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An Expectation-MaximizationAlgorithm Based
KalmanSmootherApproachfor Event-Related

Desynchronization(ERD) Estimationfrom EEG
MohammadEmtiyazKhan, andDeshpandeNarayanDutt

Abstract— In this paper, we consider the problem of event-
related desynchronization (ERD) estimation. In existing ap-
proaches,model parametersare usually found manually through
experimentation, a tedious task that often leads to suboptimal
estimates. We propose an expectation-maximization (EM) al-
gorithm for model parameter estimation which is fully auto-
matic and gives optimal estimates.Further, we apply a Kalman
smoother to obtain ERD estimates.Results show that the EM
algorithm significantly improves the performance of the Kalman
smoother. Application of the proposed approach to the motor-
imagery EEG data shows that useful ERD patterns can be
obtained even without careful selectionof frequency bands.

Index Terms— Event-related desynchronization, expectation-
maximization algorithm, Kalman smoother.

I. INTRODUCTION

VENT-RELATED desynchronization(ERD) and syn-
chronization(ERS)areusedto describethedecreaseand

increasein activity in the EEG signal, causedby physical
events[1]. Experimentsshow that the preparation,planning
andevenimaginationof specificmovementsresult in ERD in
mu andcentral-betarhythms[2]–[4]. In additionERD shows
significantdifferencesin EEG activity betweenleft- or right-
handmovements[5]. Thesedifferencescan be usedto build
communicationchannelsknown as brain-computerinterfaces
(BCI) which havebeenvery useful in providing assistanceto
paralyzedpatients[6].

ERD hasbeenstudiedextensivelyby researchersandmany
methodshavebeenproposedfor its estimation[7]–[11]. The
inter-trial variance(IV) method[7] is oneof the first methods
proposedfor quantification of ERD. In this method, ERD
estimatesare obtainedby computingan averagedinter-trial
varianceof a band-passfiltered signal. Useful information
about ERD time coursesand the hemisphericalasymmetry
canbeobtainedwith theseestimates.Howeverthe IV method
cannotbe usedfor on-line classificationbecauseit requires
averagingover multiple trials [5]. Another problem is that
it requires careful selection of frequency bands for ERD
estimation. To overcome these problems, a method based
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on the adaptive-autoregressive(AAR) model has been pro-
posed[8]. The AAR model is also called a time-varyingAR
(TVAR) model, and has been applied extensively for EEG
signal analysis[12], [13]. The TVAR coefficientsare usually
estimatedwith the recursive-leastsquare(RLS) algorithmand
classifiedwith a linear-discriminator.It is shown in [5] that
the TVAR coefficientscapturethe EEG patternsand improve
classificationaccuracy.However, in this method, values of
variousparameters(e.g.modelorder,updatecoefficients)are
required,which areusuallydifficult to find.

The TVAR model can also be written as a state-space
model.The advantageof this formulation is that the optimal
estimatescan be obtainedusing the Kalman filter [14]. The
Kalmanfilter is anoptimalestimatorin themean-squaresense
and other adaptivealgorithmslike the RLS algorithm can be
derived as a special caseof the Kalman filter [15]. If the
future measurementsare available,smoothingequationscan
be usedto further improve the estimationperformance.The
Kalmanfilters alongwith thesmoothingequationsareusually
referred to as a Kalman smoother[16], [17]. The Kalman
smootherhasbeenusedfor ERD estimationin [18], and an
improved tracking of ERD pattern is obtained.However in
this formulationasin theAAR modelformulation,settingthe
model parametersis a problem.To make it easierto set the
parameters,a very simple random-walkmodel is used.

We canseethat in all themethodsdiscussedabove,finding
valuesof modelparametersis a commonissue.In this paper,
we proposean expectation-maximization(EM) algorithm for
model parameterestimation.We usethe information present
in large training datasetsto estimatemodel parameters.The
paperis organizedas follows. In SectionII, we describethe
state-spaceformulationof time-varyingAR (TVAR) model.In
SectionIII, we describeour algorithmfor ERD estimation.In
SectionIV we discussthe resultsfollowed by a conclusionin
SectionV

II. TIME-VARYING AUTOREGRESSIVE(TVAR) MODEL

We denote scalars/vectors/matricesby small/bold/capital
′

We assumean EEG sequenceto follow a TVAR model:

p

t
t t−k t

k=1

letters.Also we denotethe transposeof a matrix A by A .

