from the circular
convolution, given the chosen signal dimension parameters, is
M — R+ 1= R+ 1[32]. However, we retain only R samples
to match the frame shift and simplify the notation, as commonly
done in the literature [24], [32], [36], [38].

Assuming J; (¢, ) is indeed available, the use of prefiltered
variables in (23b) guarantees the decorrelation between the
prefiltered loudspeaker signal uy, (k) and the source excita-
tion signal e(k) in the measurement equation, thus achieving
the necessary requirements to employ a Kalman filter for the
estimation of F(x). The linear minimum mean-square error
(MMSE) estimate of the state vector F (k) corresponds to the
solution of a Bayesian optimization problem [39, ch. 13], and
is given by the well-known set of equations referred to as the
(block) Kalman filter:

K(x) = P(k)C}. () [Cy, (k)P (w)CY. () + Wy (k)]

(23a)
(23b)

(24a)

F* (k) = F(r) + K(r)[Yy, (k) = Cy (5)F(r)]  (24b)

P (k) = [La «nr — K(5)Cy, (1) P(r) (240)
(l<; +1)=q - (I{) (244)
(K;-i-l)—at (k) + On, N, (K), (24e)

where K (k) is the frequency-domain Kalman gain, the super-
script T indicates a posteriori estimates and, finally, $gg (k)
and Wy, n, (k) are the covariance matrices of E(x) and N (k)
[24], [35], respectively, assumed to be known.

For implementation purposes, we drop some of the assump-
tions initially made for the state space model, similarly to what
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TABLE I
DEFINITIONS OF THE CONSTRAINT AND LINEARIZATION MATRICES USED IN THE PAPER, AS DEFINED IN BENESTY et al. [36]

Constraint rectangular matrix Constraint square matrix

Linearization rectangular matrix Linearization square matrix

0 0
WOl _ Wwol _ |Orxr Orxr
RxM*[ORxR IRxR} MxM — {URzR IR:R:|
I I 0
WOl _ R xR WOl _ R xR R xR
Mxl{,_|:0RxR:| M><M_|:[)RX]? ORXR]

G0l _p.wWO0 pl Gl cn = (G )TGE
RxM = FRWRxMT M 01 1
=FuWy  uFuy

Gl _p,owWo p-l Gl war =Gl (Gi7 )"
MxR — “MYMxRTR _ 01 1
=FuWi uFuy

is done in the PEM-FDAF in order to carry out the optimization
in an alternating fashion [22]:

1) The prefiltering operation is performed by means of the
estimated .J (q, k), instead of the true J; (g, ); therefore,
the prefiltered variables will be, from now on, indicated
using the subscript j, instead of j, . Following a common
assumption found in literature [22], [40], [41], the sys-
tem H, (g, k) generating the source signal v(¢) is assumed
to be time-varying, monic, inversely stable, and AR. The
Ji(q, k) is then estimated as the linear prediction filter
for the time-domain error signal frame, i.e., d[x|f(x)] =

dlkR — R+ 1f(x)] ... d[ann)ﬂ " at the current
and the previous frame, ie., [d[x|f(x)] dT[x —
1/f(x — 1)]]", using the Levinson-Durbin algorithm [42,
pp. 254-264] and represented by j().
The use of estimated prewhitening filter parameters moti-
vates the replacement of [Y5, (k) — Cj, (k)F(x)] in (24b)
by the frequency-domain PE frame & [, © (k)], related to
the time-domain PE frame e[, 6(x)] via

2)

el 0(s)] = [¢lR — R+ 1.0(x)] ... elsR.O(w)]]
25)
Elr, O(r)] = (G ar)"Frels, O(r)] (26)

with @(H) containing the frequency-domain versions of
f (k) and j(/-i) [cf. (46) to (50)]. Furthermore, we add
the linearization constraint G1? _,, (cf. Table I) in (24b)
[cf. (31b)], similarly to what is done in the FDAF, given
the improved sound quality provided by a constrained
FDAF version [32]. Naturally, such a constraint causes a
computational complexity increase.

Additionally, we use the approximations introduced by
Enzner and Vary [24], in order to address both the problem of
high computational complexity and the possible ill-posedness
of the solution, via diagonal operations, as follows:

1) The linearization square matrix G} ., ,, in the definition
of C; (k) is approximated by a diagonal matrix, allowing
to write G31  ,, ~ (R/M)I, « s and, less intuitively,
Gyl AGY ) = (R/M)A, if A is a diagonal
matrix [36, ch. 8].

The covariance matrices Wgp(x) and ¥y, x, (k) are
replaced by the estimates W (k) and W (x), respec-
tively, which are assumed to be diagonal [24]. These
are related to the corresponding time-varying power
spectral densities ®p (k) and Py (k), adaptively

2)

estimated using the procedures described in [35], [38],
[43], assuming that the feedback path is slowly time
varying.

