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Iterative Estimation of Sinusoidal Signal Parameters

Yannis Pantazis, Olivier Rosec, and Yannis Stylianou

Abstract—While the problem of estimating the amplitudes of si-
nusoidal components in signals, given an estimation of their fre-
quencies, is linear and tractable, it is biased due to the unavoidable,
in practice, errors in the estimation of frequencies. These errors
are of great concern for processing signals with many sinusoidal
like components as is the case of speech and audio. In this letter,
we suggest using a time-varying sinusoidal representation which
is able to iteratively correct frequency estimation errors. Then the
corresponding amplitudes are computed through Least Squares.
Experiments conducted on synthetic and speech signals show the
suggested model’s effectiveness in correcting frequency estimation
errors and robustness in additive noise conditions.

Index Terms—Amplitude estimation, frequency estimation, si-
nusoidal modeling, time-varying models, estimation theory.

I. INTRODUCTION

INUSOIDAL models are widely used in signal processing
for analysis, modeling and manipulation of time-series
from speech and audio to radar and sonar (see [1], [2] and the
references therein). In the literature, many techniques for the
estimation of the sinusoidal parameters have been proposed.
A simple and fast method for sinusoidal parameter estimation
uses Fourier spectrum where the locations of the peaks of the
spectral magnitude are the estimated frequencies and the values
of the Fourier transform at these frequencies are the estimated
complex amplitudes [1], [3]. Although FFT-based spectral
estimation is asymptotically unbiased and efficient, it is biased
for finite length data [4]. Extensions of the basic FFT method
such as quadratically interpolated FFT (QIFFT) [5], [6] and
reassigned spectrogram [7] have been proposed in the literature.
A survey study by Keiler and Marchand [8] compares various
FFT-based amplitude and frequency estimators. FFT-based
methods can be considered as local since the parameters of each
sinusoidal component is estimated without taking into account
the possible influence of neighboring sinusoidal components.
For large windows with sufficiently narrow main frequency
lobe, this influence is negligible. However, using long windows
the stationarity hypothesis for the analyzed signal may be
violated. Consequently, the frequency estimation provided
by Fourier transform-based methods is rather unreliable in
nonstationary environments.
Another approach for sinusoidal parameter estimation is to
use global estimation methods, through the minimization of a
Least Squares (LS) criterion. For sinusoidal signals, such a cri-

Manuscript received November 05, 2015; revised January 27, 2016. First pub-
lished February 17, 2016; current version published March 26, 2016. This work
was supported by Orange Labs through Industrial Contract NA 200141932 with
FORTH. The associate editor coordinating the review of this manuscript and ap-
proving it for publication was Dr. Mark Gales.

Y. Pantazis and Y. Stylianou are with Computer Science Department, Univer-
sity of Crete and ICS-FORTH, Heraklion, Greece (e-mail: pantazis @csd.uoc.gr;
yannis@csd.uoc.gr).

O. Rosec is with Orange Labs TECH/ASAP/VOICE, Lannion, France,
(e-mail: olivier.rosec @orange-ftgroup.com).

Digital Object Identifier 10.1109/LSP.2016.2043153

terion is highly nonlinear when the frequencies of the sinusoidal
components are unknown. Hence, the estimation procedure is
usually split into two steps: i) estimation of the frequencies and
i) estimation the complex amplitudes given the estimated fre-
quencies [9], [4], [10], [11]. A major disadvantage of splitting
the estimation into two subproblems is that the estimation of the
complex amplitudes are severely biased when the estimation of
the frequencies is not accurate. In practice, errors in frequency
estimation inevitably occur when sources of interference such
as noise or closely-spaced sinusoids are present.