∑
y = a y + v (1)k
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Here {a }

t

t

there is no state noise in this model. Second,matrix A is

t|t−1 t−1|t−1

modelgiven by the following equation:

t|t t|t−1 t|t−1

t

0 0 t

t

In literature,theseare also called TVAR “parameters”,howeverto avoid

t

and varianceσ . We denotea sequenceof measurementsby
1:T 1 T

x = Ax + w (2)

proposethe use of an EM algorithm which allows model
w ∼ N (0, Q) is the i.i.d. noise,A is the transition matrix
and Q is a symmetric,positive definite matrix (both of size

III. EM ALGORITHM BASED APPROACH

MeasurementEquation:y = h x + v

t+1 t t

2) Estimationof the TVAR coefficients{x }.

p measurements.x is called the state of the system.The

0 0

A. Estimationof TVARcoefficients
0

We now compareour modelwith two previousapproaches
and show that they are special casesof our model. The
first approachis basedon an AAR model [8] wherein RLS
algorithm is usedto estimatex . It is shownin [15] that the
modelusedby theRLS algorithmis a specialcaseof thestate-
spacemodelgiven by Eq. (3), andcanbe written as follows:

′

t

x = E (x |Y )
(6)

t ,t |s t |s t |s

For convenience,whent = t = t, P is written asP .
Thestateestimate(x , P ) canbeobtainedwith theKalman

constrainedto a scaledidentity matrix which dependson the

ˆ ˆ
′

Thesecondapproach,proposedin [18], usesa random-walk
K = P h (h P h + σ ) (9)

ˆ ˆ ˆ
t+1 t t

P = (I − K h )P (11)

anceis constrainedto a scaledidentity matrix: Q = σ I (σ
is called the Kalmangain.

Note that the aboveKalmanfilter is a time-varyingfilter as
parameteris σ . Howeversettingthis parameteris evenmore

will also vary with time and can not be computeda priori ,
unlike the classicalKalman filter [14]. Henceit will require
more computationthan the classicalKalman filter. However
the increasein computationwill not be very large as we
are dealing with scalar measurements.Another important
differenceis in theconvergenceof thefilter. As P varieswith
the measurementsequence,it doesn’t convergeto a steady-
statevalue.To monitor convergencewe needto computethe

t|t

confusionwith modelparameterswe will alwaysusethe term “coefficients”

p
k k=1

order and v is the i.i.d. Gaussiannoise with zero mean
2
v

Y ≡ {y , . . . , y }. We also assumeTVAR coefficientsto Most of the time, manualsettingsgive sub-optimalsolutions
follow a Gauss-Markovprocess: andanequallygoodautomatictuningis alwayspreferred.It is

a well-known fact that if any a priori knowledgeis available,
t+1 t t

t t t ′

parametersto beestimatedusingtrainingdatasets.Wedescribe
the proposedapproachin next section.

p× p). Theseequationscanbe written asa singlestate-space
model:

′

t t t

StateEquation:x = Ax + w

′

3) Estimationof the ERD given TVAR coefficients.

initial stateis assumedto be Gaussian:x ∼ N(µ ,Σ ). For We first presentsolution to (2), followed by (1) and(3).
simplicity, the initial statevectorandnoisesareassumedto be
independentof eachother.All the modelparameterstogether

2
v

Given the measurementsequenceY , we want to find
estimatesof the TVAR coefficients. For this purpose we
use the Kalman filter [14] which gives the optimal estimate
in the mean-squaresense(in this section, we assumethat
the model parametersare available).We use the following
definitions for the conditional expectationsof the statesand
the correspondingerror covariances:

t t t

ˆ
t+1 t

′

t t 1:s

ing the AAR model as in Eq. (4) allows an easycomparison
1 2 t ,t |s t|s

ˆ
filter, which is given as follows:

choiceof λ. Note that the only tuning parameterin the AAR
model is λ.