3) Given the assumed low correlation between different fre-
quency components of the estimation error [24], the ma-
trix P(k) is a nearly diagonal matrix; the diagonalilty is
enforced by initalizing P(0) o I/ « ar-

The last three approximations are used to write the following

simplified expressions:

Cj(k)P(r)CY (k) ~ % - Uj(k)P(r)UY (k) (28)
Uy (k) ~ R - diag{®gp(r)} (29)
Ui (k) = M - diag{®yx (x)}- (30)

With the approximations discussed so far, the complete set of
equations describing the PEM-FDKF update is as follows:

K(x) = P(r)UY (k) [Uj(x)P(x) U} (x)
+ M - diag{®g5 (x)}] (31a)
F (k) = F(r) + G} ., K(r)E[r, O(r)] (31b)
P* () = Lo — o K®U; ()| P(s)  Glo)
F(k+1)=a- F (k) (31d)
P(k+1)=a® P (k) + M - diag{®g(k)}. (le)

IV. PEM-FDKF IDENTIFIABILITY CONDITIONS

The ICs for the optimization problem solved by the PEM-
FDKEF will be derived in three steps, as follows.

The first step, providing ICs for (7) and (14), is similar to
the derivation in [3], but now introducing time variability in the
signal models. The following expressions for y(t) and u(¢) hold
(cf. Fig. 2):

y(t) = Fi(g, t)u(t) + v(t)

Gla) [y(®) = Fla.tpu(t)] .

(32)

u(t) = (33)

where G(q) = ¢~ G(q) and dg > 1, i.e., the forward path has
to have at least a one-sample delay to avoid a delay-less loop.
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Using (32) and (33), the PE in (13) can be rewritten as
elt,€()] = A(g, t)v(t) + [A(g,t) Fi (g, 1) + B(g, )] x u(?)
= A(q,t)v(t) + [A(g, 1) Fi(q,t) + B(gq,1)]

x ¢ " G(q) |y(t) — Flg,)u(t)] .

The PE ¢[t, £()] can be expressed as a function of v(¢) only,
by using (32) and (33) repeatedly, in (34), i.e.,

elt. £(t)] = Alg, t)v(t) + Z(q.)G()v(t — dc:)

qu Z f[ (q,t - ZdG)‘|

(=2 =1

(34)

v(t —ldg) (35)

where
Fi(g,t) = Fi(q,t) — F(g,t) (36)
Z(q,t) = Alq, t)Fi(q,t) + B(g,1). (37)

As is done for the time-invariant case in [3], we consider the
sufficient order condition for A(q,t) and B(q,t),i.e.,nqa > ny
and np > ny +np — 1, and the causality of G(q), Fi(q,t),
Ji(q,t) and F(q,t) and study the conditions under which the
minimization in (14a) leads to the unique solution

A(Qa t) = J‘r (Qat)
B(qa t) = 7Jt(q’t)ﬁ‘t(qat)

This solution satisfies (14b), hence making this constraint indeed
redundant.

The unique desired solution can be derived if at least one of
the following conditions, similar to the conditions found in the
time-invariant case [3], is fulfilled:

C1: The forward path delay d¢ satisfies dg > ny;

C2: The cancellation path delay dp, where B(q,t) =

q¢ %" B(q,t) and hence F,(q,t) = ¢~ Fi(q,t), satis-
fiesdg +dp > na;

C3: The TF G(q) is nonlinear.

The proofs resemble those in [3], with the difference that
the assumed time variability of the signal models does not al-
low to compactly rewrite (35). Specifically, the first condition,
C1, turns the minimization in (14) into a linear prediction of
v(t),i.e., A(q,t) = Ji(g,t), given that ay (t) = 1. Additionally,
since ny > ny, the equation Z(q,t) = 0 must hold, leading
to B(q,t) = —Ji(q,t)Fi(q,t). The second condition, C2, can
be proved similarly, by including B(q,t) = ¢~ B(q,t), and
hence F;(q,t) = ¢~ F,(q,t), in (35), i.e.,

elt, &(t)] = Alq. t)v(t) + ¢ ¢~ [A(q,t)Fi (g, t) + B(gq, )]

% Gla) [y(t) — F(a.t)u(t)]

If dg 4+ dr > ng4, the unique solution of (40) is given by (38)
and (39). The last condition, C3, can be understood considering
that a nonlinear G(q) introduces additional decorrelation be-
tween the first and the other terms in (35), thus decoupling these
terms in the minimization of (7). Such decoupled minimization

(38)
(39)

(40)
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yields, again, the values of A(q,t) and B(q, t) in (38) and (39).
Following these results, which hold for any time-varying be-
havior of J; (g, t) and Fi(q,t) fulfilling the initial assumptions
as well as the ICs, we can go back to the simplified notation
of the unconstrained optimization problem in (7), parameter-
ized in 6(t). Under the same ICs, the minimization in (7) then
leads to the solution J(q,t) = Ji(q,t) and F(q,t) = Fi(q,t)
[the equivalent of (38) and (39)].

The second step describes the transition from the current op-
timization problem (7) to a new optimization problem including
the specific model (23), for which then the Kalman filter (alter-
nating with the Levinson-Durbin algorithm) is seen to provide a
suitable algorithm, and derive the ICs for this new optimization
problem. We start by expressing (7) as a length-R frame-based
expression, through the frame index . Assuming time invari-
ance of Fy(q,t) and H;(q,t) over each frame, the sample-based
estimation of the parameter vector 0(t) is replaced by the frame-
based estimation of the parameter vector 8 (), found by solving
at each k

: 2

min - E{lels, 6(x)]llc- ()}, (1)
=VziWz = ||W1/2zH2 is the weighted norm
of z induced by the positive definite matrix W, and ¢ ' (k) =
¢ Y(k)IR « g Will be used to compensate for power variations
in the excitation signal e(k). €[k, 0(x)] is the length-R PE
frame obtained from (6b) assuming the parameter vector 0(x)
isconstantint = kR — R+ 1,...,xR. Under the same time-
invariance assumption, it has been pointed out in [32] that
minimizing the frame-based cost function vs. the sample-based
cost function leads to the same mean-square error performance;
therefore, the same ICs hold for the (41) and (7).

