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Abstract

Cognitive radio (CR) paradigm is a new radio technology proposed to solve spectrum

scarcity and underutilization. Central to CR is spectrum sensing (SS), which is responsi-

ble for detecting unoccupied frequencies. Since Detection techniques differ in their perfor-

mance, selecting the optimal detection method to locally perform SS has received significant

attention. This research work aims to enhance the reliability of local detection decisions,

under low SNR, by developing a spectrum sensing that can take advantage of multiple

detection techniques. This model can either select the optimal technique or make these

techniques cooperate with one another to achieve better sensing performance. The model

performance is measured with respect to detection and false alarm probability as well as

sensing time. To develop this model, the performance of three detection techniques is eval-

uated and compared. Furthermore, the voting and the maximum a posteriori probability

(MAP) fusion models were developed and employed to combine spectrum sensing results

obtained from the three techniques. It is concluded that the cyclostationary feature detec-

tion technique is a superior detector in low SNR situations. MAP fusion model is found

to be more reliable than the voting model.
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Chapter 1

Introduction

1.1 Introduction

Communication networks, wired and wireless, play a vital role in each aspect of modern

life: social, economic, healthcare, and others. During the last two decades, there has been

enormous demands for wireless communication services. The transmission medium for

such services is the space where the data are transmitted as electromagnetic waves over

a specific radio frequency. Wireless communications can be transmitted over frequencies

between 3 kHz to 300 GHz; this range is called the radio spectrum. In fact, the radio

or frequency spectrum is a natural and valuable limited resource. Therefore, it must be

efficiently exploited or utilized.

Radio spectrum is managed by certain regulations. The International Telecommuni-

cations Union (ITU) coordinates global spectrum use, while the spectrum regulator of

each country is responsible for managing and monitoring national use. Basically, the radio

spectrum is divided into three categories: licensed bands, unlicensed bands, and restricted

bands for emergency or security use. Anyone can transmit over unlicensed bands such

the industrial, scientific and medical (ISM) bands. Therefore, these bands do not provide
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high quality of services because of the high interference among unlimited numbers of ex-

pected users. On the other hand, only the owners or licensees can use licensed bands. This

exclusive access guarantees the absence of interference from other spectrum users. Con-

ventionally, spectrum users request a specific frequency band from the spectrum regulator,

responsible for assigning frequencies according to spectrum regulations.

Due to the ever-growing demand for the radio spectrum and the exclusive access to

licensed bands, it has become increasingly difficult for the Federal Communications Com-

mission (FCC) and regulators of many countries to assign spectrum for new wireless services

[1]. However, studies indicate that allocated licensed frequencies are largely underutilized

in specific regions as depicted in Figure 1.1 [2, 3]. These findings open a new area of

research to find a solution for spectrum scarcity and spectrum underutilization and to

achieve efficient spectrum use and high-quality services. Recent studies have proposed a

new approach to spectrum management whereby secondary users are given access to li-

censed bands which otherwise would be allocated for the restricted access of the license

holders. This approach requires a secondary user to be able to detect the unused fre-

quency and vacate this frequency at the time the licensed user accesses it without affecting

its transmission. In other words, the new approach is to develop an intelligent radio that

actively senses its environment so as to detect unoccupied frequencies and reconfigure its

transmission parameters, such as centre frequency, bandwidth, power, modulation type,

encryption type, and frame size. This is the basic concept of cognitive radio (CR).

1.2 Cognitive Radio

The main objective of cognitive radio is to achieve efficient spectrum use by enabling

dynamic spectrum access. FCC has defined cognitive radio as “a radio that can change its

2



Commission (FCC) [20], temporal and geographical
variations in the utilization of the assigned spectrum
range from 15% to 85%. Although the fixed spec-
trum assignment policy generally served well in the
past, there is a dramatic increase in the access to
the limited spectrum for mobile services in the
recent years. This increase is straining the effective-
ness of the traditional spectrum policies.

The limited available spectrum and the inefficiency
in the spectrum usage necessitate a new communi-
cation paradigm to exploit the existing wireless spec-
trum opportunistically [3]. Dynamic spectrum access
is proposed to solve these current spectrum ineffi-
ciency problems. DARPAs approach on Dynamic
Spectrum Access network, the so-called NeXt Gener-
ation (xG) program aims to implement the policy
based intelligent radios known as cognitive radios
[67,68].

NeXt Generation (xG) communication net-
works, also known as Dynamic Spectrum Access
Networks (DSANs) as well as cognitive radio net-
works, will provide high bandwidth to mobile users
via heterogeneous wireless architectures and
dynamic spectrum access techniques. The inefficient
usage of the existing spectrum can be improved
through opportunistic access to the licensed bands
without interfering with the existing users. xG net-
works, however, impose several research challenges
due to the broad range of available spectrum as well
as diverse Quality-of-Service (QoS) requirements of
applications. These heterogeneities must be cap-
tured and handled dynamically as mobile terminals
roam between wireless architectures and along the
available spectrum pool.

The key enabling technology of xG networks is
the cognitive radio. Cognitive radio techniques pro-
vide the capability to use or share the spectrum in

an opportunistic manner. Dynamic spectrum access
techniques allow the cognitive radio to operate in
the best available channel. More specifically, the cog-
nitive radio technology will enable the users to (1)
determine which portions of the spectrum is avail-
able and detect the presence of licensed users when
a user operates in a licensed band (spectrum sens-
ing), (2) select the best available channel (spectrum
management), (3) coordinate access to this channel
with other users (spectrum sharing), and (4) vacate
the channel when a licensed user is detected (spec-
trum mobility).

Once a cognitive radio supports the capability to
select the best available channel, the next challenge
is to make the network protocols adaptive to the
available spectrum. Hence, new functionalities are
required in an xG network to support this adaptivity.
In summary, the main functions for cognitive radios
in xG networks can be summarized as follows:

• Spectrum sensing: Detecting unused spectrum
and sharing the spectrum without harmful inter-
ference with other users.

• Spectrum management: Capturing the best avail-
able spectrum to meet user communication
requirements.

• Spectrum mobility: Maintaining seamless com-
munication requirements during the transition
to better spectrum.

• Spectrum sharing: Providing the fair spectrum
scheduling method among coexisting xG users.

These functionalities of xG networks enable spec-
trum-aware communication protocols. However,
the dynamic use of the spectrum causes adverse
effects on the performance of conventional commu-
nication protocols, which were developed consider-
ing a fixed frequency band for communication. So
far, networking in xG networks is an unexplored
topic. In this paper, we also capture the intrinsic
challenges for networking in xG networks and lay
out guidelines for further research in this area. More
specifically, we overview the recent proposals for
spectrum sharing and routing in xG networks as
well as the challenges for transport protocols. More-
over, the effect of cross-layer design is addressed for
communication in xG networks.

The xG network communication components
and their interactions are illustrated in Fig. 2. It is
evident from the significant number of interactions
that the xG network functionalities necessitate a
cross-layer design approach. More specifically, spec-

Fig. 1. Spectrum utilization.

2128 I.F. Akyildiz et al. / Computer Networks 50 (2006) 2127–2159

Figure 1.1: Spectrum Utilization [3]

transmitter parameters based on interaction with the environment in which it operates”

[4]. Cognitive radio users are called secondary users (SUs), while the owners of licensed

bands are referred to as primary users (PUs). A network that uses CR technology is called

Cognitive Radio Network (CRN), as shown in Figure 1.2.

Many studies have been conducted to develop radio devices with CR characteristics.

Mitola is the first to present the idea of CR based on a software-defined radio platform

[5]. In [3], Akyildiz et al. demonstrate the main characteristics of CR, which are cognitive

capability and reconfigurability. Cognitive capability enables CR users to interact with the

spectrum environment, while reconfigurability allows CR devices to change their transmis-

sion parameters. They also define the cognitive cycle, as shown in Figure 1.3. In order to

perform this cycle, CR must have four components. The first and most vital component

is spectrum sensing (SS), which is the ability to detect unused frequencies. The second
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Figure 1.2: Cognitive Radio Network

component is spectrum management, which is the analysis of the available frequency holes

so as to choose the one that satisfies certain quality-of-service requirements [6]. The third

component is spectrum mobility or handoff that guarantees that secondary users are able

to seamlessly transit to use another frequency with no connection loss once the primary

user is detected. The forth component is a spectrum-sharing technique that determines the

spectrum-scheduling mechanism. Figure 1.4 shows the four CR components. Using cogni-

tive radio also requires significant changes to current regulations and policies on spectrum

use, which may open a secondary market for the spectrum [7].
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2. Spectrum analysis: The characteristics of the
spectrum holes that are detected through spec-
trum sensing are estimated.

3. Spectrum decision: A cognitive radio determines
the data rate, the transmission mode, and the
bandwidth of the transmission. Then, the appro-
priate spectrum band is chosen according to the
spectrum characteristics and user requirements.

Once the operating spectrum band is determined,
the communication can be performed over this spec-
trum band. However, since the radio environment
changes over time and space, the cognitive radio
should keep track of the changes of the radio envi-
ronment. If the current spectrum band in use
becomes unavailable, the spectrum mobility function
that will be explained in Section 6, is performed to
provide a seamless transmission. Any environmen-
tal change during the transmission such as primary
user appearance, user movement, or traffic variation
can trigger this adjustment.

2.3. Reconfigurability

Reconfigurability is the capability of adjusting
operating parameters for the transmission on the
fly without any modifications on the hardware com-
ponents. This capability enables the cognitive radio
to adapt easily to the dynamic radio environment.
There are several reconfigurable parameters that
can be incorporated into the cognitive radio [20]
as explained below:

• Operating frequency: A cognitive radio is capable
of changing the operating frequency. Based on
the information about the radio environment,

the most suitable operating frequency can be
determined and the communication can be
dynamically performed on this appropriate oper-
ating frequency.

• Modulation: A cognitive radio should reconfigure
the modulation scheme adaptive to the user
requirements and channel conditions. For exam-
ple, in the case of delay sensitive applications, the
data rate is more important than the error rate.
Thus, the modulation scheme that enables the
higher spectral efficiency should be selected. Con-
versely, the loss-sensitive applications focus on
the error rate, which necessitate modulation
schemes with low bit error rate.

• Transmission power: Transmission power can be
reconfigured within the power constraints. Power
control enables dynamic transmission power con-
figuration within the permissible power limit. If
higher power operation is not necessary, the cog-
nitive radio reduces the transmitter power to a
lower level to allow more users to share the spec-
trum and to decrease the interference.