t|t−1 t−1|t−1

′

t t t
′

t t
′

t

2 2
w w

is a non-negativereal number).Second,A is assumedto be
an identity matrix. With theseassumptionsthe only unknown

2
w

difficult thanλ as its rangeis not known (λ ∈ (0, 1)).
Both the AAR and the random-walkmodel imposecon-

straintsto reducethe numberof tuning parameters.Thereare
at least two major consequencesbecauseof this. First, the
samemodel is assumedfor all elementsof the statevector.
Secondly,all the elementsare assumedto be independentof
eachother.Theseassumptionsmay deterioratethe estimation
performance(we will show this in Section IV-A). Another

expectationof P with Monte-Carlosimulationsand check
if it settlesdown to a value (see[19] for an exampleof a

for these,andreservethe term “parameters”for modelparameters. time-varyingKalmanfilter).

are the TVAR coefficients, p is the model
t

1 2 p

(3)
1) Estimationof the modelparameterΘ.

t

0

1:T

(4)
t|s

ˆ ˆ

1 2

t v

t

Hereagain,thereare two differences.First, the noisecovari-

1|0 1|0

1

wherex ≡ [a a . . . a ] is the array of TVAR coefficients,
t

t

where h ≡ [y y . . . y ] is the vector of the past
t

0

aredenotedby Θ ≡ {A, σ ,Q,µ ,Σ }.

t

y = h x + v

−1/2

whereλ is theforgettingfactorfor theRLS algorithm.Rewrit-

with our model. There are two important differences.First,
t|t t|t

x = Ax (7)

P = AP A + Q (8)
2 −1

t|t−1 t|t−1

x = x + K (y − h x ) (10)

t|t t|t−1

with the initial conditionx = µ andP = Σ . HereK

h dependson time. Hencethe gain and the error covariance

t|t

1

t−1 t−2 t−p

x = λ x

x = x + w

importantpoint to note is that finding valuesof parametersis
difficult evenwhen the numberof parametersis small. This
is becauseit is usuallydonemanuallythroughtrial-and-error.

then it shouldbe usedin formulation of the model [15]. We

We split ERD estimationinto threesub-problems:

t 1:s

P = E (x − x )(x − x ) |Y

(5)

1 2 1 2

( )
1 2
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If the future measurementsY areavailable,thenthese 2) M-step: By direct differentiation of Q, we get the
canbe further usedto improve the accuracyof the estimates. following expressionsof the modelparameterestimates:
The smoothedestimates[20] canbe obtainedas follows:

−1

−1
t t|t

t=2 t=2

t
′

t+1:T

′
t+1|t

ˆ ˆ ˆ ˆ

P = P + J (P − P )J

Note that it is the designer’schoicewhetherto usesmoothing
equationsor not. For example,during an on-line analysis,the
Kalmansmootherwill give estimatesonly after theendof the
experiment,which may not be acceptable.But for an off-line
analysis,getting the estimatesafter the experimentmay not
matter.

B. Estimationof themodelparameterswith an EM algorithm

In this section,we describethe estimationof model pa-
rameterswith an EM algorithm. The objective is to com-
pute an estimateof Θ given a measurementsequence.For
Gaussianmodels,maximum likelihood (ML) estimateis an

ˆ

arg max log p(Y |Θ), where p(Y |Θ) is the probability
densityfunction of the measurements(alsocalledlikelihood).
Note that becauseof the dependenceon the states,which are
notavailable,directmaximizationis notpossible.Theproblem
is to maximizethe likelihood with respectto two unknowns:
statesand model parameters.The expectation-maximization
(EM) algorithmtakesaniterativeapproachby first maximizing
the likelihood with respectto thestatesin theE-step,andthen
maximizingwith respectto the parametersin the M-step.The
EM algorithmwasfirst introducedin [22], andhasbeenused
extensivelyfor modelparameterestimation[23]–[25]. The E-
stepmaximumis given by theexpectedvalueof thecomplete
log-likelihood function as follows:

Q ≡ E [log p(Y X |Θ)] (15)

The M-step involves the direct differentiation of Q to find
the values of the parameters.Thesecomputationsare done
iterativelyandconvergenceof thealgorithmis guaranteed[22].