In this paper, we consider a time-varying model for the
sinusoidal parameter estimation which is immune to small
frequency estimation errors. The proposed model was initially
introduced by Laroche [12] for audio analysis of percussive
sounds. In this model, a complex polynomial is used in order
to capture fast variations within each frequency component,
providing access to the instantaneous amplitudes but also—and
more interestingly—to the instantaneous frequencies. Focusing
on the first order model, we showed in [13] that this model
is equivalent to a time-varying quasi-harmonic representation
(referred to as QHM for Quasi-Harmonic Model). We showed
that by proper decomposition of QHM parameters, errors in
the initially estimated frequencies of sinusoidal components
of the signal can be identified and then corrected. Thus, an
algorithm is suggested which iteratively improves the estimated
frequencies and provides unbiased amplitude estimates. The
performance of the proposed estimation method is studied and
boundaries of frequency errors are provided that ensure the
convergence of the frequency correction algorithm. Frequency
estimation experiments using short analysis windows show
that the proposed method outperforms traditional FFT-based
methods, especially in the case of closely-spaced sinusoids, thus
underlying the ability of the suggested signal representation
to perform a high resolution frequency analysis. Finally, the
robustness to noise is established since the obtained estimators
asymptotically reach their Cramer—Rao lower bounds even in
adverse noisy conditions.

The paper is organized as follows. In Section II, the QHM
model as well as its main properties are presented. Section III
establishes the conditions upon which the QHM model can be
used to estimate sinusoidal component. Section IV illustrates
the robustness of the proposed method in additive noise, while
Section V presents results on speech signals. Finally, Section VI
concludes the paper.

II. QUASI-HARMONIC MODEL

Let us consider a signal z(¢) consisting of K complex sinu-
soids:

K
x(t) = chejZ”f"t (1)
k=1

where f, and cj denote the frequency and complex amplitude,
respectively, of the kth sinusoid. In order to compute the com-
plex amplitudes through LS, we need to have estimates of fre-
quencies { fx } 1, of the sinusoidal components. Such estimates
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can be obtained by spectrograms, subspace methods or any other
frequency estimation method.
Given a set of frequency estimates, we may write

fe = fe + k. 2)
If the frequency error, 7y, is high, then the estimation of the
complex amplitudes c;, through LS will be severely biased. To
cope with this problem, we suggest in [13] to use the QHM for
the representation of the input signal

K
s(t) =D (ax + thy)e?> !
k=1
where ay, and by, respectively denote the complex amplitude and
complex slope of the kth component. Parameters {ay, bk}kK:1
are computed through the minimization of the LS criterion
Zfz_T((x(t) — s(t))w(t))?, where w(t) is the analysis
window defined on a time interval [T, 7 [10], [12]. It is
worth noting from (1) and (3) that in case fx = f then the LS
solution will give by, = 0. On the contrary, if f # fx, then
bi # 0, meaning that b, may also carry information related to
the phase evolution of the kth component.
To reveal this information, we consider the Fourier transform
of s(t) given by

3)

K
. by .
S =3 (@0 = ) +ige W' - ) @
k=1 ™
where W ( f) is the Fourier transform of the analysis window,
w(t), and W(f) is the derivative of W (f) over f. For sim-
plicity, we will only consider the kth component of S(f)

S() = W (= fo) + T2 W(f = ).

n [13], it was suggested to project bk 0nt0 ay, according to

®)

(6)

bi, = p1, 0k + p2.rjak
where ja; denotes the perpendicular (vector) to ak while p1 E=

(afbf + agbi)/(Jaxl*) and pa i = (b}, — agbil)/(lax[?).
Then, the kth component is written as

Sk(f) = ar [W(f = fi) = ZEW(f - fo)
+JMW’(.f—fk>]. ™

2
Considering the Taylor series expansion of W(f — fk —
(p2,k)/(2))
(f fk P2, k)
=W = fi) = SEW(T = i)
+0(p3 W (f = fr))
~ W = i) = SEW(T - i) ®)
it follows from (7) and (8) that
Sk(f) = ax [ (f fr — p2k) +J p1 “w(f - fk):|
)
which is written in the time domain as
K
s(t) ~ Zak |:ej(27rfk+f)2,k)t + pl,ktejZﬂ'fkt} w(t). (10)

k=1
From (10), it can be observed that p2 1/27 accounts for the
mismatch between the frequency of the kth component, f}, and
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Fig. 1. Upper panel: The error for (solid line) a rectangular and (dashed line)
Hamming window. Lower panel: Error using the Hamming window (as in a)
without (solid line) and with two iteration (dashed line).

the analysis frequency, fk Thus, an estimate of the frequency
mismatch for the £th component is

(1)

Also, from (10), we see that p1; accounts for the amplitude
slope of the k& component. Thus, for the specific signal in (1),
p1,r = 0 for each k.