• Communication technology: A cognitive radio can
also be used to provide interoperability among
different communication systems.

The transmission parameters of a cognitive radio
can be reconfigured not only at the beginning of a
transmission but also during the transmission.
According to the spectrum characteristics, these
parameters can be reconfigured such that the
cognitive radio is switched to a different spectrum
band, the transmitter and receiver parameters are
reconfigured and the appropriate communication
protocol parameters and modulation schemes are
used.

3. The xG network architecture

Existing wireless network architectures employ
heterogeneity in terms of both spectrum policies
and communication technologies [3]. Moreover,
some portion of the wireless spectrum is already
licensed to different purposes while some bands
remain unlicensed. For the development of commu-
nication protocols, a clear description of the xG net-
work architecture is essential. In this section, the xG
network architecture is presented such that all pos-
sible scenarios are considered.

The components of the xG network architecture,
as shown in Fig. 6, can be classified in two groups as
the primary network and the xG network. The basic

Fig. 5. Cognitive cycle.

2132 I.F. Akyildiz et al. / Computer Networks 50 (2006) 2127–2159

Figure 1.3: Cognitive Cycle [3]
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Figure 1.4: Cognitive Radio Components

1.3 Research Motivation

Spectrum sensing is a CR component that to a great extent defines the effectiveness of CR

components. Therefore, extensive research has been conducted to develop and evaluate

spectrum sensing techniques. Cognitive users perform spectrum sensing during the quiet

period. Since no transmission occurs during this period, it should be as short as possible.
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Consequently, spectrum-sensing must be able to detect unoccupied frequencies as fast as

possible. To meet such time constraints, simple signal detection methods are employed to

perform spectrum sensing. However, it has been found that simple detection techniques

cannot achieve reliable and accurate sensing results under low signal-to-noise (SNR) and

deep fading situations [2, 8]. To enhance spectrum detection reliability and accuracy,

some researchers propose fusion of multiple local detection decisions, cooperative spectrum

sensing (CSS) [9, 10].

Since detection techniques differ in their performance, selecting the most suitable detec-

tion method to locally perform spectrum sensing has been considered as a major challenge.

For example, while energy detector (ED) cannot detect signals with low SNR, cyclosta-

tionary feature detector (CSFD) can achieve that but at the cost of time and complexity.

Matched Filter (MF) is the optimal detection technique if PU’s information is known. In

contrast to matched filter and cyclostationary feature detector, energy detector requires

no prior knowledge of the PU signal. These observations raise the question of whether

it would be possible to enhance the sensing performance if different detection techniques

collaborate to perform local spectrum sensing, and if so, at what cost. Recent studies

proposed two-stage spectrum sensing model in which a simple detection method performs

SS in the first stage, and more powerful method is used in the second stage [11, 12].

This research aims to enhance local decisions reliability by developing a spectrum-

sensing models based on the fusion of multi-detection techniques. This model can either

select the optimal technique or make these techniques cooperate with one another to achieve

better sensing performance. The collaboration is achieved by fusing decisions obtained by

different techniques to compute more accurate and more reliable local decisions. The model

performance is measured with respect to detection and false alarm probability, as well as

sensing time. The objective of this model is to maximize the probability of detection

6



(low interference with PUs) and to minimize the probability of false alarm (high spectrum

utilization), with minimum complexity and sensing time.

1.4 Research Contributions

The contributions of this thesis are as follows: First, a spectrum sensing model in which

the local decision is a result of fusing decisions of three detection techniques was proposed.

Second, the dynamic threshold setting method based on minimizing the total error rate

as proposed in [13] for energy detector is investigated and employed to set a dynamic

threshold of the other two techniques (MF and CSFD). Third, this study provides a com-

parison between the fixed and dynamic threshold setting methods for the three selected

techniques. In addition, this research provides a performance comparison among energy

detector, matched filter, and cyclostationary feature detector. Finally, this study shows

how the results of these techniques can be combined to enhance local detection in low SNR

environment based on certain decision fusion models.

1.5 Thesis Outline

This thesis is composed of seven chapters: Chapter 1 provides an introduction to the thesis.

Chapter 2 provides a literature review on the topic related to the research conducted in this

thesis. Chapter 3 describes the proposed multi-techniques spectrum sensing based model.

Chapter 4 introduces the detection unit of the proposed model. Chapter 5 introduces the

fusion unit. Chapter 6 reports and discusses simulation results of the proposed SS model.

Chapter 7 summarizes the work conducted in this thesis and provides concluding remarks

and recommendations for future directions.
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Chapter 2

Background and Related work

2.1 Introduction

Spectrum sensing (SS), is the detection of temporal unoccupied frequencies, called spec-

trum opportunities or spectrum holes [14]. Hence, spectrum sensing must be made in

with respect to time, frequency, space, code and angle of transmission to detect unutilized

frequencies [2]. Optimally, spectrum-sensing techniques must be able to quickly, securely,

frequently, accurately and reliably identify spectrum holes and any change of frequency-in-

use status. Figure 2.1 shows the main requirements of spectrum sensing. However, many

challenges make it hard to develop a cognitive radio with spectrum sensing capability that

meets all these requirements. The detection results dramatically affect the accuracy of the

other CR components. Therefore, spectrum sensing is a crucial issue in cognitive radio,

and that has recently received the attention of many researchers.

This chapter provides background information about spectrum sensing and literature

review. Section 2.2 discusses some of the spectrum sensing challenges. Section 2.3 in-

troduces two main categories of spectrum sensing techniques. Sections 2.4, 2.5, and 2.6,

respectively, provide a review of literature on local spectrum sensing, cooperative spectrum

8



Figure 2.1: Spectrum Sensing Requirments

sensing and external spectrum sensing. Section 2.7 summarizes this chapter.

2.2 Spectrum Sensing Challenges

Designing an efficient spectrum-sensing technique is a fundamental and most problematic

functionality in the cognitive radio paradigm. Spectrum sensing approaches differ in the

level of complexity, accuracy, reliability, computational cost and speed. Indeed, it is hard

for any given technique to achieve high performance with respect to all spectrum sensing

requirements; therefore, tradeoff among these requirements is necessary to achieve satisfac-

tory overall spectrum-sensing results. Some of the challenges that make spectrum sensing

a challenging task are:
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1. Hardware and Software Constraints

Several hardware requirements must be taken into account by the designer of a cog-

nitive radio device, namely, cost, complexity, and size. Most cognitive radio target

applications imply low-power, low-cost, and low-size devices. Wireless sensor net-

works and Ad hoc vehicle networks are two examples of such applications. On the

other hand, cognitive radio requires high speed computational capability for process-

ing signals, and hence may benefit from embedded technologies such as FPGA and

DSP [2]. In addition, CR devices must be able to sense a wide range of frequencies to

obtain better sensing results; consequently, they must have powerful antennas, power

amplifiers, high sampling time, and high-resolution ADCs [2, 15]. These requirements

make meeting the power, cost and size constraints of CR a significant challenge.

Several CR hardware implementations have been developed. For example, Commu-

nications Research Centre Canada designed a hardware CR prototype board [16].

GNU Radio, Universal Software Radio Peripheral and Shared Spectrum’s XG Radio

are examples of CR hardware and software platforms that use an energy detection

method to sense the spectrum [2].

2. Hidden Primary Users Problem

It is hard to detect PUs in a multi path fading environment. Shadowing, due to the

presence of obstacles such as buildings in the propagation path, may cause misde-

tection of the primary users [2]. As discussed in Section 2.5, one of the proposed

solutions to overcome this problem is to use a cooperative spectrum sensing.

3. Noise Uncertainty

The level of noise power is required to estimate the SNR. Nevertheless, it is difficult

to measure the exact level of the noise power. Some studies assume the noise power
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to be known and fixed, but, in fact, it is time variant and real time measurement

must be used to determine its exact value. Certain detection techniques such as

the energy detection are so susceptible to noise uncertainty [17, 18]. By considering

noise uncertainty in performing SS, it was shown that PU’s signals cannot be detected

under a certain SNR value even for long sensing time [19]. This value is called the

SNR wall, the exact value of which depends on the detection technique used. The

SNR wall is expressed as follows [20]:

SNRwall = 10log10[10x/10 − 1] (2.1)

where x is noise uncertainty in dB.

4. Hopping Problem

Some wireless communications use a spread spectrum technique, or frequency hop-

ping that uses spread frequencies with a wide bandwidth, to provide a promising

security level and low probability of detection and interference. Because of these

characteristics, hopping is one of the main concerns in PU detection, and it requires

prior knowledge of the hopping pattern of the PUs [2].

5. Sensing Period

Another crucial design concern in CR spectrum sensing is to identify sensing time

length and how often it should be done (i.e, sensing frequency). During the sensing

period, data transmission is suspended, thus reducing network throughput and in-

creasing end-to-end delay. Therefore, sensing time should be chosen to be as short as

possible. However, short sensing time may negatively affect detection performance.

Sensing must be repeated frequently to ensure accurate PUs status of channel us-

age. In other words, sensing must be active most of the time, consequently effecting

11



network performance. Choosing suitable detection time is therefore crucial. Sensing

time can be fixed or random, and can be performed actively or proactively depending

on the PUs’ services and operational frequencies [21]. For example, a cognitive radio

network that works in the white space of the TV bands does not require sensing to

be as frequent as it is in other applications. It depends also on the place of operation,

whether it is a remote rural area or an urban area.

6. Sensing Frequency Band

Another fundamental design parameter of spectrum sensing is the frequency bands

to be sensed. Sensing a wide frequency band guarantees identifying more frequency

opportunities at the expense of time and hardware cost. In [22] a parallel sensing

mechanism is proposed whereby secondary users sense different frequencies at the

same time, and subsequently send their estimations to a fusion centre. This approach

may enable rapid sensing of wider frequency bands. Another issue is to determine

which frequency bands are most effective for the given cognitive radio environment

so as to provide high quality of services for both PUs and SUs. The selection criteria

are based on PU applications and the nature of the geographical area - remote, rural

or urban.

7. Security

Cognitive radio not only inherits the security concerns of wireless communication

but also raises new security concerns. Among these concerns are the primary user

emulation attack and belief manipulation attack [23, 24]. Malicious actions may

harmfully affect the performance of spectrum sensing and other CR functionalities.

However, security concerns have not been adequately taken into consideration in

most current proposed spectrum sensing techniques [23, 25]. Therefore, security in
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cognitive radio is an open issue that requires significant attention.

8. Multiple Cognitive Users

There is a high possibility that multiple secondary user networks competing to work

in the same licensed bands. In this case, sensing becomes more challenging due to

the competition with other users, and interference may occur if they use the same

frequency at the same time. Consequently, coordination among SUs is necessary [21].

