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An Expectation-MaximizatiorAlgorithm Based
Kalman SmootherApproachfor Event-Related
DesynchronizatiofERD) Estimationfrom EEG

MohammadEmtiyaz Khan, and DeshpandéNarayanDutt

Abstract—In this paper, we consider the problem of event-
related desynchronization (ERD) estimation. In existing ap-
proaches,model parameters are usually found manually through
experimentation, a tedious task that often leads to suboptimal
estimates. We propose an expectation-maximization (EM) al-
gorithm for model parameter estimation which is fully auto-
matic and gives optimal estimates.Further, we apply a Kalman
smoother to obtain ERD estimates. Results show that the EM
algorithm significantly improves the performance of the Kalman
smoother. Application of the proposed approach to the motor-
imagery EEG data shows that useful ERD patterns can be
obtained evenwithout careful selectionof frequency bands.

Index Terms— Event-related desynchronization, expectation-
maximization algorithm, Kalman smoother.

I. INTRODUCTION

VENT-RELATED desynchronization(ERD) and syn-

chronization(ERS)areusedto describethe decreasand
increasein activity in the EEG signal, causedby physical
events[1]. Experimentsshow that the preparation,planning
andevenimaginationof specificmovementgesultin ERD in
mu and central-betarhythms[2]—[4]. In addition ERD shows
significantdifferencesin EEG activity betweenleft- or right-
hand movementd5]. Thesedifferencescan be usedto build
communicationchannelsknown as brain-computeiinterfaces
(BCI) which havebeenvery usefulin providing assistancéo
paralyzedpatients[6].

ERD hasbeenstudiedextensivelyby researcherand many
methodshave beenproposedfor its estimation[7]-[11]. The
inter-trial variance(lV) method[7] is oneof the first methods
proposedfor quantificationof ERD. In this method, ERD
estimatesare obtainedby computingan averagedinter-trial
variance of a band-pasdiltered signal. Useful information
about ERD time coursesand the hemisphericalasymmetry
canbe obtainedwith theseestimatesHoweverthe IV method
cannotbe usedfor on-line classificationbecauset requires
averagingover multiple trials [5]. Another problemis that
it requires careful selection of frequency bands for ERD
estimation. To overcomethese problems, a method based
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on the adaptive-autoregressiV®AR) model has been pro-
posed[8]. The AAR modelis also called a time-varying AR
(TVAR) model, and has been applied extensivelyfor EEG
signalanalysis[12], [13]. The TVAR coefficientsare usually
estimatedwith the recursive-leassquare(RLS) algorithmand
classifiedwith a linear-discriminator.lt is shownin [5] that
the TVAR coefficientscapturethe EEG patternsand improve
classificationaccuracy.However, in this method, values of
various parameterge.g. model order, updatecoefficients)are
required,which are usually difficult to find.

The TVAR model can also be written as a state-space
model. The advantageof this formulationis that the optimal
estimatescan be obtainedusing the Kalman filter [14]. The
Kalmanfilter is an optimal estimatorin the mean-squareense
and other adaptivealgorithmslike the RLS algorithm can be
derived as a special case of the Kalman filter [15]. If the
future measurementsare available,smoothingequationscan
be usedto further improve the estimationperformance The
Kalmanfilters alongwith the smoothingequationsare usually
referredto as a Kalman smoother[16], [17]. The Kalman
smootherhas beenusedfor ERD estimationin [18], and an
improved tracking of ERD patternis obtained.However in
this formulationasin the AAR modelformulation,settingthe
model parameterss a problem.To makeit easierto setthe
parametersa very simple random-walkmodelis used.

We canseethatin all the methodsdiscussedibove finding
valuesof model parameterés a commonissue.In this paper,
we proposean expectation-maximizatiogEM) algorithm for
model parameterestimation.We usethe information present
in large training datasetdo estimatemodel parametersThe
paperis organizedas follows. In Sectionll, we describethe
state-spacérmulationof time-varyingAR (TVAR) model.In
Sectionlll, we describeour algorithmfor ERD estimation.In
SectionlV we discussthe resultsfollowed by a conclusionin
SectionV