We now describean EM algorithm for our model. For
derivation,we follow the proceduregiven in [24], anddetails
aregiven in AppendixA. A summaryis given below:

1) E-step: This stepinvolves the computationof Q given
themeasurementsY andanestimateof themodelparameter

ˆ

dependson the following threequantities:

ˆ (16)
′ ′

t|T t|T t|T

′ ′
t,t−1|T t,t−1|T t|T

The first two quantitiescan be obtainedusing the Kalman
smootherasdescribedin SectionIII-A. The last quantitycan
be obtainedasdescribedin [20] with the following equation:

P = J P (19)

Q is thenobtainedusingEq. (34) given in AppendixA.

J = P A P

x = x + J (x − x )

t

obvious choice [20], which is given as follows: Θ

Θ 1:T 1:T

1:T 1:T

1:T

from the previousiteration,Θ . As shownin AppendixA, Q

x ≡E(x |Y )

ˆ ˆ (17)

ˆ ˆ (18)

t−1

(12)

Q =

=

t|T t|t t+1|T t+1|t

t|T t|t t+1|T t+1|t

ML

X|Y

k

t 1:T

S ≡E(x x |Y ) = P + x x

S ≡E(x x |Y ) = P + x x

t,t−1|T t|T

T T
k+1

t,t−1|T t−1|T

(13)
1

(14)t

t|T

t 1:T

t 1:T

t t|T

t−1 t−1|T

( )( )
ˆ

k+1

∑ ∑
A = S S (20)

ˆ
T − 1

T

2̂
v t t t

t=1

k+1
1|T

k+1
0

where k denotesthe current iteration. We denoteall these
k+1

Both E and M steps are iterated, and convergenceis
monitoredwith the conditional likelihood function obtained
as follows:

T
k ′ 2

t=1

Thealgorithmis saidto haveconvergedif therelativeincrease
in the likelihood at the current time step comparedto the
previoustime is below a certainthreshold.

The above algorithm can be easily extendedto multi-
ple measurements.Assuming trials to be i.i.d., the Kalman
smootherestimatesneedto be averagedover all measurement
sequences.Substitution in M-step equationswill then give
the estimateof the parameterscorrespondingto the multiple
measurements.

Therearea few practicalissueswhich needto beaddressed
when implementingthe abovealgorithm.The first issueis of
numericalerror. Becauseof its iterativenature,the algorithm
is susceptibleto numericalround-off errorsand can diverge.
To solve the numericalproblem,we useda square-rootfilter
[26] implementationin this paper.The other issueconcerns
initialization. Some methodsare available for initialization
(e.g.subspaceidentificationmethodin [25], [27]). In thispaper
we usea simpler methodby assuminglocal stationarity.We
divide the datasetinto overlappingwindows,and for eachof

2
v

From these local estimates,we find maximum likelihood
estimatesof Q. We setA to identity andthe initial statemean
andcovarianceto zeroand identity matrix respectively.

C. Estimationof ERD

In this section,we describethe estimationof ERD using
the TVAR coefficient estimatesobtained with the Kalman
smoother.The approachis motivatedby an earlier analysis
using an AR spectrumdiscussedin [28]. We use a similar
method,but with a time-varyingAR spectrum.Given TVAR
coefficients,time-varyingspectrumestimatescanbe obtained
as follows,

H(t, f) =

( )
ˆ

2
t|T t|T

1|T

′

t|t−1 t|t−1

ˆ

T T
k+1

t|T t−1,t|T

t=2 t=2

′ ′

t t

′

1|T

( )
ˆ

(25)

σ

∑ ∑
S − A S (21)

ˆ

t t v

v

∑
σ = (y − 2 h x y + h S h ) (22)

ˆ ˆ

ˆ

ˆ

∑
log p(Y |Θ ) = log N (h x ,h P h + σ )

these,wefind x andσ usingMATLAB’s ARYULE function.

k+1

T

µ = x (23)

ˆ ˆ

estimatestogetherasΘ .