Current efforts to mitigate this problem involve employing external sensing to enable

coordination among different CR networks [26].

2.3 Spectrum Sensing Techniques

Spectrum sensing techniques can be classified, based on the detection mechanism, into two

main types: Primary transmitter (PTx) detection and interference based detection [27].

Figure 2.2 shows the main classification of SS techniques. In PTx detection, one of signal

detection techniques, such as energy detection (ED), is used to detect the presence of PTx.

In interference-based detection, a specific interference temperature at the PU receiver is

used to detect the spectrum holes that meet this interference limit.

Spectrum sensing techniques are also classified into either non-cooperative or coop-

erative spectrum sensing (CSS). In non-cooperative spectrum sensing (NCSS), each SU

independently decides whether the primary user is present or absent based on one of the

detection techniques. On the other hand, in CSS, a number of secondary users collaborate

to achieve more reliable decision by combining their local decisions. Further information

regarding CSS is presented in Section 2.5.
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Figure 2.2: Spectrum Sensing Techniques

2.3.1 Primary Transmitter Detection Techniques

Spectrum sensing based on detection of PTx is the most common technique. In this

technique, the detection of spectrum holes is achieved by studying the received signal

characteristic and features using a digital signal processing method. Signal detection tech-

niques differ in their requirements and performance. Generally, they are categorized into

either coherent or non-coherent [28, 27]. In contrast to non-coherent detection, coherent

detection does not require prior knowledge of PU signals. This section presents the most

common detection techniques that are employed in spectrum sensing. Interested readers

can refer to [2, 27, 28, 29] for information about other techniques.

1. Matched Filter Technique

Matched filtering (MF) detects a signal by calculating the correlation between the

received signal and a known copy of it [30]. The primary user transmitter sends a

pilot signal with data for receiver synchronization. The MF technique can be used

to detect this pilot signal. This technique is considered to be optimal, but it requires
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prior knowledge about the primary user’s pilot signal, including its modulation type,

packet format, carrier frequency and pulse shaping. In addition, without perfect

synchronization, the MF technique cannot properly perform due to its sensitivity to

frequency offset [31]. Although the detection time of MF is relatively short, it requires

information about all primary users who work in the sensed frequency range [2, 30].

Inaccurate information about the primary users may result in poor performance [32].

2. Energy Detection Technique

This method detects PUs by measuring the power of received signals in a specific

frequency band. It requires no prior knowledge of the PU’s signal; consequently, it

is the most suitable detection method if the primary user’s information is unknown.

Furthermore, its implementation is relatively simple [29].

There are several drawbacks to this technique. First, the accuracy of detection is

dramatically affected by noise uncertainty. In addition, differentiating among modu-

lated signals and noise cannot be achieved, and determining the optimal threshold is

difficult [29]. Furthermore, achieving a proper performance in a fading environment

is highly problematic [18].

3. Feature Detection

This detection technique measures certain features of the PU signals such as the cy-

clostationary feature. Using this method, noise can be effectively differentiated from

the modulated signal; therefore, it can detect the PU signals even with low SNR [21].

On the other hand, it requires a long detection time and complex computational

process. There are several implementation methods of cyclostationary feature detec-

tor (CSFD). In [33, 34, 35], different CSFD implementation algorithms for cognitive

radio are presented.
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2.3.2 Interference-based Detection

In the underlay dynamic spectrum access, secondary and primary users can both utilize

spectrum at the same time if the SUs’ transmission do not interfere with that of the PUs’.

To achieve this, FCC proposed that a certain interference temperature at the PU receiver

must be defined in order for detection of the spectrum holes that meet this interference

limit [36]. However, measurement of the interference temperature is not easy to achieve.

In addition, it is difficult to discriminate between PU’s signals, noise and interference [32].

2.4 Related Work

A considerable amount of literature has been published on cognitive radio and dynamic

spectrum access. Many studies such as [20] and [37] introduce important research issues

related to cognitive radio. Since spectrum sensing is the first component of cognitive ra-

dio, much research has been conducted to evaluate and compare the performance of signal

detection techniques in order to find the best candidate technique that meets spectrum

sensing requirements. In [29, 28, 38, 27, 8], several spectrum sensing techniques are sur-

veyed and compared. According to these studies, energy detection method is the most

common detection technique because of its simplicity. However, it cannot detect signals

with low SNR.

Xuping and Jianguo have studied the effects of noise uncertainty and fading on the

performance of ED [18]. They show that ED is not reliable for detecting low power signals,

and it is not robust against deep fading and shadowing. Consequently, they propose a

distributed cooperative spectrum sensing that improves detection reliability. An experi-

mental study of an adaptive energy detection model is presented in [39]. The proposed

model adapts the window size to detect narrow signals. In [17], Ye et al. introduce an SS
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model based on ED that estimates the noise power to be used to set the threshold.

Cabric et al. [31] conduct an experimental study to evaluate the energy detector and

matched filter. Their results show that energy detection is vulnerable to noise uncertainty

while matched filter is vulnerable to frequency offset. In their study, they propose collabo-

rative detection method based on ED to enhance detection reliability. In [40], Bhargavi and

Murthy evaluate and compare the energy detector, matched filter and two cyclostation-

ary feature detectors, based on spectral correlation density (SCD) and magnitude squared

coherence (MSC). The results and their analysis show that MSC cyclostationary feature

detection outperforms the other techniques in low SNR environments.

Two-stages spectrum sensing has been proposed to improve local detection. The first

stage (coarse sensing) uses a simple detection technique such as energy detector, while more

powerful technique is used in the second stage. In [11], a two-stage SS technique based

on combining energy detector and One-Order cyclostationary feature detector is proposed.

The detection performance of the proposed model is compared to the performance of energy

detector. The results show that the two-stage SS model outperforms ED with reasonable

cost of time and complexity.

Luo et al. [41] propose two-stage spectrum sensing model for dynamic spectrum access

in TV-band application. In their model, the local sensing is performed by both an energy

detector and cyclostationary feature detector. The results show that the proposed model

is more reliable and faster than ED. In [42], Maleki et al. also advance two-stage spectrum

sensing based on the model proposed in [41]. The detection threshold was optimized in

order to maximizing detection probability. Maleki et al. found that detection time of their

model is shorter than detection time of cyclostationary feature detection method. Nair et

al. [12] present a spectrum sensing model that enhances the speed of the proposed model

in [42].
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To overcome the noise uncertainty problem, Khalaf et al. [43] advance an SS model

based on two detectors, (ED and CSFD). In their model, two threshold values for ED are

set to determine the range within which ED is not reliable. If the energy of the received

signal is within this range, CSFD is used to detect PU’s signals. In addition, the threshold

values are adjusted according to CSFD results. The authors claim that their SS model

eventually works as an ED. However, the performance of proposed model is not supported

by experimental results.

Kappr and Singh [44] propose a local hybrid spectrum sensing model that includes

three detection techniques: the energy detector, matched filter, and cyclostationary feature

detector. First, the authors demonstrate these techniques then explain how they can work

together to enhance SS performance. However, there are no results that show the efficiency

of their proposal.

2.5 Cooperative Spectrum Sensing

Cooperative detection requires collaboration among secondary users. Generally, this ap-

proach significantly increases detection reliability and certainty. Nevertheless, it may add

a lot of network overhead and degrade throughput of the CR network. In addition, this

approach requires control channels. In other words, cooperative spectrum sensing arises

new challenges including detection delay, coordination algorithms, control channels, and

asynchronous sensing [15].

Designing an efficient cooperative spectrum sensing technique involve several steps.

First, it requires a user selection technique, which is responsible for determining how many

and which users are going to participate. Moreover, a suitable network architecture for

cooperative sensing must be chosen. Finally, selecting an optimal fusion rule that combines
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local decisions.

This collaboration can be accomplished by either a centralized or distributed network

architecture [15]. In centralized spectrum sensing, secondary users send the sensed infor-

mation about possible frequency opportunities to a central node which is responsible for

fusing this information (fusion centre) and broadcasting it to other secondary users [45]. In

contrast, in a distributed approach, sensed information is shared among SUs but each one

makes the decision about what frequency will be used by individually fusing the shared in-

formation [46]. Figure 2.3 shows centralized and distributed cooperative spectrum sensing

network.42 I.F. Akyildiz et al. / Physical Communication 4 (2011) 40–62

a b c

Fig. 3. Classification of cooperative sensing: (a) centralized, (b) distributed, and (c) relay-assisted.

sensing can be effectively leveraged to achieve the opti-
mal cooperative gain without being compromised by the
incurred cooperation overhead.

In [5], Cabric et al. identified the ‘‘three main questions
regarding cooperative sensing’’ as follows [5]

• How can cognitive radios cooperate?
• How much can be gained from cooperation?
• What is the overhead associated with cooperation?

These three questions surrounding the issues of Coopera-
tion Method, Cooperative Gain, and Cooperation Overhead,
respectively, should be addressed in every cooperative
sensing scheme. In this paper, we aim to survey the state-
of-the-art research in cooperative sensing centering these
three issues by first analyzing the cooperation method
with the fundamental components of cooperative sensing
and thenpresenting the impacting factors of achievable co-
operative gain and incurred cooperation overhead. In addi-
tion, we identify open research challenges related to each
issue in cooperative sensing along with the discussion.

The remainder of this paper is organized as follows.
In Section 2, cooperative sensing schemes are classified
by how CR users share their sensing data. In addition,
the framework of cooperative sensing is presented. In
Section 3, the process of cooperative sensing is analyzed
in detail by its components. In Section 4, an insight into
cooperative sensing tradeoff between cooperative gain and
cooperation overhead is provided. Finally, the paper is
concluded in Section 5.

2. Classification and framework of cooperative sensing

In this section, we present the problem of the primary
signal detection in cooperative sensing and introduce the
classification and the framework of cooperative sensing.