We now assume a frame-based state-space model for the
true system using a simple Markov model to describe the state
(i.e., the true feedback path) dynamics [12], and the linear model
for the time-domain prefiltered microphone signal frame y, (¢)
as the measurement equation:

fi(k+1) = aufi(k) + ni(k) (42a)
i, (k) = Fi(g, k)uy, (k) + e(k), (42b)

cf. (16), (19) and (20), and we describe the random vari-
ables of (42) as n¢(k) ~ N(0,A¢(k)), e(k) ~ N(0,%;(k))
and £ (0) ~ N (pg, (o), T (0)), where N (-,-) indicates a nor-
mal distribution with specified mean and covariance.

The Kalman filter corresponding to the state-space model (42)
effectively solves the optimization problem [44]-[46]

where ||z||y

1
5 |£(0) — g4, (o) H;;I(O)

min
{t(n),n(n)};_,
+5 Z In(n)l3, ¢
n=0
1 K
5D el 0I5 ) @3a)
n=0
subject to f(n+1) = af(n) + n(n). (43b)
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This formulation combines the different optimization prob-
lems in (41) for successive frames n = 0, ...,k into a single
optimization framework, with the constraint (43b) defining the
time evolution of f(n), and three terms characterizing the cost
function:

1) A regularization term depending on f(0) and on the ma-

. T .
trix IL; (0) = E{[£(0) — uft(o)} [£(0) — /J,ft(n)] }, with
M, (o) an initial guess of the initial state £(0);

2) A term depending on the unknown state noise process
n(n), with n(n) being a new variable to optimize, and on
Ai(n) = E{n(n)n(n)" };

3) A term depending on the PE e[n, 0(n)], similar to the
term in (41), where the expectation on the single frame is
replaced by a summation over the different frames, and
¢t (k) in (41) is replaced by the matrix 3 (n) [44], [47].

With (43) effectively f(n) is estimated under the assumption
that j(n) is known [as j(n) is included in 6(n) in the third
term of (43a)]. If j(n) = ji(n), then the Kalman filter (subject
to technical full-rank conditions) provides the unique MMSE
estimate of fi(x), which itself (subject to the above ICs) is
included in the unique minimizer of the third term of (43a) with
the expectation reintroduced.

When the Kalman Filter operations [to estimate f(n)] are al-
ternated with the Levinson-Durbin algorithm [to estimate j(n)],
as in Section III, the optimization problem that is effectively
solved is
1
> l£0)

. 2
oy #5,0) 111 o)

+5 Z ()3

1 K
+ 50 el 05, “4a)
n=0
subject to f(n+1) = atf(n) + n(n). (44b)

The alternation minimization then provides a (possibly sub-
optimal) estimate of 8, () = [ () jT (x)]T, which itself (sub-
ject to the above ICs) is included in the unique minimizer of
the third term of (44a) with the expectation reintroduced. If
the Kalman filter is applied with j(n) = j;(n), then (subject to
technical full-rank conditions) it provides the unique MMSE
estimate of f;(x). Similarly, if the Levinson-Durbin algorithm
is applied with f(n) = f;(n) it provides the unique MMSE es-
timate of ji (k).

The third step is that of formulating the optimization problem
in the frequency domain, i.e.,

min

1
— |F(0
{©(n),N(n)}:_, 2 || ( )

2
- I"’FL(O)HPfl(O)

+ = Z N3

n=0

+Z Zug

n=0
F(n+1) = vF(n) + N(n).

Hs (452)

subject to (45b)
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We will now show that the ICs of the frequency-domain prob-
lem in (45) correspond to those derived for the frame-based
time-domain problem in (44). To this end, we introduce some
suitable variable transformations in the optimization problem;
namely, the different frequency-domain variables are related to
their time-domain counterparts using different constraint matri-
ces defined in Table I [36], as follows:

f(n) = F (Gi] « )" F(n) (46)
F(n) = Gjy . nFrf(n) 47)
i) =F, 1 (Gjf ., )" I (n) (48)
J(n) = G} «, Fu,i(n) (49)
©(n) = [F'(n) J'(n)" (50)
n(n) = Fz' (G} . z)" N(n), (51)
N(n) = Gjj , pRFrn(n). (52)

Here we have assumed that f(n), j(n) and n(n) have lengths R,
n and R, respectively, while all the frequency-domain variables
have length M.

In addition to the transformations (47), (49) and (52), the four

steps necessary to rewrite (45) as (44) are the following:

1) The frequency-domain and time-domain feedback path
model and process noise are related via (47) and (52);
substituting (47) and (52) in (45b) and premultiplying
with F,' (GY) | z)! leads to (44b).

2) The first term of (45a) can be rewritten in terms of £(0)
and TI; ! (0) using (47) and the following relation:

(G .« )" PUH0) = FRITTH(0)FL(GhY L p)"
(53)

resulting in the first term of (44a).
3) The second term of (45a) can be rewritten in terms of
n(n) and A; ' (n) using (52) and the following relation:

(Gi .« )" L' (n) = FrAT (n)FR (G, )"
(54

resulting in the second term of (44a).
4) The third term of (45a) can be rewritten in terms of
e[n,0(n)] and ;! (n), using the following relations:
E[n,O(n)] = (G 11)"Freln, 0(n)] (55)
G .S (n) = FrE( (n)FR G RM,
resulting in the third term of (44a).