ˆ

t

1

1

Σ = S − x x (24)

1:T t

1

|1 − a e |
∑ (26)p −2πif/f

i=1
ˆi

t
s
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i thHere f is the samplingfrequency,ˆ is the i elementof
the estimatedstate-vectorandf is the frequencyin the range
[0, f /2]. As ERD is seenonly in specific frequencybands,
we averagethe spectrumto get band-powerP :

f
2

B

f=f

where (f , f ) is the band of interest.The band can be set
through visual inspectionor by using a threshold.We will
showlater that a very preciseselectionof the frequencyband
is not required,and that a roughsettingservesthe purpose.

An ERD estimateis then found by computingthe relative
band-powerwith respect to a referencewindow. First, a
referencepower is obtainedby averagingband-powerover a
time interval,wherethe ERD patternis expectedto be absent
(most probably at the start of the experiment).ERD is then
obtainedwith the following equation:

P (t) − P

s

∑

ERD(t) =

a

s

B

2

P (t) = H(t, f) (27)
1

1 2

B ref

t

P

P (t) is the referenceband-power
for time T to T . The ERD estimatesobtainedare further
smoothedby averagingover a time window. The abovepro-
cedureis similar to the IV method[7] whereERD estimates
areobtainedin the time domainby computingthevarianceof
a band-passfilteredEEG.Thedifferenceis that theIV method
doescomputationin the time domain,while our methodis in
the frequencydomain.For the IV methoda careful selection
of the frequencyband is required.We will show in Section
IV that our approachdoesnot requiresuchprecisionfor the
frequencyband.

IV. RESULTS

In this section, we study the effect of model parameter
estimationwith the EM algorithm.We comparethe proposed
approachwith two previous approachesbasedon the RLS
algorithm and the Kalman smootherand discussedin [8]
and [18] respectively (see Section II for details of these
approaches).In the rest of the paper,we will refer to these
approachesas RLS and KS respectively,while we call our
approachEMKS.

A. SimulationResults

We comparethe approachesfor two criteria relevantto the
estimationof ERD: (i) trackingof the TVAR coefficients,and
(ii) spectrumestimationof a nonstationarysignal. Note that
this evaluationrequirestime-varyingsimulationdata.To gen-
eratea smoothlytime-varyingsignal,we considernon-linear
models.This helpsus to study the effect of approximatinga
nonlinearsignal,suchasanEEGsignal,with a TVAR model.
Howeveradirectcomparisonof themodelparameterestimates
is not possiblefor thesecasesastheactualmodelwill benon-
linear. Hencewe baseour comparisonon the performanceof
a filter using the estimatedmodel.

For thefirst criteria,we generatea smoothlyvaryingAR(2)
process(see [18] for simulation details). The trace of the

ref

B

(28)

where P =
∑

ref

1 2

T
t=T

2

1
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Fig. 1. (a) The root evolutionanda typical realizationof the AR(2) process
2

with EMKS (thick black line), KS (thin black line) andRLS (thin gray line).
The actualTVAR coefficientsareshownwith a thick gray line.

simulated model root and a typical realization are shown
in Fig. 1(a). A signal is generatedfor 2 seconds,sampled
at 128 Hz and the noise varianceis set to 0.2. The model
order is set to p = 2, equal to the actual model order.
The model parametersare estimatedwith the EM algorithm
using a datasetof 100 sequences.The samedatasetis used

2
w

for minimum mean-squareerror. The optimizationresultsare
shownin Fig. 1(a),andthevaluesobtainedareλ = 0.898 and