2.1. Primary signal detection

The process of cooperative sensing startswith spectrum
sensing performed individually at each CR user called
local sensing. Typically, local sensing for primary signal
detection can be formulated as a binary hypothesis
problem as follows [2]:

x(t) =
⇢
n(t), H0
h(t) · s(t) + n(t), H1

(1)

where x(t) denotes the received signal at the CR user, s(t)
is the transmitted PU signal, h(t) is the channel gain of
the sensing channel, n(t) is the zero-mean additive white
Gaussian noise (AWGN), H0 and H1 denote the hypothesis
of the absence and the presence, respectively, of the PU
signal in the frequency band of interest. For the evaluation
of the detection performance, the probabilities of detection
Pd and false alarm Pf are defined as [9]

Pd = P{decision = H1|H1} = P{Y > � | H1} (2)
Pf = P{decision = H1|H0} = P{Y > � | H0} (3)

where Y is the decision statistic and � is the decision
threshold. The value of � is set depending on the
requirements of detection performance. Based on these
definitions, the probability of a miss or miss detection is
defined as Pm = 1 � Pd = P{decision = H0|H1}. The
plot that demonstrates Pd versus Pf is called the receiver
operating characteristic (ROC) curve, which is the metric
for the performance evaluation of sensing techniques. In
cooperative sensing, the probabilities of detection and
false alarms for evaluating the performance of cooperative
decisions are denoted by Qd and Qf , respectively, which
will be discussed in Section 3.5.

2.2. Classification of cooperative sensing

To facilitate the analysis of cooperative sensing, we
classify cooperative spectrum sensing into three categories
based on how cooperating CR users share the sensing data
in the network: centralized [10,6,11], distributed [12], and
relay-assisted [13–15]. These three types of cooperative
sensing are illustrated in Fig. 3.

In centralized cooperative sensing, a central identity
called fusion center (FC)2 controls the three-step process
of cooperative sensing. First, the FC selects a channel or
a frequency band of interest for sensing and instructs all
cooperating CR users to individually perform local sensing.
Second, all cooperating CR users report their sensing
results via the control channel. Then the FC combines
the received local sensing information, determines the
presence of PUs, and diffuses the decision back to

2 The fusion center [16,11,17,18] is also known as base station
[19,20], common receiver [21,22,13,14], combining node [23,24], master
node [10], designated controller [7], and others.

Figure 2.3: a) Centralized b)Distributed Cooperative Spectrum Sensing [47]

Much research has been conducted in cooperative spectrum sensing. Interested readers

can refer to [48, 49, 30] regarding recent surveys related to CSS. In [50], Quan et al. propose

an optimal solution of cooperative spectrum sensing by combining local test statistics
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from each secondary user at a fusion centre with a specific weight that determines the

contribution of each user in the final decision. Users with better environments in terms

of fading and noise are assigned a high weight for their local estimations. Conversely, low

weights are assigned to local decisions of users experiencing a low SNR or high level of

fading.

In [22], a parallel cooperative spectrum sensing model is proposed based on selecting

a number of SUs to simultaneously sense different channels in order to improve sensing

efficiency and maximize throughput. In [51], Joshi et al. present an “adaptive spectrum

sensing with noise variance estimation” [51] using a discrete Fourier transform filter bank

to decrease the harmful effects of noise on detection certainty.

In [52], Lie et al. applied fuzzy integral theory to develop a cooperative spectrum

sensing model that alleviates detection uncertainty. Another model that exploits the Kriged

Kalman filter is presented in [53]. This model effectively reduces the impacts of fading and

shadowing on detection accuracy. In [54], a new approach to alleviate multi-path fading

effects during PU location identification is presented; this model exploits the Lass algorithm

to estimate sparsity of spectral power distribution. In [55], Song et al. introduce a scheme

enhancing detection efficiency and reducing the cost using channel usage characteristics to

determine an optimum sensing time rather than a fixed sensing period.

2.6 External sensing

Another proposed solution for developing an effective spectrum sensing mechanism is to

perform sensing using an external network that broadcasts the results to all cognitive

users. This advantageous approach increases network performance by eliminating network

overhead and exploiting sensing time in transmission. It can also be an efficient solution
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that guarantees coordination among different CRNs. In [26], Han et al. advance an

alternative solution based on developing powerful spectrum sensing devices. These devices

are placed in PU networks by service providers of secondary users to solve a hidden PU

problem, exploit sensing time in transmission and keep SUs devices as simple and cheap

as possible. These devices are responsible for admitting transmissions for SUs. Han et al.

also proposes a low-temperature handshake technique between secondary users and sensing

devices without the necessity of using a separate control channel [26].

2.7 Summary

The cognitive radio paradigm is a new radio technology that provides an efficient use of the

spectrum. As discussed, designing an efficient spectrum sensing model has attracted many

researchers. It is difficult to design an accurate and quick spectrum sensing technique

that both satisfies hardware constraints and mitigates spectrum environment challenges

such as fading and noise uncertainty. Previous studies have shown that the performance

of local detection techniques is limited under certain environment. Therefore, cooperative

spectrum sensing is the promising solution for overcoming spectrum sensing challenges, but

at the expense of increasing network overhead due to processing and transmitting sensing

results.

Designing a cooperative spectrum sensing model for a cognitive radio network is the

main interest for researchers working in the area of cognitive radio. This chapter represents

a literature review of a research regarding this issue. This research aims to develop a

spectrum sensing model based on using multiple detection techniques. This model either

selects the optimal technique according to spectrum environment’s characteristics or makes

these techniques cooperate with one another to achieve better sensing results. The next
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chapter introduces the proposed spectrum sensing model.
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Chapter 3

Spectrum Sensing: A Multi-detection
Techniques Based Model

3.1 Introduction

In cognitive radio, each secondary user can individually use one of the signal detection

techniques to decide whether the primary user is present or not. However, the hidden

primary users’ problem due to deep fading or shadowing dramatically affects the reliability

and accuracy of the local sensing results. In other words, misdetection is highly probable

due to fading and shadowing. In order to overcome this problem and enhance the de-

tection performance, cooperative spectrum sensing has been proposed. In a cooperative

approach, a number of secondary users experiencing different degrees of fading collaborate

to improve the reliability and accuracy of their detection performance; of course at the

cost of complexity and latency.

In current centralized SS models, independent secondary users (SUs) locally perform

spectrum sensing based on one of the signal detection methods; for simplicity, the energy

detection method is commonly used. After secondary users obtain sensing results, their

23



local decisions are sent to a fusion centre, which applies one of the fusion rules to combine all

the local decisions into one global decision. This final decision, which determines whether

the sensed frequency is occupied or not, is reported to secondary users. Many studies have

attempted to determine the best candidate detection techniques for local spectrum sensing

as discussed in Chapter 2.

This chapter proposes a spectrum sensing model in which local sensing is based on multi-

detection techniques. Section 3.2 defines the research problem. Section 3.3 defines certain

assumptions. Section 3.4 introduces the proposed spectrum sensing model. The model

formulation is presented in Section 3.5, while the model implementation is demonstrated

in Section 3.6. Section 3.7 provides a summary of this chapter.

3.2 Problem Definition

Cognitive radio enhances spectrum utilization by enabling secondary access of unutilized

licensed bands. Spectrum sensing is responsible for identifying spectrum opportunities.

For this process to be practical, a fast accurate reliable detection method is needed. Due

to various issues associated with spectrum sensing, already discussed in Chapter 2, the

requirements and detection performance of spectrum sensing techniques may differ. For

example, energy detection method is highly dependent on sensing minute change in the

SNR, which leads to misdetection of signals with a low SNR. Several studies have deter-

mined that energy detector cannot detect signals with an SNR below -20 dB with 0.1 dB

noise uncertainty [20]. On the other hand, cyclostationary feature detector can detect

signals even with an SNR below this value [43]. However, cyclostationary feature detector

is associated with relatively high implementation complexity and long processing time.

In addition, cyclostationary feature detection and other techniques such as matched fil-
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ter require prior knowledge of the primary user signals. Other techniques such as energy

detection do not have that requirements.

Since the performance if each technique is dependent on the environment, it is quite

conceivable that certain techniques can operate at times when others fail to deliver. In

other words, these techniques can complement each other. However, it is important at

first to determine whether the collaboration between different detection techniques can

significantly enhance sensing performance. Moreover, we need to investigate the means by

which each technique can be implemented.

The research of this thesis aims to develop a collaborative spectrum sensing model.

This model must be able to utilize various detection techniques to obtain more reliable

detection decisions. Much of the recent research in this area has been focused on multi-

stages spectrum sensing [11], [12], [44]. However, up to the author’s knowledge, current

proposed models do not use the decision fusion principle to combine the results of the two

stages. Furthermore, these models use only two detection techniques, but the proposed

model can accommodate more than two techniques.

Another aspect of the spectrum sensing problem to be determined in this thesis is defin-

ing the performance indices. For the purpose of this research, the probability of detection

and false alarm are both considered in the performance indices. In addition, sensing time

is also deemed to be a significant performance index. The model developed in this thesis

makes use of these performance indices. The problem now is to implement a spectrum sens-

ing model that achieves reliable detection decision while maintaining reasonable sensing

time.
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3.3 Model Assumptions

The spectrum environment randomly changes at any moment. For instance, at the be-

ginning of a sensing period, primary users may be either active or idle, and the sensing

results is based on the status of primary users at that specific moment. However, this

status could change during sensing time. Consequently, the results of spectrum sensing

would be totally wrong. In case the PU’s status changes from off to on and sensing results

indicate the absence of the primary users, the secondary user may start using the same

frequency used by the primary user. This problem is more likely to occur when a sensing

period is relatively long; therefore, it must be considered by designers of spectrum sensing

models. Since the main goal of this thesis is to examine the performance of multi-detection

methods, it is assumed that the status of the primary users does not change during sensing

time.

All detection techniques require an estimate of the noise power to calculate the SNR.

Measuring the noise power is problematic. First, it cannot be exactly estimated. In

addition, it is not fixed but changes with time. Therefore, it is important to evaluate

spectrum sensing under certain noise uncertainty. However, for simplicity, the proposed

model is based on the assumption that the noise power is known and invariant.

Another important issue is to determine whether the cognitive radio users are stationary

or remote. Spectrum sensing identifies the unused frequencies in specific locations at certain

times, but remote secondary users may change their location during the sensing period.

Therefore, this possibility must be considered for any spectrum sensing model used by

remote users. The proposed spectrum sensing model focuses on a stationary secondary

users’ network.
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3.4 Model architecture

The proposed model includes two main units that process local data of each user (i.e.,

technique selector and detection unit), and a fusion unit that combines local decisions.

Figure 3.1 shows the model architecture. In what follows, the components and function of

these units are presented.

1. Technique Selector Unit

This unit determines which techniques work better in a certain spectrum environ-

ment. It performs a situation assessment and technique weighing. A situation as-

sessment is needed to quickly estimate which detection method can be performed

according to its sensitivity, for instance, to SNR. These techniques are weighted

based on this estimate. Figure 3.2 shows the proposed technique selector unit (T1,

T2 and T3 indicate detection techniques).