1. TIME-VARYING AUTOREGRESSIVE(TVAR) MODEL

We denote scalars/vectors/matriceby small/bold/capital
letters. Also we denotethe transposeof a matrix A by A’.
We assumean EEG sequencéo follow a TVAR model:

p
Yp = Z a Y + vy 1)
k=1
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Here {a}}?_, arethe TVAR coefficients, p is the model
order and v; is the i.i.d. Gaussiannoise with zero mean
and variances?. We denotea sequencef measurementby
Yior = {y1,...,yr}. We alsoassumeTVAR coefficientsto
follow a Gauss-Markowprocess:

)

wherex; = [aja}...al]" is the array of TVAR coefficients,
w; ~ N(0,Q) is thei.i.d. noise, A is the transition matrix
and Q is a symmetric, positive definite matrix (both of size
p X p). Theseequationscanbe written asa single state-space
model:

Xit1 = Axy + wy

MeasuremenEquation:y, = h;xt + vy
StateEquation:x; 1 = Ax; + w;

3)
whereh, = [y—1y—2...Yy—p) IS the vector of the past
p measurementsx, is called the state of the system.The
initial stateis assumedo be Gaussianxg ~ N (g, Xo). For
simplicity, theinitial statevectorandnoisesareassumedo be
independentf eachother. All the model parameterdogether
aredenotedby © = {4,052, Q, py, Xo}-

We now compareour modelwith two previousapproaches
and show that they are special casesof our model. The
first approachis basedon an AAR model [8] wherein RLS
algorithmis usedto estimatex;. It is shownin [15] that the
modelusedby the RLS algorithmis a specialcaseof the state-
spacemodel given by Eq. (3), and can be written asfollows:

=h'x, +v

Yt - ile t )
Xep1 = AT Xy

where is theforgettingfactorfor the RLS algorithm.Rewrit-
ing the AAR modelasin Eqg. (4) allows an easycomparison
with our model. There are two important differences.First,
there is no state noise in this model. Second,matrix A is
constrainedo a scaledidentity matrix which dependson the
choiceof A. Note that the only tuning parameteiin the AAR
modelis \.

The secondapproachproposedn [18], usesarandom-walk
model given by the following equation:

Xi+1 = X¢ + Wy

®)

Here again,thereare two differences.First, the noise covari-
anceis constrainedo a scaledidentity matrix: Q = 021 (02,
is a non-negativereal number).Second,A is assumedo be
anidentity matrix. With theseassumptionghe only unknown
parameteis o2 . Howeversettingthis parameteis evenmore
difficult than A\ asits rangeis not known (A € (0, 1)).

Both the AAR and the random-walkmodel impose con-
straintsto reducethe numberof tuning parametersThereare
at leasttwo major consequencebecauseof this. First, the
samemodel is assumedor all elementsof the statevector.
Secondly,all the elementsare assumedo be independentf
eachother. Theseassumptionsnay deterioratethe estimation
performance(we will show this in Section IV-A). Another

1In literature,theseare also called TVAR “parameters” howeverto avoid

confusionwith model parametersve will alwaysusethe term “coefficients”
for these,andreservethe term “parameters’for model parameters.

importantpoint to noteis thatfinding valuesof parameterss
difficult evenwhen the numberof parameterds small. This
is becausaet is usuallydonemanuallythroughtrial-and-error.
Most of the time, manualsettingsgive sub-optimalsolutions
andanequallygoodautomatictuningis alwayspreferredlt is
a well-known fact thatif anya priori knowledgeis available,
thenit shouldbe usedin formulation of the model[15]. We
proposethe use of an EM algorithm which allows model
parameterso beestimatedisingtrainingdatasetsWe describe
the proposedapproachin next section.

We split ERD estimationinto three sub-problems:

1) Estimationof the model parametel©.
2) Estimationof the TVAR coefficients{x,}.
3) Estimationof the ERD given TVAR coefficients.

We first presentsolutionto (2), followed by (1) and (3).