Overall, the transformations (47), (49) and (52) to (56) can
be used to link the frequency-domain problem and solutions in
(45) to the frame-based time-domain problem and solutions in
(44). Thus the ICs C1 to C3 and the considerations drawn for the

frame-based time-domain problem (44) hold for the frequency-
domain problem (45), too.

(56)

V. THE PEM-BASED PARTITIONED-BLOCK FREQUENCY
DoMAIN KALMAN FILTER (PEM-PBFDKF)

Even though the use of FDAF algorithms has been shown to
be beneficial compared to time-domain algorithms for several
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aspects, an important issue that might limit the applicability of
FDAF algorithms is the use of excessive filter lengths. High-
order filters, motivated by long echo or feedback paths and/or
high sampling frequencies, can lead to algorithmic noise [43].
Additionally, high-order filters increase the algorithmic delay,
potentially making real-time solutions unfeasible. Even though
the feedback path of a HA is usually relatively short, the very low
delay requirements generally make FDAF algorithms unsuitable
for HA applications.

A way to overcome this problem involves the use of a PB
structure, i.e., the so-called partitioned-block frequency-domain
adaptive filter (PBFDAF) [33], [37]. The PBFDAF requires the
division of the feedback path model into P partitions of length
L < R = np, thus allowing to lower the algorithmic delay from
2np — 1 to 2L — 1 [22]. The PBFDAF has been successfully
applied in both AEC [34], [48] and AFC [22], [49], [50]. Specif-
ically, for AFC, the PBFDAF has been combined with a PEM-
based prewhitening filter, giving rise to the (PEM-PBFDAF)
[22], [23]. More recently, a state-space version of the PBFDAF
algorithm for AEC has been proposed [38], [43], which will be
referred to as partitioned-block frequency-domain Kalman filter
(PBFDKEF) in the following.

In this section, we propose a modified version of the PBFDKF
including the same decorrelation stage employed for the FDKF
presented in Section III, by means of a PEM-based prewhiten-
ing, i.e., the PEM-PBFDKEF.

We first define the partitioned version of the time-domain M -
samples loudspeaker signal and the L-samples true feedback
path, at frame « for block p =0, ..., P — 1, as follows

u, (k) = [w(kR—pL — M +1) u(kR —pL)]" (57)

fip (k) = [f(pL, k) fipL+L-1,5)]".

The partitioned signal vectors can be defined in a similar
way to the non-partitioned ones, adding the specific block in-
dex; in the following definitions, we are always considering
the time frame & for block p. The time- and frequency-domain
version of the prefiltered loudspeaker signal can be defined as
follows:

(58)

ug, (%) = [ug, (kR — pL — M +1) uy, (kR — pL)]"
(59)
UJL:P(K/) = dlag {F]U th N (K‘)} ) (60)

with the constraint M > R+ L — 1, to ensure proper oper-
ations [22]. The partitioned-block frequency-domain (PBFD)
representation of the true feedback path can be defined, simi-
larly to (18a), as follows:

Fi, (k) = Gif « [ FLf (k).

Finally, the time- and frequency-domain versions of the pre-
filtered microphone signal and source signal frame can be de-
fined as follows, with V' = M — L:

yi. (8) =y, (kR=V +1)
Y, (k) = (GY 2) " Frys, (k)

(61)

yy, (kR)]" (62)

(63)
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e(k)=[e(kR—-V +1) e(kR)]"

E(r) = (GV'. )" Fre(r).

(64)
(65)

As in the non-partitioned case, one of the M — L+ 1=V + 1
samples from the fast frequency-domain linear convolution is
dropped to simplify the notation, resulting in a V'-samples length
for both yj, (k) and e(x) [38]. A common choice [33], [36],
[38] for the parameters is L = V = M /2, recalling that now
L = np/P. The frame shift R and the signal block length V'
can be related via R = V//~, where 7 is the overlapping factor,
usually chosen to be an integer [33].
The resulting PB state-space model is the following:

F,,(k+1)=aF, (k) + N¢,(k), p=0,...,P—1
(66a)
P-1
Y, (k) = Cj, »(K)Fy ,(k) + E(k) (66b)

p=0

where Cy, ,(k) = G4}, 1, Uj, , (k) is used to linearize the pth
circular convolution between the partitions uy, ,, (x) and f; , (x),
similarly to the non-partitioned case. The partitioning of the state
equation (66a) requires the definition of N ,,(k), i.e., the pro-
cess noise for the pth partition; the transition factor o, however,
is still partition invariant [38], [43].