2. Detection Unit

This unit provides an initial prediction of the primary user status and contains two

or more detection techniques. The unit’s input is the received signal and the output

of the selector unit, and its output is a detection decision corresponding to each

technique. The most important step in building this unit is to decide which detection

methods will be implemented.

To implement this unit, the best candidate detection techniques must be chosen first.

The selection criteria depend on the techniques’ performance under certain spectrum

environments. In other words, the performance of the selected techniques under

low SNR and deep shadowing must not be identical; otherwise redundant results

will be produced that add no value to the detection efficiency. Therefore, first, the
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Figure 3.1: The blockdiagram of the proposed model

correlation of the chosen detection methods, which indicates the relationship between

their results, must be investigated. Chapter 4 demonstrates the implementation of

this unit.
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Figure 3.2: Technique Selector Unit

3. Decision Fusion Unit

Data fusion combines raw data from different sources to obtain new raw data or

to produce decisions that are more efficient than if each raw data is individually

processed. The process of combing several decisions into one decision is called decision

fusion and is thus a sort of data fusion.

The proposed model requires two decision fusion processes. The first combines the

output of the detection unit in one decision based on a specific fusion model. The

fused decision must be more reliable than the decisions obtained from each technique.

If the number of users who performs spectrum sensing is N, N fused decisions will be

inputs of the second fusion unit that combines these N decisions. Since this process

combines fused data, it is called the meta-fusion unit.
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Several fusion models can be employed to perform decision fusion. These models

differ in their complexity and requirements. Since two decision fusion processes are

performed, different decision fusion models can be employed in each process. For

example, a simple fusion model can be used to combine techniques decisions, and a

powerful fusion model can be used in the meta-fusion unit. Chapter 5 demonstrates

the implementation of the fusion unit.

3.5 Model Formulation

Let us assume that the received signal at CR user i is yi where

yi(t) =

{
si(t) + wi(t), if PU is present

wi(t), if PU is absent
(3.1)

s(t) is the primary signal, which is assumed to be a Gaussian random process with variance

σ2
s , and w(t) is the additive white Gaussian noise (AWGN) with zero mean and variance

σ2
w.

From the receiver signal, the technique selector assesses the current spectrum situation

to decide which technique will perform the sensing. The selection is also based on the

available information that is required to perform technique j, where j = 1, 2, ......M , and

M the number of detection methods. Let us assume this decision to be Dms. After the

selection is made, the selected techniques will perform spectrum sensing.

The detection problem is modelled as a binary hypothesis problem with two hypotheses:

H1, primary user is present, and H0, primary user is absent. Let us assume that the detec-

tion decision of user i obtained by technique j is Dij, and that D(td) = {Di1, Di2, ....DiM}
is a decision vector of the detection unit output. The corresponding probability of false
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alarm is Pfa(td) = {Pfa(i1), Pfa(i2), ....., Pfa(iM)}, and probability of detection is Pd(td) =

{Pd(i1), Pd(i2), .......Pd(iM)}.

Dij can be expressed as

Dij =

{
+1, if H1 is declared

−1, if H0 is declared
(3.2)

Under H1, detection and misdetection probabilities (Pd, Pmd) can be defined as follows:

P (dij|H1) =

{
Pd(ij), if Dij = 1

Pmd(ij) = 1− Pd(ij), if Dij = −1
(3.3)

Under H0, detection of absent and false alarm probabilities can be defined as follows:

P (dij|H0) =

{
Pfa(ij), if Dij = 1

1− Pfa(ij), if Dij = −1
(3.4)

The sensing results of these techniques will be combined based on one of decision fusion

models in the fusion unit. The inputs of this unit are the decision of each technique (Dij)

and its corresponding detection and false alarm probabilities (Pd(ij) and Pfa(ij)). Let us

consider the fused decision to be Di and its detection and false alarm probabilities to be

Pd(i) and Pfa(i). The output of fusion unit Di is defined as follows:

Di = f(Di1, Di2, ........., DiM) (3.5)

where Di1, Di2, DiM are techniques decisions, and the function depends on the used fusion

model.

The corresponding detection probability is

Pd(i) = f(Pd(i1), Pd(i2), ........., Pd(iM)) (3.6)
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, and the false alarm probability is

Pfa(i) = f(Pfa(i1), Pfa(i2), ........., Pfa(iM)) (3.7)

To mitigate the effects of fading and shadowing, meta-fusion is performed to combine the

local decisions of N independent users in a final decision D with detection probability Pd

and false alarm probability Pfa. To perform this process, the N local fused decisions (Di)

combined with their probability of detection (Pd(i)) and false alarm (Pfa(i)) are sent to the

meta-fusion unit to contribute to the final decision. The objective of this fusion process is

to combine the local decisions Di in a way that maximizes Pd(i) and minimizes Pfa(i). In

other words, the target system performance is such that

Pfa ≤ Pfa(i), for i=1,2,...N (3.8)

and

Pd ≥ Pd(i), for i=1,2,...N (3.9)

The question here is which decision fusion model is the best for maximizing Pd(i) and

minimizing Pfa(i). Chapter 5 demonstrates certain decision fusion models that can be used

to achieve this goal.

3.6 Model Implementation

Implementation of the first three units can be done in either the user level or a central

unit (CU). Designing the proposed model to be performed by each secondary user might

be infeasible because of the added complexity and power consumption; most CR users

are low-power, low-cost and small-sized devices. Therefore, the alternative solution is to

implement this model to be performed only by a central unit, which is a powerful user
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such as a base station. If detection techniques are implemented at the user level, spectrum

sensing is distributed. If all detection processes are performed in a central unit, spectrum

sensing in this case is centralized. In this section, these approaches are discussed.

The first design option is to implement the detection methods and a decision fusion

unit in each user. In this case, only the detection results are sent to a central unit. After

the central unit receives the detection decisions of the N users, it combines them in a final

decision and broadcasts the results to all secondary users. Figure 3.3 shows a flowchart of

a distributed decision fusion model.

The other possible implementation option is to perform all detection stages only in

a central unit. At the beginning of the sensing period, SUs stop transmission and start

receiving a signal from their environment. Then each selected secondary user sends M

samples of the received signal (yi) to the central unit. The central unit manipulates the

received signals from N sensor nodes to perform spectrum sensing, then sends the sensing

results to the SUs. The minimum required number of samples (Smin) is proportional to

O(1/SNRi). Therefore, if SNR is high enough, fewer samples are needed to perform

spectrum sensing.

For the Matched filter, the minimum number of samples is [31]

Smin = [Q−1(Pfa)−Q−1)(Pd)]
2SNR−1 (3.10)

The minimum number of samples required by the energy detection technique is [31]

Smin = 2[(Q−1(Pfa)−Q−1(Pd))SNR
−1 −Q−1(Pd)]

2 (3.11)

To alleviate the data size problem, compressed sensing, which “is an emerging theory based

on the fact that the salient information of a signal can be preserved in a relatively small
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Start SS

 user i receives signal yi

Calculating SNRi

selects which techniques will 
perform SS (D_ms)

Performing spectrum sensing 
based on D_ms

fusing the results of performed 
techniques

User i sends its local results 
(Di,P_fai,P_di)  to a CU

CU Fuses N sensing results 
(Meta fusion)

Broadcasting the final decision to 
all secondary users

Stop

CU receives N local results

Figure 3.3: Flowchart of distributed-based model

number of linear projections” [56], can be used. Consequently, the communication between

SUs and the central unit can use a low-bandwidth control channel.
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Let us assume that the N users send their sensing data to the central unit; The central

unit carries out the following steps, as shown in Figure 3.4:

Start

CU receives data from user i

Calculating SNRi

Weighting detection techniques

Performing spectrum sensing 
based on the weighted scheme

fusing the results of performed 
techniques

Saving the sensging results of 
user i

Fusing N sensing results

i =N

i=i+1

No

YES

Broadcasting the final decision to 
all secondary users

Stop

Figure 3.4: Flowchart of centralized-based model
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1. The central unit receives sensing data from user i.

2. The central unit calculates SNRi.

3. Based on the SNRi and the available stored data, weights the detection techniques.

4. Executes the highest weighted detection technique for this specific user.

5. Saves the sensing result of user i ( Decision (Di ), Pfa(i), Pd(i)).

6. Repeats steps 1 to 4 for N users.

7. Performs decision fusion for the N decisions to obtain the final decision.

8. Reports the final decision D to the SUs.

3.7 Summary

This chapter proposes a spectrum sensing model based on a multi-detection techniques.

The objective of the proposed model is to improve detection reliability. First, certain as-

sumptions that the proposed model is based on were set. Second, the model’s architecture

were presented. After that, the model formulation was defined. Finally, different imple-

mentation approaches were proposed. The next two chapters present the implementation of

the proposed model. Chapter 4 introduces the detection unit implementation, and chapter

5 presents the fusion unit implementation.
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Chapter 4

Detection Unit Implementation

4.1 Introduction

The first step in implementing the proposed model is to choose the best candidate detec-

tion techniques. The most commonly used SS techniques are energy detector, matched

filter, and cyclostationary feature detector. These techniques differ in their requirements

and performance. For example, while energy detector cannot detect signals with low SNR,

cyclostationary feature detector can do so at the cost of time and complexity. In contrast

to matched filter detector and cyclostationary feature detector, energy detector does not

require any prior knowledge of primary user signals. Table 4.1 summarizes a comparison

among these techniques in terms of sensing time, complexity, required prior knowledge,

sensitivity to a low SNR, and noise uncertainty. This comparison shows the complemen-

tary nature of certain combinations of these techniques. Collaboration among them could

enhance sensing performance. Therefore, these techniques are selected to develop the de-

tection unit of the proposed model and evaluate the model’s performance. However, the

selection is not limited to only these techniques; Other detection methods can be used.

This chapter introduces the implementation of the detection unit. First, it presents the

37



Detection technique Sensing
Time

computational
process

Prior knowledge low SNR

Matched Filter short simple required susceptible
Energy Detector relatively

short
simple No susceptible

Cyclostationary Feature
Detector

long complex cyclic frequency insensitive

Table 4.1: Comparison between sensing methods

system models for the selected detection techniques – the energy detector (ED), Matched

filter (MF), and cyclostationary feature detector (CSFD). Second, it demonstrates and

compares fixed and dynamic threshold setting methods. Finally, dynamic threshold set-

tings for the three techniques are derived.