2
w

parameters.
Estimatesfor one realizationareshownin Fig. 1(b). From

thesefigures,it is clearthatEMKS givesthebestperformance.
AlthoughRLSandKS trackthefirst coefficientto someextent,
they do not track the secondcoefficient very well. This is
becausethe samemodel is assumedfor both coefficients(see
SectionII). The optimization function is biasedtowardsthe
first coefficientasits magnitudeis higher,andtheestimatefor
thesecondcoefficientsuffers.Themodelparametersestimated
with EM algorithmdo not imposeany suchconstrainton the
model,andbothcoefficientshavedifferentmodels.Themeans
andvariancesof the estimatesfor 100 realizationsareshown

alongwith the optimizationof λ andσ (b) The TVAR coefficientestimates

to set parametersfor RLS and KS. λ and σ are optimized

σ = 0.037. TVAR coefficientsarethenestimatedwith these

w
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Fig. 2. The averagebehavior:mean(thick black line) and “mean ±3σ”
(thin black line) with RLS, KS andEMKS. TheactualTVAR coefficientsare
shownwith a thick gray line.
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Fig. 3. (Left) Optimizationof parametersalongwith a realizationof linear
FM signalandthe IF estimateswith EMKS (thick black line), KS (thin black
line) andRLS (thin grayline) andtheactualf (thick grayline). (Right) Mean
(thick black line) and“mean±3σ limit” (thin black line) for eachmethod.

in Fig. 2 which showthe sametrendsfor the performanceof
thealgorithms.Hencewe concludethatthebetterperformance
of EMKS is due to the bettermodelparameterestimates.

Next we comparetheperformancefor spectrumestimation.
For this purposewe considera frequencymodulatedsignal
given by the following equation:

y = 5 sin(2πf t) + u (29)

where f is called the instantaneousfrequency(IF) and u
2
u

a linearly frequency modulation: f = 10t. The signal is
generatedfor 2 seconds,sampledat 128 Hz and the noise
varianceis set to 1. As the simulatedsignalcontainsa single
frequencycomponent,we need2 polesto model it. However
empirical evidencesuggeststhat p = 4 is more appropriate
for noisy data.Model parametersareobtainedwith the same
methodused in the first simulation. Optimized valuesof λ

2
w

obtainedby picking the peaksof the spectrumobtainedusing
estimatedTVAR coefficients.Fig. 3(a) shows the estimates
for a realization. It can be seenthat EMKS showssmooth
convergence,and leaststeady-stateerror. While performance
of RLS is quite poor, KS seemsto track as well as EMKS.
However, the averageperformancein Fig. 3(b) shows that
varianceof theestimateswith KS is largerthanthatof EMKS.
In addition,bothRLSandKS showoscillationin convergence,
while EMKS showsa slightly over-dampedresponse.Results
for a fast varying FM signalshowsimilar trends[29].

RLS

KS

EMKS

t

t t

t t

is a zero meanGaussiannoisewith varianceσ . We choose
t

and σ are found to be 0.87 and 0.0006. IF estimatesare

t

B. Motor-ImageryEEG Data

In this section,we apply our methodto the motor-imagery
datasetprovided by the Graz University of Technology.A
detaileddescriptionof the datasetcan be found in [30]. In
the experiment,the subject’staskwas to control a bar in one
dimensionby imagining left- or right-handmovements.The
experimentincluded7 runs with 40 trials eachof 9 seconds
(hence280 trials). Threebipolar EEG signalsweremeasured
over positionsC , C andC . The first 2 secondswerequiet
and at t = 2 seconds,an acoustic stimulus indicated the
beginningof thetrial. A cross(‘+’) wasdisplayedfor 1 second.
Then,at t = 3 seconds,an arrow pointedeither to the left or
right wasdisplayedasa cuestimulus.The subjectwasasked
to imagine moving the bar in the direction of the cue. The
numberof left-handcueswere equalto the numberof right-
handcues.For our analysis,we usemodelorderof p = 5, and

2
w

Theseparametersare chosento the bestof our ability based
on visual inspection.For theEM algorithm,modelparameters
areestimatedwith 50 trials. For singletrial results,thechosen
datasetdoesnot belongto the training dataset.However,for
averagebehaviorthetrainingdatasetis included,becausethere
would be too little dataotherwise.