As for the non-partitioned case, we can apply Kalman filter
to the model defined in (66) to obtain the linear MMSE estimate
of the state F; ,(k); a set of equations very similar to (24) can
be written as follows, for each partitionp =0,..., P — 1:

K, (r) = P,(k)C} (k) [Cy, ,(5)P, (r)C. , (k)

+ e (k) (67a)

~ A~

P-1
Fj (k) =F,(r) + Kp(’“)[Y-L (K) = D Cip(R)Fy (%)
p=0

(67b)

Py (r) = [Luar — K, (0)Cy, (0| Pyk)  (670)
Fy(k+1) = o F) (k) (67d)
P, (ki + 1) = afP; (k) + ¥x,x, p (k) (67¢)

The simplified form of (67) relies on similar approximations
as in the non-partitioned case, where R is replaced by V,
ie. Gij = (V/M)Ly s and GYj o A(GY] )" ~
(V/M)A, if A is a diagonal matrix [38], [43]. This allows
to adapt the approximations listed in Section III accordingly,
yielding the diagonalized version of the algorithm, i.e., the PEM-
PBFDKF:

K, (k) = Py (x)UY (k) [U; ,(5)P, ())UY ()
+ M diag{®;;(x)}] " (68a)
F) (k) =F,(r) + G} , K, (k) €[k, O ()] (68b)
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Algorithm 1: PEM-based partitioned-block frequency-
domain Kalman filter (PEM-PBFDKF). The PEM-FDKF
can be obtained by setting P = 1.

1 Py (0) = Ly o Fy() = oy (0) =
i)1-:51:_“[)(0) = 01\[ X l,j(o) - [1 On,] “1x1 ]T

2: fork=0,1,2,...do
3: forp=20,...,P—1do
4: U, (k) = diag {Fpu,(x)},
S: end for .
. - 1
6: y(r) = Wit MAFA; 2 p=0 Up(r )E, (k)
7 ds) = y(5) - 5 (x)
8: uj(kR — pL — i) = J(q,k)u(kR — pL — 1)
i=0,...,M~1,p=0,...,P—1
9: yi (kR — z) J(q, k)y(kR — i),
1=0,...,V -1
10: for p = O,...,P—ldo
11 Uj (k) = diag {Fauy, (1)}
12: end for
- P-1
13: Vi) = Wv ><MFM E o Uj, p( ) p (k)
4 el b)) =y -5, (0)
15 £l O(s) = Fuy (Wi el B
16: s (k) = diag{E[r, O(k)|E" [k, O(r)]}/V
17: P (k) = ‘I’sg( k)
B diag{3, 29 U; , (5)P, (x)UY ()}
T
18: Threshold @ ;. (r) with 62(k)1ar «1
19: forp=20,....,P—1do
20: K,(k) = Pp(ﬁ)U?p(/f)
U; , (5)P, (r)U] (k)
-1
+ M dlag{QEE( K)}]
21 ) (k) = F, (k) + Gy K; (0)E[, O (x)]
22: F,(k+1)= ozF*( )
23: P;)L( ) [IM xM — ]‘\/[K (H)Uip(/ﬁ)]Pp(li)
24: Threshold P} () with Ox7 x 1/
25: P,(k+1) = &’P; (k) + M diag{®yx ,(k)}
26: Ppp,(k+1) = Bpp ()
0 ding (R ()8 (1))
+ 7 B
27: Py, (h+1)=(1- a2)<I>I;ﬂF1p(K +1)
28: end for

29: j(k 4+ 1) = Levinson — Durbin ([d(x); d(x — 1)])
30: _end for

1%

P; (Ii) = IM xM — MK‘D(H)Uj’p(H) Pp (K) (680)
Fy(k+1) = aoF] (k) (68d)
P,(rk+1) = o’P} (x) + M diag{ @y, (r)}. (68e)

A summary of the PEM-PBFDKF is given in (1), where the
explicit calculations of @ (x) and ®y (k) follow the pro-
cedures described in [35], [38], [43]; in particular, ® ()
is estimated using a first-order recursive filter, with forget-
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ting factor 5 = 0.91 [38]. Additionally, 1,; »; is defined as an
M x 1 vector of ones.

Usually, in PBFDAF algorithms increasing the number of
partitions reduces the convergence speed [51], since this in-
crease results in smaller partitions, thus lowering the degree
of decorrelation introduced when working in the frequency do-
main. However, this behavior is not always observed in the AFC
case due to the closed-loop nature of the system. In a feedback
scenario, if the system is effectively subject to or close to in-
stability, the high power of the loudspeaker signal leads to a
faster identification of the unknown feedback path and hence
increases the convergence speed [12].

Finally, as pointed out by Buchner er al [52], [53],
PBFDAF algorithms relying on diagonal approximations re-
quire a stronger regularization than non-partitioned algorithms.
For this purpose, in our implementation we introduce an addi-
tional thresholding operation in the calculation of P} (k), since
the subtraction in (68c) may give rise to negative values in some
frequency bins with low signal-to-noise ratio (SNR).

VI. COMPUTATIONAL COMPLEXITY AND MEMORY
REQUIREMENTS

In this section, we provide a complexity analysis of the
proposed PEM-PBFDKF algorithm, in comparison with the
PEM-PBFDAF [22], the FDAF [32], as well as the time-domain
algorithms NLMS and PEM-AFROW [17], counting the num-
ber of per-output-sample real multiplications [32]. The follow-
ing assumptions are made: a real multiplication and a real divi-
sion have equal complexity; each length- M FFT/IFFT operation
has a complexity of D = M log, (M) multiplications [32]; the
Levinsion-Durbin algorithm on a length-M/ signal vector has a
complexity of n% + (5 + M)n,; + M multiplications. Table II
lists the per-output-sample computational complexity. The nor-
malization by R in the frequency-domain algorithms is only
included to simplify the comparison; in reality, the system im-
plementing the algorithms has a time equivalent to R samples
to carry out a whole algorithm iteration.