4.2 Energy Detection

The energy detection method measures the energy of a received signal and compares it

with a predefined threshold. ED requires no prior knowledge of PU signals; consequently,

it is the optimal detection method if a PU’s information is unknown. Furthermore, its

implementation is easy, and it requires no complex computational process. The energy

detector consists of a low-pass filter, an analog-to-digital converter, and a square root

device [57]. Figure 4.1 shows a block diagram of energy detector.

ADC 

€ 

y(n)
L

∑

€ 

y(t)

€ 

y(n)

€ 

T

€ 

λ

€ 

H0 or H1

Test Statistics 

Figure 4.1: Block diagram of Energy Detector
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The received signal at CR user is

y(t) =

{
s(t) + w(t), if PU is present

w(t), if PU is absent
(4.1)

where y(t) is the received signal, s(t) is the primary signal, which is assumed to be a

Gaussian random process with variance σ2
s , and w(t) is the additive white Gaussian noise

(AWGN) with zero mean and variance σ2
n.

The energy of the received signal, which is the decision statistic, is given by [58]

T =
L∑

i=1

y2(t) (4.2)

where L is the number of samples.

The energy detector model for CR can be formulated as the following binary hypothesis

problem [58]:

dED =

{
+1, if H1 is declared (T ≥ λ)

−1, if H0 is declared (T < λ)
(4.3)

where H0 indicates the absence of the PUs’ signals, while H1 indicates the presence of the

PUs’ signals. λ is the threshold value.

T is Chi-square distribution. The probability of false alarm (Pfa) and probability of

detection (Pd) are given by [59]

Pfa(ED) = P (T > λ/H0)

=
Γ(u,λ

2
)

Γ(u)

(4.4)

and

Pd(ED) = P (T > λ/H1)

= Qu(
√

2SNR,
√
λ)

(4.5)
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where Γ(, ) is the incomplete gamma function, Qu(, ) is the generalized Marcum Q-function

and u is the time-bandwidth product.

For a large number of samples, T can be approximated to the Gaussian distribution

using Central Limit Theorem, and the test statistics will be as follows [58]:

T ∼
{
N (Lσ2

n, 2Lσ
4
n), if T ≥ λ

N (Lσ2
t , 2Lσ

4
t ), if T < λ

(4.6)

where σ2
t = σ2

n + σ2
s

The probability of false alarm (Pfa), probability of detection (Pd), and probability of

misdetection are given, respectively, by [58]

Pfa(ED) = P (T > λ/H0)

= Q( λ−σ2
n√

2Lσ4
n

), (4.7)

Pd(ED) = P (T > λ/H1)

= Q(
λ−σ2

t√
2Lσ4

t

), (4.8)

and

Pmd(ED) = P (T < λ/H1)
= 1− Pd (4.9)

4.3 Matched Filter

Matched filter method detects a signal by calculating the correlation between the received

signal and a known copy of the signal. It is the optimal detection technique, but it requires

a priori knowledge about a PU’s pilot signal, including modulation type, packet format,

carrier frequency, and pulse shaping. Figure 4.2 shows a block diagram of matched filter.
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Figure 4.2: Block diagram of matched filter[31]

The received signal at CR user is [31]

y(t) =

{
w(t), if PU is absent

xp(t) + w(t)), if PU is present
(4.10)

where y(t) is the received signal, xp(t) is the pilot signal of the PU. w(t) is the additive

white Gaussian noise (AWGN) with zero mean and variance σ2
w.

The decision statistic of matched filter is given by [31]

T =
L∑

i=1

y(t)Xp(t) (4.11)

where L is the number of samples.

The matched filter can also be formulated as a binary hypotheses test as follows [31]:

dMF =

{
+1, if H1 is declared (T ≥ λ)

−1, if H0 is declared (T < λ)
(4.12)

The probability of false alarm, probability of detection and probability of misdetection are

given by [31]

Pfa(MF ) = Q(
λ√
εσ2

n

), (4.13)

Pd(MF ) = Q(
λ− ε√
εσ2

n

), (4.14)
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and

Pmd(MF ) = 1−Q(
λ− ε√
εσ2

n

) (4.15)

where ε =
∑L

1 X
2
p

4.4 Cyclostationary Feature Detection

Signal periodicity causes a cyclostationary feature in signal’s mean and autocorrelation.

If x(t) is a signal and its mean and autocorrelation are Mx and Rx, the cyclostationary

feature can be defined as follows [60]:

Mx(t+ τ) = Mx(t)

and

Rx(t+ τ, u+ τ) = Rx(t, u) for all t and u.

where τ is a periodic time. The cycle autocorrelation function (CAF) is presented as follows

[60]:

Rα
x(τ) = lim

T→∞

1

T

∫ T/2

−T/2
x(t+

τ

2
)x(t− τ

2
)∗e−j2παtdt (4.16)

where α is a frequency, called cyclic frequency, in which Rα
x(τ) is nonzero. The Fourier

transform of CAF is the spectral correlation density function (SCD), which is defined as

follows [60]:

Sαx (f) = F {Rα
x(τ)} =

∫ ∞

−∞
Rα
x(τ)e−j2πfτdτ (4.17)
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The noise does not have a cyclostationary feature; therefore, its autocorrelation is

nonzero only when a cyclic frequency equals zero. Thus,

Rα
w(τ) =

{
σ2
wδ(τ), α = 0

0, Otherwise
(4.18)

Knowing this feature, PU signals can be differentiated from noise by looking for peaks of a

received signal’s spectral correlation density (SCD) function at cyclic frequencies. Figure

4.3 the spectral correlation density function of AM signal with with a sampling frequency

(fs) of 4000 Hz, carrier frequency (fc) of 1024Hz and (fm) 32Hz. Several algorithms can

be used to calculate SCD function, but these algorithms differ in their complexity and

execution time. Since sensing time has to be as small as possible, a fast implementation

of SCD must be used. Next, the FFT Accumulation Method (FAM), which estimates the

SCD function, is presented.
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Figure 4.3: The spectral correlation density function
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4.4.1 CSFD implementation using the FFT Accumulation Method
(FAM)

This algorithm is a fast implementation of the cyclic autocorrelation function. In [60], the

FFT Accumulation Method (FAM) for estimating the SCD is introduced. Figure 4.4 shows

the implementation of FAM, and Figure 4.5 presents the FAM algorithm.

is computed as follows. Assuming that the symbol se-

quences d(n, k) are centered and i.i.d with the variance

σ2
d = E{d(n, k)d!(n, k)}. Therefore, by using (1), (7) and

(8), the time varying autocorrelation of OFDM signal can

be simplified to

Rxx(t, τ) = σ2
dRe{

+∞∑

n=−∞

K−1∑

k=0

g(t − nTs)g(t − nTs + τ)

· e−j2πfcτe−j2π(k−(K−1)/2)∆fτ}. (9)

Let assume that

A(τ) =

K−1∑

k=0

e−j2π(k−(K−1)/2)∆fτ ,

=
sin(π∆fKτ)

sin(π∆fτ)
e−jπ∆f(K+1)/2τ . (10)

Therefore, the time varying autocorrelation in (9) can be

written as

Rxx(t, τ) = A(τ)σ2
dRe{e−j2πfcτ

·
∞∑

n=0

g(t − nTs)g(t − nTs + τ)}. (11)

It is seen that Rxx(t, τ) is periodic in time t with the pe-

riod equal to Ts, thus OFDM signal exhibits second order

cyclostationarity with the cyclic frequencies

α = ± m

Ts
(12)

where m is an integer.

4. 2 Simulation of CAF and CS

A fast implementation of cyclic autocorrelation function

in (5) is computed via FFT algorithm. With τ varying from

−2 µs to 2 µs and FFT length of 8192 points, the CAF of

ISDB-T signals is shown in Figure 2.

Figure 2 CAF of ISDB-T signal

On the other hand, we also simulate the cyclic spec-

trum of ISDB-T signal by using FFT accumulation method

(FAM) [6]. The implementation model of FAM is illustrated

in Figure 3. It works as follows:

Figure 3 FFT accumulation method (FAM)

• The complex envelopes XT (k) are estimated efficiently

by means of a sliding N ′-point FFT, followed by a downshift

in frequency to baseband signal.

• In order to allow for an even more efficient estima-

tion, the N ′-point FFT is applied to the data in blocks of L

samples.

• The product sequence between complex envelopes and

its conjugate are formed, then the cyclic spectrum is accom-

plished by means of a P -point FFT.

The value of N ′ is determined according to the length of

observation data T and sampling frequency fs which is given

by

N ′ = fsT. (13)

The value of L is chosen to compromise between maintain-

ing computational efficiency and minimizing cycle leakage

and cycle aliasing, and is given by

L =
N ′

4
. (14)

The number of sampling points of second FFT P is deter-

mined according to the window size ∆t, and in this simula-

tion it is chosen as

P =
fs

L
∆t. (15)

Based on FAM, the cyclic spectrum of ISDB-T signal is

simulated. In this simulation, the length of observation data

T = 8.192 ms and the window size ∆t = 64 µs. Notably,

for a reliable estimation of cyclic spectrum it is necessary to

have T " ∆t. The cyclic spectrum of ISDB-T is shown in

Figure 4.

Figures 2 and 4 show that the CAF and CS of ISDB-T

signal exhibits cyclic autocorrelation at cyclic frequencies

α = ±m/Ts as given in (12).

Figures 5 and 6 show the cyclic spectrum of ISDB-T signal

in AWGN channel for the SNR = 0 dB and SNR = −5 dB,

respectively. As seen in these Figures, the signal feature de-

tection based on spectral correlation has better performance

in low SNR environment.

— 3 —

Figure 4.4: Block diagram of FFT Accumulation Method for estimating the SCD [61]

4.4.2 Detection model of CSFD

The spectral correlation density function (SCD) is defined as follows:

Sαx (f) =

{
Sαw(f), if PU is absent

Sαw(f) + Sαs (f), if PU is present
(4.19)

where Sαx (f) is a SCD function of received signal x(t), and Sαs (f) is a SCD function of the

PU signal. Sαw(f) is the noise cyclic spectral density function.

The system model is formulated assuming cognitive users work in TV bands. CSFD

detects the pilot tone of the TV signal. The AM signal s(t) is defined as follows [40]:

s(t) = 2
√
Pscos(2πfmt)cos(2πfct+ θ0) (4.20)
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• The complex envelopes XT (k) are estimated e�ciently by means of a sliding N 0-point
FFT, followed by a downshift in frequency to the baseband signal.

• For an even more e�cient estimation, the N 0-point FFT is applied to the data in
blocks of L samples.

• The value of N’ is determined according to the length of observation data T and
sampling frequency fs and given by N 0 = fsT .