EM ALGORITHM BASED APPROACH

A. Estimationof TVAR coefficients

Given the measuremensequenceY;.r, we want to find
estimatesof the TVAR coefficients. For this purpose we
usethe Kalman filter [14] which gives the optimal estimate
in the mean-squaresense(in this section, we assumethat
the model parametersare available). We use the following
definitionsfor the conditional expectationsof the statesand
the correspondingerror covariances:

)A(t‘s =F (Xt‘Yl:s)
Ptl,tz\s =E ((th - ktﬂs)(xtz - )A(t2|s)/|Y15S)

For conveniencewhent, =ty =t, P, ,,|, iswrittenas P, ,.
Thestateestimate(x,;, ;) canbe obtainedwith the Kalman
filter, which is given asfollows:

(6)

Xejp—1 = AXe_1ji-1 (7)
Py_1 = AP A +Q ®)
Ky = Pt|t71ht(h;Pt|t71ht +o7)7! 9)
Xyt Xy + Ke(yr — h;iﬂt—l) (10)
Pt|t = (- Kth/t)Pt\tfl (11)

with the initial conditionx, |, = uo and P = Xo. Here K;
is calledthe Kalmangain.

Note thatthe aboveKalmanfilter is a time-varyingfilter as
h; dependwn time. Hencethe gain andthe error covariance
will also vary with time and can not be computeda priori,
unlike the classicalKalman filter [14]. Henceit will require
more computationthan the classicalKalman filter. However
the increasein computationwill not be very large as we
are dealing with scalar measurementsAnother important
differenceis in theconvergencef thefilter. As P, varieswith
the measuremensequenceijt doesn’tconvergeto a steady-
statevalue. To monitor convergencave needto computethe
expectationof P;; with Monte-Carlosimulationsand check

if it settlesdown to a value (see[19] for an exampleof a
time-varyingKalmanfilter).
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If the future measurement¥;, ;.. areavailable thenthese
canbe further usedto improve the accuracyof the estimates.
The smoothedestimateq20] can be obtainedas follows:

J = PLAPLL, (12)
Xgr = X+ S(Xeprr — Xegape) (13)
Pyr = Py + J(Poar — P (14)

Note thatit is the designer'schoicewhetherto usesmoothing
equationsor not. For example during an on-line analysis the
Kalmansmoothemwill give estimatesonly afterthe endof the
experimentwhich may not be acceptableBut for an off-line

analysis,getting the estimatesafter the experimentmay not
matter.

B. Estimationof the modelparametersawvith an EM algorithm

In this section,we describethe estimationof model pa-
rameterswith an EM algorithm. The objective is to com-
pute an estimateof © given a measuremensequencelFor
Gaussianmodels, maximum likelihood (ML) estimateis an
obvious choice [20], which is given as follows: O, =
arg maxe log p(Y1.7|0), where p(Y1.7|©) is the probability
densityfunction of the measurement&lso calledlikelihood).
Note that becauseof the dependencen the stateswhich are
notavailable directmaximizationis not possible The problem
is to maximizethe likelihood with respectto two unknowns:
statesand model parametersThe expectation-maximization
(EM) algorithmtakesaniterativeapproachby first maximizing
thelikelihood with respecto the statesn the E-step,andthen
maximizingwith respecto the parametersn the M-step. The
EM algorithmwasfirst introducedin [22], andhasbeenused
extensivelyfor model parameteestimation[23]-[25]. The E-
stepmaximumis given by the expectedvalue of the complete
log-likelihood function as follows:

Q = EX‘Y[logp(leTXlzTKa)]

The M-step involves the direct differentiation of Q to find
the values of the parametersThese computationsare done
iterativelyandconvergencef thealgorithmis guarantee®2].

We now describean EM algorithm for our model. For
derivation,we follow the proceduregivenin [24], and details
aregivenin AppendixA. A summaryis given below:

1) E-step: This stepinvolves the computationof Q given
themeasurements; . andanestimateof themodelparameter
from the previousiteration, ©. As shownin AppendixA, Q
dependson the following threequantities:

(15)

Xy 7= E(xt|Y1:1) (16)
St\TEE(XtX“YLT) = Pt|T + f‘t\T’A(i\T (17)
St,t—l\TEE(XtX;—HYl:T) = Pt,t—uT + )A(t|T)A(;_1‘T (18)
The first two quantitiescan be obtainedusing the Kalman

smootherasdescribedn Sectionlll-A. The last quantity can

be obtainedas describedn [20] with the following equation:
Ptt 1T — =Jia t\T (19)

Q is thenobtainedusing Eq. (34) givenin Appendix A.
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2) M-step: By direct differentiation of Q, we get the
following expression®f the model parameteestimates:

T T

A= (38 ) (3o Sea) (20)
t=2 t=2
1 T T

ANk Ak

Q= = (D Sy AN S ) (2)

t=2 t=2

~ k+1 ]. A 2 /N ’

02 = T Z(yt — 2 htXtITyt + htSt‘Tht) (22)
t=1

P = %xyp (23)

6T = SRRy p (24)

where k denotesthe current iteration. We denoteall these
estimategogetheras ©F 11,

Both E and M steps are iterated, and convergenceis
monitored with the conditional likelihood function obtained
asfollows:

log p(Y7.7/6") Zlog ( (%, ,_y, b} Py, hy + gi))

(25)
Thealgorithmis saidto haveconvergedf therelativeincrease
in the likelihood at the currenttime step comparedto the
previoustime is below a certainthreshold.