The complexity of the different algorithms as a function of
the prefilter order n; is shown at the top of Fig. 3. The results
are obtained usingnyp = L=V =R=M/2=80/P,P =1
for the two non-partitioned algorithms (PEM-FDAF and PEM-
FDKF), P = {2, 4} for the two partitioned algorithms (PEM-
PBFDAF and PEM-PBFDKEF), and fixing the overlapping factor
to v = 1. A subscript is used to indicate the number of parti-
tions and overlapping factor, respectively, when P > 1, e. g.
PEM-PBFDAF,, refers to the case with P = 2 and v = 1.! For
the PEM-AFROW, M and R are the window size and the hop
size used to estimate the source signal model. The grayed part
of the plots corresponds to values of n; between 10 and 20,
being common order values when using an AR source signal
model for speech signals [22], [23], [40]. The value ny = 15 s
highlighted in the plot since it is used in the simulations pre-
sented in the following section. Using these values, the number

'For the sake of simplicity, the PB entries in Table II include also the non-
partitioned algorithms, i.e., PEM-FDAF and PEM-FDKEF, using P = 1.
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TABLE II
PER-OUTPUT-SAMPLE COMPUTATIONAL COMPLEXITY AND MEMORY REQUIREMENTS OF THE COMPARED ALGORITHMS

Algorithm Computational complexity # Memory requirements #
NLMS 3R+2 322 4R+7 328
2+ (M +3R R)M +2R(2R

PEM-AFROW ry TSRS ng ¢ U RN 2RER D) 568 SRy +15 430

FDAF ADLASM 99 20M +R+4 3284
P+3)D 2 M+R P)M+R

PEM-PBFDAF (LMD, PN R Dy fCHITPIMER 5561307457 sasRny 2P )Li10PM 11 4579|3899 | 3559
4P+3)D 2 M+ R 5+25P)M+R

PEM-PBFDKF (LMD, PN R Dy PORBPIMER 5481345527 r0ar+8Ren, 2P 1)L 131PM <5 6820 5980 | 5560

A numerical value is given in both cases fornp = L =V =R = M/2=80/P,n; = 15,and P = {1,2,4}.

-0 - NLMS -4~ - PEM-AFROW
800 | PEM-PBFDAFL,; PEM-PBFDKF.; [
@ PEM-PBFDAF3; PEM-PBFDKF2;
_§ PEM-FDAF PEM-FDKF | )
® 600 [~-ae- FDAF $o==== " Gt
e D U o---="" 3
g 1T |
S 400 ! :
g i
E 200 e o O e L -——-— O ----- -Q
O | | | |
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g i ‘.’a" | swfh
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Fig. 3.  Per-output-sample computational complexity of the existing and pro-
posed algorithms as a function of the prefilter order n ; and the hop size R (top
and bottom, respectively).

of real multiplications for the different algorithms is also indi-
cated in Table II, showing that the FDAF is the cheapest, while
the PEM-AFROW is the most computationally expensive (even
more expensive than the PB algorithms with four partitions).
For the PEM-AFROW, a window length of M/ = 160 (10 ms at
16 kHz) might be too short as common values are in the order
of 40—60 ms [17], but it was kept to simplify the comparison; by
using longer windows, the complexity of the algorithm would
be even higher.

The complexity of the different algorithms as a function of
the hop size R is shown at the bottom of Fig. 3. In this case,
ny = 15 and the other parameters np = L=V = R = M/2
vary with R. The grayed part of the plots corresponds to
values of R yielding tolerable latency values in a HA sce-
nario [54]. As expected, one can see how the complexity of
time-domain algorithms increases far quicker than the com-
plexity of the frequency-domain algorithms, even within the
grayed part.

We conclude the section presenting a worst-case estimate of
the memory requirements for the considered algorithms (i.e.,
requiring the allocation of each variable, including temporary
ones), which is also given in Table II in terms of floating-point
values to be allocated. Using np = L=V =R=M/2=
80/P and n; = 15, the exact number of floating-point values
to be allocated is also given. This shows that the requirements
of frequency-domain algorithms are more than ten-fold those of
time-domain algorithms and, as expected for the PB algorithms,
the memory requirements decrease as P increases. Compared
to the PEM-PBFDAF, the PEM-PBFDKEF requires roughly 50%
more memory.

VII. SIMULATIONS

In this section we provide simulation results in order to as-
sess the performance of the proposed algorithms. The algo-
rithms (proposed and baseline) are compared in terms of three
measures, assessing the estimation error, the achievable ampli-
fication, and the sound quality.

The first measure is the misadjustment (Mis), defined as the
dB level of the normalized distance between the true and esti-
mated feedback path:

f,
Mis(k) = 201log; L (1)

(£ ()
where f; () = £ () — f(k). Throughout the section, the vector
containing the true feedback path coefficients will be referred
to as acoustic impulse response (AIR).