• The product sequence between complex envelopes and its conjugate are formed, then
the cyclic spectrum is accomplished by means of a P-point FFT.

• The value of L is chosen to compromise between maintaining computational e�ciency
and minimizing cycle leakageand cycle aliasing, and is given by L = N 0/4.

• The number of sampling points of second FFT P is determined according to the
window size �t , and in this simulation, it is chosen as P = fs/L�t.

Figure 4.5: FFT Accumulation Method (FAM) algorithm[61]

where Ps is the transmitted power of the pilot signal, fm is the pilot signal’s frequency,

and fc is the carrier frequency.

The estimated SCD of an AM signal using FAM is given by [40]

S↵
xN 0(n, k)N =

1

P

P�1X

l=0

[
1

N 0XN 0(n + lK, k +
↵

2
)X⇤

N 0(n + lK, k � ↵

2
)] (4.21)

where K = N
J
, and k = fN 0/fs. Using central limit theorem, the distribution of S↵

x (n, k)N

is given by [40]

S↵0

xN 0(n, k0)N

(
CN (0, 2�2

0), if H0 is declared

CN (S↵0

sN 0(n, k0)N , 2�2
1), if H1 is declared

(4.22)

where “CN (0, 2�2
0) is circularly symmetric complex Gaussian noise with mean 0 and vari-

ance 2�2
0. �2

0 = �2
w

2Ps
, and �2

1 = �4
w

2Ps
(1 +

SzN0 (k0+
↵0
2

)+SzN0 (k0�↵0
2

)

�2
w

). SsN 0(k) is the powers
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Figure 4.5: FFT Accumulation Method (FAM) algorithm [61]

where Ps is the transmitted power of the pilot signal, fm is the pilot signal’s frequency,

and fc is the carrier frequency.

The estimated SCD of an AM signal using FAM is given by [40]

SαxN ′(n, k)N =
1

P

P−1∑

l=0

[
1

N ′
XN ′(n+ lK, k +

α

2
)X∗N ′(n+ lK, k − α

2
)] (4.21)

where K = N
J

, and k = fN ′/fs. Using central limit theorem, the distribution of Sαx (n, k)N

is given by [40]

Sα0

xN ′(n, k0)N

{
CN (0, 2σ2

0), if H0 is declared

CN (Sα0

sN ′(n, k0)N , 2σ
2
1), if H1 is declared

(4.22)

where “CN (0, 2σ2
0) is circularly symmetric complex Gaussian noise with mean 0 and vari-

ance 2σ2
0. σ2

0 = σ2
w

2Ps
, and σ2

1 = σ4
w

2Ps
(1 +

SzN′ (k0+
α0
2

)+SzN′ (k0−
α0
2

)

σ2
w

). SsN ′(k) is the powers

spectral density evaluated at discrete frequency k, and k0 is the frequency bin of interest”

[40].
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The detection decision of CSFD is defined as the following hypothesis problem [40]:

DCSFD =

{
1, if |Sα0

xN ′(n, k0)N | > λ

−1, if |Sα0

xN ′(n, k0)N | < λ

or

DCSFD =

{
1, if H1 is declared

−1, if H0 is declared
(4.23)

The corresponding probability of false alarm, detection, and misdetection are given by [40]

Pfa(CSFD) = e
−λ2
σ20 , (4.24)

Pd(CSFD) = Q1(
Sα0

xN ′(n, k0)N
σ1

,
λ

σ1

), (4.25)

and

Pmd(CSFD) = 1−Q1(
Sα0

xN ′(n, k0)N
σ1

,
λ

σ1

) (4.26)

where Q1 is the Marcum Q function.

4.5 Threshold Setting

One of the most important challenges in implementing detection techniques is setting

an optimal threshold. The optimal threshold is the value that meets required detection

performance. Optimally, the probability of false alarm must be as small as possible, and

probability of detection as great as possible. A small probability of false alarm increases

spectrum utilization, while a high probability of detection guarantees the absence of a
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primary user and reduces the probability of interference. Therefore, a trade off between

these two probabilities is important.

The threshold can be set to be either fixed or dynamic. Two principles can be used

to set a fixed threshold: the constant false alarm rate (CFAR) and constant detection

rate (CDR) [62]. In CFAR, the threshold is set to meet a target Pfa, then the obtained

threshold is used to calculate the corresponding Pd, while in CDR, a certain Pd is used to

set the threshold. For example, for the energy detection, the threshold can be calculated

based on these two principles as follows [62]:

λfa = σ2
n(L+Q(Pfa)

√
(2L)) (4.27)

where λfa is the threshold based on CFAR.

λd = σ2
t (L+Q(Pd)

√
(2L)) (4.28)

where λd is the threshold based on CDR.

From Equations 4.27 and 4.28, in contrast to CDR, CFAR does not need the signal

power of a PU to set the threshold. Therefore, CFAR is more commonly used. However,

constantly setting Pfa to a small value such as 0.1, means the corresponding threshold will

be high. Consequently, it will be hard to detect low power signals, and interference will

occur. Therefore, a fixed threshold based on CFAR is not optimal. An optimal threshold

setting can be archived if each secondary user dynamically sets its threshold according to

its channel states. The next sections demonstrate a dynamic threshold setting method for

the three detection techniques.

4.5.1 Dynamic Threshold Setting for Energy Detector

In most current cooperative spectrum sensing, local decisions are obtained by an energy

detector based on CFAR. However, recent studies focus on setting dynamic thresholds
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using different approaches. In [13], Xuping et al. propose an optimal threshold method

based on minimizing the total error rate, which is the summation of the probability of false

alarm and mis-detection. This error can be expressed as follows:

Pe = Pmd + Pfa (4.29)

By substituting Equations 4.7 and 4.9 in Equation 4.29, the total error of ED is

Pe(ED) = 1−Q(
λ− σ2

t√
2Lσ4

t

) +Q(
λ− σ2

n√
2Lσ4

n

) (4.30)

The optimal threshold (λopt) is the value that gives the minimum total error rate, which

can be obtained by solving the next optimization problem:

λopt = argλmin Pe (4.31)

The solution to this problem is as follows [13]:

λopt =
−B −

√
B2 − 4AC

2A
(4.32)

where A = −1
2L

( 1
σ2
t

+ 1
σ2
n
),B = σ2

s

σ2
t σ

2
n
, and C = −2lnσ

2
n

σ2
t

This setting approach was employed for ED in [13]. Next, this method is applied for

both matched filter and cyclostationary feature detector.

4.5.2 Dynamic Threshold Setting for Matched Filter

The total error for matched filter is the summation of Equations 4.13 and 4.15; thus, the

total error of MF is

Pe(MF ) = 1−Q(
λ− ε√
εσ2

n

) +Q(
λ√
εσ2

n

) (4.33)
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where ε =
∑L

1 X
2
p .

Using the dynamic threshold setting scheme, which is introduced in [13], the optimal

threshold is:

λopt(ED) = argλmin [1−Q(
λ− ε√
εσ2

n

) +Q(
λ√
εσ2

n

)] (4.34)

The solution of this minimization problem is the threshold value that makes the derivative

of the total error equal zero. Thus,

∂Pe
∂λ

= 0 (4.35)

The derivative of Equation 4.33 is

∂Pe
∂λ

= − ∂

∂λ

∫ ∞
λ−ε√
εσ2n

e−t
2/2dt+

∂

∂λ

∫ ∞
λ√
εσ2n

e−t
2/2dt = 0 (4.36)

Using Leibniz’s integral rule, Equation 4.36 becomes:

e
− (λ−ε)2

εσ2n√
εσ2

n

− e
− λ2

εσ2n√
εσ2

n

= 0 (4.37)

e
− (λ−ε)2

εσ2n = e
− λ2

εσ2n (4.38)

(λ− ε)2 = λ2 (4.39)

The optimal threshold of MF is

λopt(MF ) = ε/2 (4.40)
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4.5.3 Dynamic Threshold Setting for Cyclostationary Feature
Detection

The total error for CSFD is the summation of Equations 4.24 and 4.26, thus, the total

error rate of CSFD is given by

Pe(CSFD) = 1−Q1( S
σ1
, λ
σ1

) + e
−λ2
σ20

= 1−
∫∞
λ
σ1

x.e(−
(x2+S

2

σ21

)

2
)I0(S.x

σ1
).dx+ e

−λ2
σ20

(4.41)

The objective function is to find the optimal threshold that minimizes Pe(SCFD). This

problem is defined as follows:

λopt = argλmin Pe(CSFD)

The solution of this minimization problem is the threshold value that makes the derivative

of the total error equals zero; thus, the solution is to find the value of λ that solves the

next equation.

∂Pe
∂λ

= λ2(
1

σ2
0

− 1

2σ2
1

) + ln(I0(
Sα0

xN ′(n, k0)Nλ

σ2
1

)− ln(2σ1))− (Sα0

xN ′(n, k0)N)2

2σ2
1

= 0 (4.42)

Using one of the numerical methods such as the Newton-Raphson method, this equation

can be solved with respect to λ.

4.6 Summary

This chapter presented the detection unit implementation. Three detection methods were

chosen to perform SS, based on the diversity in their requirements and performance. Models

of the selected techniques were demonstrated, and two threshold setting approaches were

used and compared. The next chapter presents the fusion unit implementation in the

proposed SS model.
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Chapter 5

Fusion Unit Implementation

5.1 Introduction

In the previous chapter, the performance of candidate detection techniques was investi-

gated, and two threshold setting methods were compared. The next step is to show how

these techniques can collaborate using a decision fusion concept. This chapter focuses

on implementing the fusion unit in the proposed model. In order to enhance detection

performance, the fusion unit combines techniques’ decisions based on a decision fusion

strategy.

Several decision fusion models can be considered for implementing this unit. In order

to maintain sensing process as simple as possible, simple decision fusion modelmust be

applied. Based on the fusion results of different models, the best fusion model will be

selected. The results of the fusion process comprise the local decision, the probability of

false alarm and the probability of detection. Di denotes a local decision of a secondary

user i, and its corresponding false alarm and detection probabilities are Pfa(i) and Pd(i).

Di is defined as follows:

Di = f(Di1, Di2, Di3) (5.1)
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where Di1, Di2, Di3 are energy detector, matched filter and cyclostationary feature detector

decisions respectively.

The detection probability of the fusion process is

Pd(i) = f(Pd(i1), Pd(i2), Pd(i3)) (5.2)

where Pd(i1), Pd(i2), Pd(i3) are detection probability of ED, MF and CSFD respectively.