The above algorithm can be easily extendedto multi-
ple measurementsAssumingtrials to be i.i.d., the Kalman
smootherestimatesieedto be averagedver all measurement
sequencesSubstitutionin M-step equationswill then give
the estimateof the parametersorrespondingo the multiple
measurements.

Therearea few practicalissueswvhich needto be addressed
whenimplementingthe abovealgorithm. The first issueis of
numericalerror. Becauseof its iterative nature,the algorithm
is susceptibleto numericalround-off errorsand can diverge.
To solve the numericalproblem,we useda square-roofilter
[26] implementationin this paper. The other issueconcerns
initialization. Some methodsare available for initialization
(e.g.subspacédentificationmethodin [25], [27]). In this paper
we usea simpler methodby assuminglocal stationarity.We
divide the dataseinto overlappingwindows, and for eachof
thesewe find x; ando? usingMATLAB's ARYULE function.
From these local esumates,we find maximum likelihood
estimateof ). We set A to identity andtheinitial statemean
and covarianceto zero and identity matrix respectively.

C. Estimationof ERD

In this section,we describethe estimationof ERD using
the TVAR coefficient estimatesobtained with the Kalman
smoother.The approachis motivated by an earlier analysis
using an AR spectrumdiscussedn [28]. We use a similar
method,but with a time-varying AR spectrum.Given TVAR
coefficients time-varyingspectrumestimatesan be obtained
asfollows,

Oy
&ie*Qﬂ'if/fs

H(t, f) = (26)

=3
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Here f, is the samplingfrequency,a: is the it elementof
the estimatedstate-vectomland f is the frequencyin the range
[0, fs/2]. As ERD is seenonly in specific frequencybands,
we averagethe spectrumto get band-powerPg:

f2
Py(t) = 3" H(t.f)?

f=h

where (f1, f2) is the band of interest. The band can be set
through visual inspectionor by using a threshold. We will
show later that a very preciseselectionof the frequencyband
is not required,and that a rough settingservesthe purpose.

An ERD estimateis then found by computingthe relative
band-powerwith respectto a referencewindow. First, a
referencepower is obtainedby averagingband-powerover a
time interval, wherethe ERD patternis expectedo be absent
(most probably at the start of the experiment).ERD is then
obtainedwith the following equation:

P’r‘ef

_ Pr(t) -
Pr'ef

(27)

ERD(t) (28)

where P,y = ZtTiTl Pg(t) is the referenceband-power
for time T} to T,. The ERD estimatesobtainedare further

smoothedby averagingover a time window. The abovepro-

cedureis similar to the IV method[7] where ERD estimates
areobtainedin the time domainby computingthe varianceof

aband-paséiltered EEG. Thedifferenceis thatthe IV method
doescomputationin the time domain,while our methodis in

the frequencydomain.For the IV methoda careful selection
of the frequencybandis required.We will showin Section
IV that our approachdoesnot require such precisionfor the

frequencyband.

IV. RESULTS

In this section, we study the effect of model parameter
estimationwith the EM algorithm.We comparethe proposed
approachwith two previous approachesasedon the RLS
algorithm and the Kalman smootherand discussedin [8]
and [18] respectively (see Section Il for details of these
approaches)in the rest of the paper,we will refer to these
approachesas RLS and KS respectively,while we call our
approachEMKS.

A. SimulationResults

We comparethe approachegor two criteria relevantto the
estimationof ERD: (i) trackingof the TVAR coefficients,and
(i) spectrumestimationof a nonstationarysignal. Note that
this evaluationrequirestime-varyingsimulationdata.To gen-
eratea smoothlytime-varyingsignal, we considernon-linear
models.This helpsus to study the effect of approximatinga
nonlinearsignal,suchasan EEG signal,with a TVAR model.
Howevera directcomparisorof the modelparameteestimates
is not possiblefor thesecasesasthe actualmodelwill be non-
linear. Hencewe baseour comparisonon the performanceof
a filter using the estimatedmodel.