The second measure is based on the so-called maximum stable
gain (MSQ), i.e., the maximum gain achievable at a given time
without compromising the system stability; if the forward path
G(q, k) is spectrally flat, the MSG is given as:

(69)

MSG(k) = —201log;, [max IE-(H,Z)|:| (70)
leP(k)

where P(k) is the set of frequencies satisfying the phase con-

dition of the Nyquist stability criterion [1], and F}(k,1) is the

lth element of F, (k) = G1Y | zFgf, (k). The MSG is then nor-

malized according to the maximum stable gain of the system

when no feedback canceller is included, i.e., Kys (k),

Kusa (k) = —20logy Lé%a(% IF(M)I} (71)
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resulting in the added stable gain (ASG):

ASG(k) = MSG(k) — Kysc (k). 72)

Finally, the sound quality is assessed by means of an ob-
jective measure called frequency-weighted log-spectral signal
distortion (SD), a distance measure proven to correlate well
with subjective evaluation of feedback cancellation algorithms
[16]. The SD was calculated using the clean source signal v(t)
and the processed signal d(t).

A. Stationary Feedback Path

For the first set of simulations, a stationary feedback path was
employed. Such a scenario represents only a simplified situation,
since a time variation in the feedback path can be caused by a
multitude of different situations in real life, e. g. bringing a hand,
or a phone close to the ear in a HA application. However, this
simplified situation can be used to test the best-case scenario for
the algorithms.

The following simulation results compare the performance of
the PEM-FDKF and the PEM-PBFDKF for two different num-
bers of partitions, P = {2,4}, andy = 1 (PEM-PBFDKF;,; and
PEM-PBFDKF,,, respectively), with three baseline algorithms.
The chosen baseline algorithms are the PEM-FDAF [23] and the
PEM-PBFDAF, based on the work by Spriet et al. [22], for two
different numbers of partitions, P = {2, 4}, and v = 1 (PEM-
PBFDAF,; and PEM-PBFDAF,,, respectively). The adaptive
stepsize was calculated in a different way from what has been
proposed in [22] and was defined as:

1
(K, 1) = px [0+ |Uj’p(n,l)\2 , (73)

where pi5y 1S a real, constant, and frequency-independent value,
and ¢ is a regularization parameter. Some algorithm-specific
parameters were kept fixed in the whole set of simulations
as follows: the values of pusx, 6 and P(0) are set as to
guarantee a smooth convergence in the Mis curves in the first
simulated case (cf. Fig. 5), i.e., usgx = 0.01, 6 = 5e — 5 and
P(0) = 1.6e — 21, « as, respectively; although, usually, when
comparing adaptive filters performance one either tunes the
parameters yielding similar lowest Mis or similar speed of
convergence, in this case, the proposed algorithms yield better
performance in both ways.

Additionally, the transition factor is set to a = 0.99999 [18],
while the DFT length and the hop size are setto M = 160/ P and
L =R =1V = 80/P, respectively. The algorithms are tested in
a simulated environment with the following characteristics: the
transfer function G(q, k) is set to have constant gain K; =
Kyse —3 dB and a delay of dg = 80samples; Fi(q, k) =
Fi(q) is a measured feedback path from a commercial HA [22]
and its normalized magnitude response is shown by the thick
black line (AIR1) in Fig. 4.

Fig. 5 compares the algorithm performance, by means of Mis
and ASG, when varying the input source signal v(¢): each one of
10 overlapping 20-s segments, taken from Track 05 of the Music
for Archimedes database [55], of a recorded clean male speech
signal resampled at f; = 16 kHz corrupted by a 30 dB SNR
additive white Gaussian noise are used as source signal v(t). In
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Fig. 4. Top: Magnitude responses of the 10 different AIR used in the simula-
tions (cf. Figs. 5, 6 and 8). Bottom: Magnitude responses of 20 AIR obtained
with (23a) every s, starting from AIR1 (cf. Fig. 7).

Fig. 5, and the following figures, the curve denotes the mean
result of each algorithm while the shading corresponds to £1
standard deviations.

The results confirm the expected performance increase of
the PEM-FDKF over PEM-FDAF [18]. Specifically, in Fig. 5,
similar convergence speeds and steady-state values are are ob-
served in the Mis curves for the PEM-FDAF and PEM-PBFDAF,
with a slight improvement in both the metrics as the number of
partition increases. A similar situation characterizes the ASG
values. For the PEM-FDKF and PEM-PBFDKEF, similar Mis
and ASG values are obtained as the number of partitions is
increased; a higher ASG is obtained for the PEM-PBFDAF,;,
even though a greater variance is observed. The performance ob-
tained with the FDKF-based algorithms is better, both in terms of
Mis and ASG, than the performance obtained with the FDAF-
based algorithms, with improvements in the range from 5 to
10 dB.

Another parameter that might change the performance of the
tested algorithms is the true feedback path included in the sim-
ulation. To simulate this variability we set up a similar sim-
ulation scenario as in the previously discussed case: 10 dif-
ferent feedback path AIR (cf. top of Fig. 4) were employed,
while the source signal v(t) was fixed to a single segment of
the track used in the previous simulation; the other parameters
were kept fixed. The results are shown in Fig. 6 and provide a
similar trend as in the previously discussed case regarding the
performance improvements when using FDKF-based algo-
rithms. The convergence curves are less smooth than in the
previously discussed case and the variance is lower in the single
estimates, suggesting that both the smoothness and the variance
of the curves is mainly depending on the source signal content,
rather than on the AIR. Nevertheles, the FDKF-based algorithms
yield much less erratic results than the FDAF-based algorithms;
this is due to the need of a finer tuning of the FDAF-based algo-
rithms parameters, €. g. i in (73), when dealing with different
feedback paths, while the FDKF-based algorithms handle these
differences more robustly.