Fig. 4 showsthe time-varying spectrumestimatesfor the
first 5 secondsof a trial. This trial showsa decreasein activity
between2 to 3 secondsand then after 4 seconds.We can
clearly see that the EMKS estimatescapturethesepatterns
accurately.Although KS detectsthe decreasein activity, the
estimateshave noisy peaksand are not smooth. RLS also
doesn’testimatethepatternproperly.Also notethatall of these
estimatesshowactivity in the alphaband(8-12 Hz) which is
expectedfor a motor-imageryexperiment.Fig. 5(a) showsthe
meanof thespectrumfor all 70 trials of the right-handdataat
positionsC andC . We canseethat for all themethodsthere
is a significantdecreasein activity in the alphaband-powerat
positionC after the cue is presented,while thereis no such
patternat positionC . Hence,on average,the estimatesshow
ERD.Comparisonwithin themethodsshowsthesametrendas
theperformancefor asingletrial: EMKS estimatesaresmooth,
while KS andRLS arenoisy. In additionEMKS andKS both
show better convergencethan RLS. The poor convergence
may affect the ERD estimates.This is becausethe reference
level is obtainedusinginitial estimates.For completeness,Fig
5(b) showsthe EMKS spectrumestimatesfor left-handdata.
TheERD patternsarereversedhere,estimatesfor positionC
show ERD, while thosefor position C do not. This clearly
demonstratesthe expectedhemisphericalasymmetrydue to
the motor-imageryexperiment.

Wenowdiscusstheresultsfor ERDestimation.Fig. 6 shows
a trial of right-hand data at position C , its spectrum,and
ERDestimates.ERDestimatesareobtainedwith thefollowing
settings:the frequencybandfor band-poweris chosento be
8-15 Hz, referencepower is obtainedby averagingthe band-
powerfrom 0 to 2 seconds,andERD estimatesaresmoothed
over a window length of 16 samples.We observethat the
derivedERD patternis in accordancewith theactivity changes
in thespectrum.However,becauseof high variability between

3 z 4

set λ = 0.97 and σ = 0.001 for RLS and KS respectively.
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Fig. 4. Thetime-varyingspectralestimatesof anEEGsignalfor a right-hand
motor-imageryexperimentat positionC .

trials, it is difficult to draw any conclusionaboutthe general
behaviorof the ERD estimatesfrom the singletrial estimates.
To prove the consistencyof ERD estimateon average,we
compareit with the standardinter-trial variance(IV) method
[7]. NotethattheIV methodgivesagoodestimateof ERD,but
is sensitiveto theselectionof the frequencyband.With visual
inspection,a frequencyband for the IV method is chosen
to be 9-12Hz. A datasetof 70 trials is usedfor estimation.
Referencingandsmoothingaredonewith thesameparameters
usedfor EMKS. ERD estimatesareshownin Fig. 7. We can
seethatbothof theestimatesshowsimilar patterns.Also, both
right- andleft-handdatashowdesynchronization.Notethatthe
frequencyrangechosenfor EMKS is quite large (8-15 Hz),
anddoesnot haveto be chosenvery precisely.This is dueto
a bettertime-frequencyresolutionof spectrumestimateswith
EMKS ascomparedto othermethods.

Finally, we comparethe classificationaccuracyobtained
using ERD estimates.We usea similar linear discrimination
methodasdescribedin [5]. Trainingdataconsistsof 140trials
(70 eachfor right- andleft-handimagery)at positionsC and
C . Four setsof modelparametersareestimatedwith the EM
algorithm correspondingto left- and right-handat positions
C andC . TVAR coefficientsareobtainedwith thesemodels,
anda featurevector is formedas follows:

[ ]
R3 L3
t t
R4 L4

t t
R3 L3

at positionC using the right-hand(or left-hand)datamodel.
Similar notationsareusedfor the othervariables.A distance
D canbe computedfor a signal,usinga linear discrimination
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Fig. 5. Theaveragespectrumfor theright-handmotor-imageryEEGdata(a)
andthe left-handmotor-imagerydata(b). Thecueis indicatedwith a vertical
line at t = 3 seconds.