For thefirst criteria, we generatea smoothlyvarying AR(2)
process(see [18] for simulation details). The trace of the
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Fig. 1. (a) Theroot evolutionandatyfical realizationof the AR(2) process
alongwith the optimizationof A ando 7, (b) The TVAR coefficientestimates
with EMKS (thick blackline), KS (thin blackline) andRLS (thin gray line).
The actualTVAR coefficientsare shownwith a thick gray line.

simulated model root and a typical realization are shown
in Fig. 1(a). A signal is generatedfor 2 seconds,sampled
at 128 Hz and the noise varianceis setto 0.2. The model
order is setto p = 2, equal to the actual model order.
The model parametersare estimatedwith the EM algorithm
using a datasetof 100 sequencesThe samedatasetis used
to set parameterdor RLS and KS. \ and o2 are optimized
for minimum mean-squarerror. The optimizationresultsare
shownin Fig. 1(a),andthe valuesobtainedare A = 0.898 and
o2 =0.037. TVAR coefficientsare then estimatedwith these
parameters.

Estimatesfor onerealizationare shownin Fig. 1(b). From
thesefigures,it is clearthatEMKS givesthe bestperformance.
AlthoughRLS andKS trackthefirst coefficientto someextent,
they do not track the secondcoefficient very well. This is
becausehe samemodelis assumedor both coefficients(see
Sectionll). The optimization function is biasedtowardsthe
first coefficientasits magnitudes higher,andthe estimatefor
the seconccoefficientsuffers.The modelparametergstimated
with EM algorithm do not imposeany suchconstrainton the
model,andboth coefficientshavedifferentmodels.The means
and varianceof the estimatedor 100 realizationsare shown
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in Fig. 2 which showthe sametrendsfor the performanceof
thealgorithms.Hencewe concludethatthe betterperformance
of EMKS is dueto the bettermodel parameteiestimates.

Next we comparethe performancdor spectrumestimation.
For this purposewe considera frequencymodulatedsignal
given by the following equation:

Yy = 5sin(2wfit) + uy (29)

where f; is called the instantaneoudrequency (IF) and u;
is a zero meanGaussiamoise with variances?. We choose
a linearly frequency modulation: f; 10t. The signal is
generatedfor 2 secondssampledat 128 Hz and the noise
varianceis setto 1. As the simulatedsignal containsa single
frequencycomponentwe need2 polesto modelit. However
empirical evidencesuggestshat p = 4 is more appropriate
for noisy data.Model parametersre obtainedwith the same
methodusedin the first simulation. Optimized valuesof A\
and o2 are found to be 0.87 and 0.0006. IF estimatesare
obtainedby picking the peaksof the spectrumobtainedusing
estimatedTVAR coefficients.Fig. 3(a) showsthe estimates
for a realization.It can be seenthat EMKS shows smooth
convergenceand least steady-staterror. While performance
of RLS is quite poor, KS seemsto track as well as EMKS.
However, the averageperformancein Fig. 3(b) shows that
varianceof the estimatesvith KS is largerthanthatof EMKS.
In addition,bothRLS andKS showoscillationin convergence,
while EMKS showsa slightly over-dampedesponseResults
for a fast varying FM signal show similar trends[29].

B. Motor-ImageryEEG Data

In this section,we apply our methodto the motor-imagery
datasetprovided by the Graz University of Technology.A
detailed descriptionof the datasetcan be found in [30]. In
the experimentthe subject’'staskwasto control a barin one
dimensionby imagining left- or right-handmovements.The
experimentincluded 7 runs with 40 trials eachof 9 seconds
(hence280 trials). Threebipolar EEG signalswere measured
over positionsCs, C, and Cy. The first 2 secondsvere quiet
and at ¢t = 2 seconds,an acoustic stimulus indicated the
beginningof thetrial. A cross('+’) wasdisplayedor 1 second.
Then,at ¢t = 3 secondsan arrow pointedeitherto the left or
right was displayedas a cue stimulus. The subjectwas asked
to imagine moving the bar in the direction of the cue. The
numberof left-hand cueswere equalto the numberof right-
handcues.For our analysiswe usemodelorderof p = 5, and
setA = 0.97 and o2 = 0.001 for RLS and KS respectively.
Theseparametersre chosento the bestof our ability based
on visualinspection For the EM algorithm,modelparameters
areestimatedwith 50 trials. For singletrial results the chosen
datasetdoesnot belongto the training datasetHowever, for
averagebehaviorthetrainingdatasets included,because¢here
would be too little dataotherwise.