The sound quality results, in terms of mean and maximum
SD, for the first three simulation scenarios are shown in Table IIT
and labeled with the figure number showing the corresponding
case. In both the scenarios the FDKF-based algorithms yield
better performance and the increase of the number of partitions
does not affect the results remarkably.
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Fig. 5. Mis and ASG performance over time of PEM-FDAF, PEM-FDKEF,

PEM-PBFDAF and PEM-PBFDKEF using the constant forward path gain K7,
AIR1, and 10 different source signals.
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Fig. 6. Mis and ASG performance over time of PEM-FDAF, PEM-FDKF,

PEM-PBFDAF and PEM-PBFDKF using the constant forward path gain K
and 10 different AIR.

TABLE III
MEAN AND MAXIMUM SD VALUES FOR THE DIFFERENT ALGORITHMS IN THE
FIVE DIFFERENT SIMULATED SCENARIOS

mean(SD) | max(SD)

Fig. 5 Fig. 6 Fig. 7 Fig. 8
PEM-FDAF 093 277 085 279 105 297 126 3.67
PEM-PBFDAF;; 1.06 339 120 451 113 3.62 130 391
PEM-PBFDAFs; 126 3.81 1.67 557 127 392 144 440
PEM-FDKF 054 260 061 299 074 274 1.10 3.87
PEM-PBFDKF,; 048 247 054 280 0.66 226 088 3.69
PEM-PBFDKF,; 047 235 054 220 0.67 239 068 3.36

B. Non-Stationary Feedback Path

For the second set of simulations, a non-stationary feedback
path was employed. Both a smooth time evolution and an abrupt
change were simulated. The first type of non-stationarity is given
by the model described in (23a), where F(0) is AIR1, and the
“true” simulated transition factor is oy = 0.99999. The process
noise vector is generated as a complex normally-distributed ran-
dom process with zero mean and variance set equal to a scaled
version of the frequency-dependent variance of the 10 recorded
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Fig. 7. Mis and ASG performance over time of PEM-FDAF, PEM-FDKEF,

PEM-PBFDAF and PEM-PBFDKEF using the constant forward path gain K7, a
smooth AIR transition (cf. bottom of Fig. 4), simulated 10 times.
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Fig. 8. Mis and ASG performance over time of PEM-FDAF, PEM-FDKEF,

PEM-PBFDAF and PEM-PBFDKEF using the constant forward path gain K,
an abrupt AIR transition from AIR1 to AIR2, and 10 different source signals.

AIR shown at the top of Fig. 4; this was done to avoid high
variability at the beginning and at the end of the AIR, in or-
der to match more realistic AIR profiles. In this simulation, for
the FDKF-based algorithms, both the transition factor and the
frequency-dependent variance of the process noise were match-
ing the “true” ones used in (23a). The magnitude responses of 20
AIR obtained with (23a) every after 1s of simulation are shown
at the bottom of Fig. 4. The results of the simulation are shown
in Fig. 7. The performance are worse than in the stationary case,
but it should be noted that (23a) yields a strongly nonstationary
behavior, i.e., a true feedback path changing every single frame.
Despite the very fast dynamics of the “true” feedback path, the
FDKF-based algorithms manage to provide a performance gap
in the Mis between 2 to 5 dB. Similar conclusions hold for the
ASG, with improvements of the FDKF-based algorithms over
the FDAF-based algorithms being lower than in the stationary
case.

The final simulation scenario considered in this section in-
volves an abrupt feedback path change, from AIR1 to AIR2
(cf. Fig. 4), at half of the simulation period. The results are
shown in Fig. 8. It can be noticed how the abrupt change causes
a performance drop, which is naturally more evident for the
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FDKF-based algorithms since, after 10 s, these have already
reached almost —15 dB Mis and 12 to 14 dB ASG, roughly
5 dB better than the performance measures of the FDAF-based
algorithms at the same time. However, unlike the FDAF-based
algorithms reconverging to similar levels, the FDKF-based
algorithms behave differently after the abrupt change, show-
ing an improved convergence speed as the number of partitions
is increased. While the effect on the PEM-FDKEF algorithm is
expected, since the abrupt change causes a model mismatch in
the state equation, the better performance of the PBFDKF algo-
rithms might be due to the better tracking behavior due to the
smaller block size of the PB implementations.

The sound quality results for the last two simulation scenarios,
shown in Table III, confirm the findings from the first two. Also
in this case, an increased number of partitions provides lower
SD values than for the non-partitioned case, possibly due to the
improved tracking behavior of the algorithm in case of a smaller
block size.

VIII. CONCLUSION

In this paper, we have presented a new AFC algorithm em-
ploying a PEM-based signal prewhitening in combination with
a FDKF; additionally, we have derived the ICs to successfully
apply such algorithm in a closed-loop system scenario.

We have also proposed an extension of the algorithm by
means of a PB implementation, which makes the algorithm more
appealing for use in systems where large algorithmic delays are
not tolerated, such as in HA applications.

A study of the computational complexity of the new algo-
rithms has shown that, compared to existing frequency-domain
algorithms, both the complexity increase and the memory re-
quirements increase are limited.

Simulation results for different scenarios, including both sta-
tionary and non-stationary feedback paths, have shown the im-
proved performance of the proposed algorithms in terms of
different objective measures.
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