Nk = P2,k /2.

III. VALIDITY OF THE QHM FOR FREQUENCY ESTIMATION

The error of the approximation in (8) depends on the char-
acteristics of the analysis window as well as on the amount of
frequency mismatch. In order to get further insight on the pro-
posed estimator, we first present results on a mono-component
signal analyzed using a window of length 16 ms (7" = 8 ms).
Fig. 1(a)! shows the error between the true frequency mismatch
and the estimated one (i.e., er(n1) = n; — 71) for a rectangular
window and a Hamming window of duration 16 ms. The error is
small (i.e., |n1 — 71| < ) if the frequency mismatch is smaller
than 50 Hz for a rectangular window and smaller than 135 Hz
in the case of a Hamming window. The advantage of using a
Hamming window (vs. a rectangular window) is twofold. First,
the second order derivative W ( f) is much smaller for a Ham-
ming window than for a rectangular window and consequently,
the approximation (8) is more accurate. Second, it can be shown
that the LS estimates for {a1, by } involves the reciprocal of the
Fourier transform of the squared analysis window evaluated at
the frequency mismatch. Consequently, the larger the main lobe
the larger the allowed frequency mismatch. For a squared Ham-
ming window the main lobe is three times larger than the one of
the rectangular window, which may explain why the region of
small error is about three times larger for a Hamming window.
After testing a variety of windows, we conclude that the allow-
able frequency mismatch should be less than one third of the
bandwidth of the squared analysis window.
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Fig. 2. Frequency mismatch estimation in the case of three sinusoidal compo-
nents: error on the second component (upper panel) without iteration and (lower
panel) with three iterations.

TABLE I
PARAMETERS OF A SYNTHETIC SINUSOIDAL SIGNAL WITH FOUR COMPONENTS
AND INTERVALS OF ALLOWED FREQUENCY MISMATCH PER COMPONENT

| Sinusoid I Ist [ 2nd ] 3rd \ 4th |
Frequency (Hz) 100 200 1000 2000
Amplitude eI™/10 el™/4 el™/3 el™/5
Mismatch int. (Hz) [-10,10] | [-10,10] | [—100,100] | [—100,100]

Furthermore, if the error is small (i.e., |91 — 71| < 71), then
the estimated frequency mismatch can be used to correct the ini-
tial frequency estimates. In such a case, the new frequency mis-
match decreases; thus, we suggest the following iterative fre-
quency correction procedure.

1) Initialization A

i) Get an initial estimate of frequencies, {fdE .
ii) Estimate {ay, by }1_, given {fx}1,.
2) Do iterations
i) For each kth component:
a) Estimate 7 using (11). .
b) Update frequencies: fi < fx + 7.
ii) Reestimate {ay, by } 1< | given {f.} X,
Fig. 1(b) shows that this iterative procedure converges in only
two iterations in this simple case.

Let us now consider multicomponent signals. It is well known
that the closer the frequencies of the sinusoidal components,
the more difficult the estimation becomes. Consequently, the
analysis window should be adapted to the minimum spacing
between adjacent sinusoids denoted by A f. Considering har-
monically related sinusoids, we will use a window of length 27T’
with T = 1/Af. If we further assume that the minimum fre-
quency to be estimated is greater than A f, then the maximum
frequency mismatch should be proportional to A f. Note also
that the frequency mismatch should be smaller than A f /2, oth-
erwise, the estimation problem may become ill-posed. In the
following experiment we consider three components of equal
strength respectively located at 900, 1000 and 1100 Hz (i.e.,
Af = 1/T = 100 Hz). Using a Hamming window of length
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Fig. 3. MSE of the four amplitudes as a function of SNR.

2T, we run Monte-Carlo simulations as follows: for each fre-
quency the mismatch is drawn from a uniform distribution on
[-Af/2,Af/2] in such a way that the spacing between fre-
quencies is constrained to be smaller than Af/2. Fig. 2 de-
picts the results of the frequency mismatch estimation for the
second component using 10° simulations. It can be clearly seen
that if the mismatch is below 35 Hz, then the frequency estima-
tion is very accurate, since the remaining mismatch can be re-
duced by subsequent iterations of the updating process. Similar
results were obtained for the other components. More generally,
by testing the algorithm on a wide range of multicomponent si-
nusoidal signals, it was observed that frequency correction oc-
curs if the frequency mismatch is below 35% of the minimum
frequency spacing. Thus, even though the presence of adjacent
sinusoids has contributed to reduce the range of admissible mis-
match as compared to the single component case, the proposed
method is still able—under reasonable conditions—to provide
an accurate estimation of the sinusoidal component frequencies.