Fig. 4 showsthe time-varying spectrumestimatesfor the
first 5 secondf atrial. This trial showsa decreasén activity
between?2 to 3 secondsand then after 4 seconds.We can
clearly seethat the EMKS estimatescapturethese patterns
accurately.Although KS detectsthe decreasen activity, the
estimateshave noisy peaksand are not smooth. RLS also
doesn’testimatehe patternproperly.Also notethatall of these
estimatesshow activity in the alphaband(8-12 Hz) which is
expectedor a motor-imageryexperimentFig. 5(a) showsthe
meanof the spectruntor all 70 trials of the right-handdataat
positionsC3 andC,. We canseethatfor all the methodghere
is a significantdecreaseén activity in the alphaband-powerat
position C'5 after the cueis presentedwhile thereis no such
patternat position Cy. Hence,on averagethe estimateshow
ERD. Comparisorwithin the methodsshowsthe sametrendas
theperformancdor asingletrial: EMKS estimatesresmooth,
while KS andRLS arenoisy. In additionEMKS andKS both
show better convergencethan RLS. The poor convergence
may affect the ERD estimatesThis is becausedhe reference
level is obtainedusinginitial estimatesFor completenesdrig
5(b) showsthe EMKS spectrumestimatedfor left-handdata.
The ERD patternsarereversechere,estimategor positionC
show ERD, while thosefor position C's do not. This clearly
demonstrateghe expectedhemisphericalasymmetrydue to
the motor-imageryexperiment.

We now discusgheresultsfor ERD estimationFig. 6 shows
a trial of right-hand data at position C3, its spectrum,and
ERD estimateseERD estimatesareobtainedwith thefollowing
settings:the frequencybandfor band-poweris chosento be
8-15 Hz, referencepoweris obtainedby averagingthe band-
powerfrom O to 2 secondsand ERD estimatesare smoothed
over a window length of 16 samples.We observethat the
derivedERD patternis in accordancevith the activity changes
in the spectrumHowever,becausaf high variability between
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Fig. 4. Thetime-varyingspectralestimate®f an EEG signalfor aright-hand
motor-imageryexperimentat position C's.

trials, it is difficult to draw any conclusionaboutthe general
behaviorof the ERD estimatedrom the singletrial estimates.
To prove the consistencyof ERD estimateon average,we
compareit with the standardnter-trial variance(IV) method
[7]. NotethatthelV methodgivesagoodestimateof ERD, but
is sensitiveto the selectionof the frequencyband.With visual
inspection,a frequencyband for the IV methodis chosen
to be 9-12Hz. A datasetof 70 trials is usedfor estimation.
Referencingandsmoothingaredonewith the sameparameters
usedfor EMKS. ERD estimatesare shownin Fig. 7. We can
seethatboth of the estimateshowsimilar patternsAlso, both
right- andleft-handdatashowdesynchronizatiorNote thatthe
frequencyrangechosenfor EMKS is quite large (8-15 Hz),
and doesnot haveto be chosenvery precisely.This is dueto
a bettertime-frequencyresolutionof spectrumestimateswith
EMKS ascomparedo other methods.

Finally, we comparethe classificationaccuracyobtained
using ERD estimatesWe usea similar linear discrimination
methodasdescribedn [5]. Training dataconsistsof 140trials
(70 eachfor right- andleft-handimagery)at positionsC3 and
C,. Four setsof modelparametersre estimatedwith the EM
algorithm correspondingo left- and right-handat positions
C5 andCy. TVAR coefficientsareobtainedwith thesemodels,
and a featurevectoris formed asfollows:

(30)

Herex!,,( orx} ;) denoteshe TVAR coefficientsof thesignal
at position C's using the right-hand(or left-hand)datamodel.
Similar notationsare usedfor the othervariables.A distance
D canbe computedfor a signal,usinga linear discrimination
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Fig.5. Theaveragespectrunfor theright-handmotor-imageryEEG data(a)
andthe left-handmotor-imagerydata(b). The cueis indicatedwith a vertical
line att = 3 seconds.