function as follows:

T
t

wherew is theweightvectorandw is theoffset.D > 0(<
0) meansthat signal is classifiedas a left-hand(right-hand)
trial. w and w are found with a support-vectormachine
(SVM) [31]. A Testdataof size140 trials is classifiedusing
the above discrimination function, and a ten-timesten-fold
cross-validationis appliedevery125ms [5]. A time-courseof
errorERR is thenobtained.Fig. 8 showstheERR smoothed
over a window of 16 samples.As expectedbeforethe event,
the error rate is close to 50%, and it drops after the cue
is presented.The lowest classificationaccuracyobtainedis
15.4% at time point 4.6 secondswith EMKS, 19.6% at 4.6
secondswith KS and 20.8 at 6.1 secondsfor RLS. We see
that EMKS gives the leasterror rate.Also note that the least
error is obtainedat later time for RLS ascomparedto EMKS
andKS, which is becauseof the delayintroducedby the RLS
algorithm.

D = w

t 0

t t

t d − w

0 t

t 0 (31)

t
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V. CONCLUSION

In this paper,we proposean EM algorithm basedKalman
smootherapproachfor ERD estimation.Previousapproaches
imposeseveralconstraintson the AR model to makemodel
parametersettingeasier.We showthatsuchconstraintsdeteri-
orateestimationperformance.The proposedmethoddoesnot
requireany constraintsor manualsetting.In addition,optimal
estimatesin the maximumlikelihood senseareobtained.An-
otheradvantageof the proposedapproachis that the Kalman
smoothercan be used for coefficient estimationwith these
estimatedmodelparameters.This further improvesestimation
performancecomparedto RLS basedapproaches.We show
thattheproposedapproachsignificantlyimprovestrackingand
spectrumestimationperformance.Application to real world
EEG datashowsthat the spectrumestimatesare smoothand
show good convergence.Useful ERD patternsare obtained
with theproposedmethodfor ERD estimation.Theadvantage
is that the method does not require a careful selectionof
the frequencyband, in contrast to previous approaches.In
addition, this study confirms the hemisphericalasymmetry
obtainedwith ERD, and supportsits use for brain-computer
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Fig. 8. Time courseof smoothederror rateERR with EMKS, KS andRLS
algorithms.

interfaces.
Although the useof the EM algorithm is promising,there

are a few issues.The first one is relatedto convergence.We
found that convergencebecomesvery slow after a few cycles,
and training takesa lot of time. To obtain a value close to
the true modelparameter,a largedatasetis necessary.Further
work on increasingthe rate of convergencecould be useful.
The secondissueis aboutthe validationof the aboveresults.
Theproposedapproachshowsvery clearresultsfor thedataset
considered.Although we do not expecta poor performance
on other datasets,validation with more datasetsand multiple
subjectswill confirm our method’sapplicability in a practical
brain-computerinterfacesystem.
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APPENDIX

A. EM algorithm: Log-likelihoodderivationand M-step

Joint probability distribution of X ,Y can be written
as:

T T

p(X ,Y |Θ) = p(x ) p(x |x ) p(y |x ,h )
t=2 t=1

Taking log and expectation,we get the expectationof joint
log-likelihood with respectto the conditionalexpectation:

Q = E [log p(X ,Y |Θ)] (33)

T 1
v

t

1:T 1:T

∏ ∏
1:T 1:T 1 t t−1 t t t

(32)

1:T 1:T
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∑
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∑
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′ ′

1 1 1

T − 1 (p + 1)T

2 2

For M-step,we takethe derivativeof Q with respectto each
model parameter,and set it to zero to get the estimate,e.g.,
an updatefor A canbe found as:

T

= − − 2S + 2AS = 0 (35)
t=2

which gives,

T T
k+1

t,t−1|T t−1|T

t=2 t=2

Updatesfor otherparameterscanbe obtainedsimilarly.
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