IV. ROBUSTNESS IN NOISE

In this section, the performance of QHM is assessed for the
case when a signal with multiple sinusoidal components is con-
taminated by white noise. Concisely, the ability of the proposed
model to improve the accuracy of the estimation of the fre-
quencies—hence the accuracy of the amplitudes—is tested. The
signal consists of 4 sinusoids and it is corrupted by noise while
window’s duration is 17 ms (I = 8.5 ms) and sampling fre-
quency 8000 Hz (i.e., so the duration of the window duration
in samples is 137). In Table I, the frequency and the amplitude
of each component are given. Two closely-spaced sinusoids and
two well-separated sinusoids are considered. Monte Carlo sim-
ulations are used for the assessment of the robustness of the pro-
posed method. For each simulation, the frequency mismatch of
each sinusoid is sampled uniformly on the intervals defined in
Table I.

Figs. 3 and 4 respectively depict the mean squared error
(MSE) of the amplitudes and frequencies of each compo-
nent after 10° Monte Carlo simulations. For comparison
purposes, QIFFT frequency and amplitude estimation as well
Cramer—Rao bounds (CRB) [1], [4] are presented. Please
note that the number of FFT bins is set to 2048, thus, the
zero-padding factor of QIFFT is about 15 (2048/137), which
is sufficient for the accurate estimation of amplitudes and
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Fig. 4. MSE of the four frequencies as a function of SNR.

frequencies [5]. Results clearly show that the proposed esti-
mation scheme outperforms the FFT-based approach while the
estimations asymptotically reach the CRB.

V. SPEECH SIGNAL ANALYSIS

There is a vast literature in coding, synthesis, modification,
etc. where both speech and music signals are modeled frame-by-
frame as a sum of harmonically related sinusoids. However,
looking at the magnitude spectrum of short-term Fourier trans-
form it is easily seen that the local maxima (peaks) are not
exactly at the integer multiples of the fundamental frequency.
This inharmonicity—also called detuning—induces biased es-
timation of the complex amplitudes. Furthermore, even if the
frequencies of the real signals were perfect harmonics, errors
may occur in the estimation of the fundamental frequency, hence
once again, bias is introduced in the amplitude estimation.

To alleviate these problems, a model that is able to move to
the correct frequency of each sinusoid is of great interest. To
illustrate the performance of the proposed algorithm, we com-
pare it to a classic harmonic model [10]. For that purpose we
select a 30 ms frame from a reasonably stationary section of
speech. The magnitude spectra computed by FFT and estimated
using the classic harmonic representation as in [10] as well as
the proposed model are shown in Fig. 5. Interestingly, the har-
monics between 1.5 kHz and 2 kHz where the second formant
takes place are greatly detuned and are missed by a purely har-
monic model. By contrast, the suggested approach provides a
better spectral estimation. In terms of Signal-to-Reconstruction
Error-Ratio (SRER), the improvement is 4.1 dB. These observa-
tions were consistent by testing more than five minutes of voiced
speech from both male and female voices where the average
SRER was found to be 4.3 dB.

VI. CONCLUSION

We suggest an iterative approach in correcting initial fre-
quency estimations in the context of sinusoidal modeling. We
provide details on the frequency mismatch intervals where the
suggested iterative frequency correction algorithm converges
and we show that it is robust against additive white noise. Ex-
periments with synthetic signals show that the suggested al-
gorithm outperforms FFT-based frequency approaches. More
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Fig. 5. (Solid line) Magnitude spectra and (dashed line) estimated spectra by
(upper panel) QHM (upper panel) and (lower panel) the stationary sinusoidal
model. The estimated fundamental frequency used by both models was 138.4
Hz.

specifically it performs high-resolution frequency estimations
which reach asymptotically the Cramer—Rao lower bound. Ex-
periments with speech signals show that the suggested model
is more adequate for modeling voiced speech than simple sta-
tionary harmonic representations.
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