function asfollows:

Dy = widi —wo (31)
wherew, is the weightvectorandwy is the offset. D; > 0(<
0) meansthat signal is classifiedas a left-hand(right-hand)
trial. w: and wo are found with a support-vectormachine
(SVM) [31]. A Testdataof size 140 trials is classifiedusing
the above discrimination function, and a ten-timesten-fold
cross-validatioris appliedevery125ms|[5]. A time-courseof
error ERR, is thenobtained.Fig. 8 showsthe ERR, smoothed
over a window of 16 samplesAs expectedobeforethe event,
the error rate is close to 50%, and it drops after the cue
is presented.The lowest classificationaccuracyobtainedis
15.4% at time point 4.6 secondswith EMKS, 19.6% at 4.6
secondswith KS and 20.8 at 6.1 secondsfor RLS. We see
that EMKS givesthe leasterror rate. Also note that the least
error is obtainedat later time for RLS ascomparedo EMKS
andKsS, which is becausef the delayintroducedby the RLS
algorithm.
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Fig. 6. A motor-imagerytrial (top) chosenfrom the right-handmovement
experimentat position C3, alongwith the estimatedspectrumand ERD.
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Fig. 7. ERD estimateswith EMKS (thick line) and IV (thin line) for
imagination of the right-hand (top) and the left-hand (bottom) movements
at positionsC3 andCy. The eventtime is shownwith a verticalline att = 3
seconds.

V. CONCLUSION

In this paper,we proposean EM algorithm basedKalman
smootherapproachfor ERD estimation.Previousapproaches
imposeseveralconstraintson the AR model to make model
parametesettingeasierWe showthat suchconstraintsdeteri-
orateestimationperformanceThe proposedmethoddoesnot
requireany constraintsor manualsetting.In addition,optimal
estimatesn the maximumlikelihood senseare obtained.An-
otheradvantagef the proposedapproachs that the Kalman
smoothercan be usedfor coefficient estimationwith these
estimatedmodel parametersThis furtherimprovesestimation
performancecomparedto RLS basedapproachesWe show
thatthe proposedapproactsignificantlyimprovestrackingand
spectrumestimationperformance Application to real world
EEG datashowsthat the spectrumestimatesare smoothand
show good convergencelUseful ERD patternsare obtained
with the proposedmethodfor ERD estimation.The advantage
is that the method does not require a careful selection of
the frequencyband, in contrastto previous approachesin
addition, this study confirms the hemisphericalasymmetry
obtainedwith ERD, and supportsits usefor brain-computer

~
(=]

10+

t (sec)

Fig. 8. Time courseof smoothecerrorrate ERR; with EMKS, KS andRLS
algorithms.

interfaces.

Although the use of the EM algorithmis promising,there
are a few issues.The first oneis relatedto convergenceWe
found that convergencdecomesvery slow aftera few cycles,
and training takesa lot of time. To obtain a value close to
the true modelparametera large dataseis necessaryFurther
work on increasingthe rate of convergencecould be useful.
The secondissueis aboutthe validation of the aboveresults.
The proposedapproactshowsvery clearresultsfor the dataset
considered Although we do not expecta poor performance
on other datasetsyalidation with more datasetsand multiple
subjectswill confirm our method’sapplicability in a practical
brain-computeiinterfacesystem.
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APPENDIX
A. EM algorithm: Log-likelihoodderivation and M-step

Joint probability distribution of X;.7, Y1.7 can be written
as:
T

) [T

T
(X171, Y1.7|©) = (x¢|x¢—1 H (ye|x¢, hy)

(32)
Taking log and expectation,we get the expectationof joint
log-likelihood with respectto the conditionalexpectation:

Q EX|Y[1ng(X1:T7Y1:T‘®)} (33)
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For M-step, we takethe derivativeof Q with respectto each
model parameterand setit to zeroto get the estimate,e.g.,
an updatefor A canbe found as:

~ / 1
(P1|T —2mx, +mmy )] — 3 In |V3]

(_pin)_T In 27

(34)

T
g_i = [~ 245, ] =0 @)
t=2
which gives,
T T _
w0 () (S 5an) @
t=2 t=2

Updatesfor other parametergan be obtainedsimilarly.
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