The false alarm probability of the fusion process is

Pfa(i) = f(Pfa(i1), Pfa(i2), Pfa(i3)) (5.3)

where Pfa(i1), Pfa(i2), Pfa(i3) are detection probability of ED, MF and CSFD respectively.

The function in Equations 5.1, 5.2 and 5.3 is fusion model dependent. Figure 5.1 shows

decision fusion unit structure. In this chapter, two decision fusion models are introduced.

Section 5.2 presents voting model, and Section 5.3 introduces a maximum a posteriori

probability (MAP) fusion rule (minimum error probability detection rule). Section 5.4

summarizes this chapter.
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Figure 5.1: Fusion unit structure
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5.2 Voting model

This fusion model is the simplest and most commonly used fusion model. The fusion centre

reaches an agreement based on one of the voting rules, which include OR-rule, AND-rule,

majority rule, and weighted-voting rule.

In the AND-rule, the final decision is 1 only and only if all techniques’ decisions are 1.

Otherwise, the fused decision is −1 (PU is absent). In this case, the detection decision is

expressed as follows:

DAnd =

{
1, if Di = 1, for all i

−1, otherwise
(5.4)

The corresponding probability of false alarm and detection are given by [27]

Pf(ai) =
N∏

j=1

Pfa(ij) (5.5)

and

Pd(i) =
N∏

j=1

Pd(ij) (5.6)

where N is the number of techniques.

In the OR-rule, if at least one of the techniques’ decisions indicates the presence of PU,

the fused decision will be 1. Therefore, this voting rule ca be unreliable and imprecise.

The detection decision based on OR-rule can be defined as follows:

DOR =

{
−1, if Di = −1, for all i

1, otherwise
(5.7)

The corresponding probability of false alarm and detection are given by [27]

Pfa(i) = 1−
N∏

j=1

(1− Pfa(ij)) (5.8)
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and

Pd(i) = 1−
N∏

j=1

(1− Pd(ij)) (5.9)

In majority voting rule, if at least two techniques out of three reports the presence of PU,

the final decision will be 1. This means

DMaj =

{
1, if

∑3
i=1Di > 2

−1, otherwise
(5.10)

5.3 Maximum A-Posteriori Probability (MAP) Fu-

sion Model

This rule is a Bayesian detection rule based on minimizing error probability. The decision

fusion problem is represented as a binary hypothesis detection problem (H1, denotes PU

is present, and H0, denotes PU is absent). These two hypotheses are assumed to have a

priori probabilities P (H1) and P (H0), respectively. The local decisions of N detectors are

D1, D2, ........, DN . The likelihood ratio test of this problem is [63]

LRT = Λ(D1, D2, .....DN)

= P (D1,D2,...........,DN |H1)
P (D1,D2,...........,D3|H0)

= P1(D1)P1(D2|D1)......P1(DN |D1D2.....DN−1)

P0(D1)P0(D2|D1)......P0(DN |D1D2.....DN−1)

(5.11)

where P1(D2|D1) and P1(DN |D1D2.....DN−1) are conditional probabilities under hy-

pothesis H1, and P0(D2|D1) and P0(DN |D1D2.....DN−1) are conditional probabilities under

hypothesis H0.

The optimum decision rule is given by [64]

P (D1, D2, ...DN |H1)

P (D1, D2, ...D3|H0)
≷
P (H0)(C10 − C00)

P (H1)(C01 − C11)
(5.12)
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where C00 and C11 are the cost of correct decisions. C10 and C01 are the cost of errors.

The probability of error decisions is assumed to be minimum. Therefor, C00 = C00 = 0,

and C10 = C10 = 1 [64]. Hence, Equation 5.12 is equivalent to [63]

MAP Detection Rule =

{
H1, if LRT > P (H0)

P (H1)

H0, if LRT < P (H0)
P (H1)

(5.13)

In [63], the MAP decision (DMAP ) is defined as follows:

DMAP =





1, if w0 +
N∑

i=1

wiDi ≥ 0

−1, if w0 +
N∑

1

wiDi < 0

(5.14)

The weights for correlated decisions are given by [63]

wi =





log P (H1)
P (H0)

, for i = 0{
log P1(D1)

P0(D1)
, if D1 = +1

log P0(D1)
P1(D1)

, if D1 = -1
for i = 1

{
log P1(Di|D1,D2,....,Di−1)

P0(Di|D1,D2,....,Di−1)
, if Di = +1

log P0(Di|D1,D2,....,Di−1)
P1(Di|D1,D2,....,Di−1)

, if Di = -1
for i > 1

(5.15)

For independent decisions, the weights are given by [64]

wi =





log P (H1)
P (H0)

, for i = 0{
log

Pd(i)
Pfa(i)

, if Di = +1

log
1−Pfa(i)
1−Pd(i) , if Di = −1

for i > 0
(5.16)

Three spectrum sensing techniques are used as sensors (detectors) in the proposal SS

model. Hence, N=3. Figure 5.2 shows the structure of the MAP fusion rule for the

proposed model.
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Figure 5.2: MAP fusion center structure

Using MAP rule, detection probability and false alarm probability can be calculated as

follows:

Pd =

N∑

i=1

wiPd(i)

∑N
i=1wi

(5.17)

and

Pfa =

N∑

i=1

wiPfa(i)

∑N
i=1wi

(5.18)

5.4 Summary

Decision fusion is used to obtain the final local decision by combining techniques’ decisions,

which are the output of the detection unit. This chapter demonstrates two decision fusion
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methods that can be used to implement the fusion unit in the proposed SS model. First,

a voting model based on And-rule, OR-rule and majority-rule are introduced. After that,

a maximum a posteriori probability (MAP) fusion rule is presented. The next chapter

presents simulation results of experimental work, including comparison among the selected

detection techniques and evaluation of fusion results.
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Chapter 6

Results

6.1 Experimental Setup

Several experiments were designed to detect the AM pilot signal in TV broadcast with a

sampling frequency (fs) of 4 kHz, carrier frequency (fc) of 1024 Hz and (fm) 32 Hz. Monte-

Carlo simulation using MATLAB is used to evaluate the selected detection techniques and

the proposed SS model under variable SNR. Simulation results are presented in the next

sections.

6.2 Simulation Results

The results are divided into three sections. Section 6.2.1 shows performance evaluation

of each technique under the fixed and dynamic threshold setting method. Section 6.2.2

presents performance comparison among ED, MF and CSFD. Section 6.2.3 shows the

results of decision fusion.
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6.2.1 Comparison between the dynamic and fixed threshold

The fixed and dynamic threshold setting methods introduced in Chapter 4 are employed

to implement the three detectors. To set a fixed threshold, the constant false alarm rate

principle (CFAR) is used, in which the probability of false alarm (Pfa) is set to 0.1. The

simulation is done for a fixed number of samples L = 5000. First, the simulation results of

the energy detector are presented. Figure 6.1 shows the threshold value corresponding to

different SNR values using CFAR and dynamic threshold setting. Figure 6.3 and Figure

6.2 show ED performance using both setting methods in terms of Pfa and Pd, respectively.

From Figure 6.1, the dynamic threshold value increases when the SNR increases. It reaches

the fixed threshold value at SNR=-10 dB, then continues increasing. As a result of this

increase, Pfa using dynamic threshold significantly decreases, as shown in Figure 6.2, and

it approaches the fixed Pfa at SNR=-10 dB. After that, it saturates at zero.
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Figure 6.1: Energy Detector: Dynamic and fixed threshold for different values of SNR
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Figure 6.2: ED: Pfa for fixed and dynamic threshold under different SNR

Figure 6.3 shows the detection probability of ED under different SNR values. Pd of both

methods increases with the increase of SNR values until it saturates at zero. However, the

Pd of the dynamic threshold starts at a larger value. After SNR = -10 dB, the Pd of

the fixed threshold becomes equal to the Pd of the dynamic threshold. The two setting

techniques are also compared in terms of the total error rate, which is the summation of

(Pmd) and (Pfa). Figure 6.4 shows there is no significant difference between them in total

error. However, the average error rate under the fixed threshold is equal to 0.12, while it

is only 0.02 for the dynamic threshold. These findings are consistent with those of Xuping

et al. presented in [13].

The same experiments have been made for the matched filter and cyclostationary fea-

ture detector. Figure 6.5 and Figure 6.6 show a comparison between the fixed and dynamic

threshold settings of MF in terms of Pd and Pfa, respectively. Figure 6.7 shows the to-

tal error rate of MF. Similar to ED’s results, dynamic threshold enhances probability of
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Figure 6.3: ED: Pd for fixed and dynamic threshold under different SNR
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Figure 6.4: ED: Total error rate for fixed and dynamic threshold

detection in low SNR; on the other hand, it compromises probability of false alarm.
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Figure 6.5: MF: Pd for fixed and dynamic threshold under different SNR
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Figure 6.6: MF: Pfa for fixed and dynamic threshold under different SNR

Figure 6.8 and Figure 6.9 show a comparison between the fixed and dynamic threshold

setting for CSFD in terms of Pd and Pfa, respectively. The findings from these results are
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Figure 6.7: MF: Total error rate for fixed and dynamic threshold

also similar to the findings of ED.
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Figure 6.8: CSFD: Pd for fixed and dynamic threshold under different SNR
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Figure 6.9: CSFD: Pfa for fixed and dynamic threshold under different SNR

These results show that the dynamic threshold decreases the misdetection probability

and increases the false alarm probability. Therefore, it can be concluded that there is no

way to improve one of these probabilities without compromising the other one. Determining

which probability must be restricted depends on users preferences and CR’s application.

In other words, if it is very important to not miss any frequency opportunity, probability

of false alarm must be constrained to be as small as possible to guarantee high spectrum

utilization. However, avoiding interference with PUs must be the main concern in CR;

consequently, the probability of detection must be constrained to be high (for example,

0.5 < Pd ≤ 1). By constraining both misdetection probability and false alarm probability

to be as small as possible, the solution of the optimization problem that minimizes the

total error is most likely to be infeasible in very low SNR environment.
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6.2.2 Performance Comparison of the Detection Techniques

In the previous section the tow threshold setting methods were compared. This section

presents and compares the performance of the three techniques. Their detection results

were obtained using both the fixed and dynamic threshold setting approaches. Figure 6.10

shows the receiver operating characteristic (ROC) of the three techniques at SNR = -30 dB

when the number of samples (L) is 1000. The results indicate that CSFD outperform ED

and MF in low SNR. The present findings seem to be consistent with other studies such as

[40]. In order to know the number of samples affects the detection techniques performance,
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Figure 6.10: ROC of the three techniques at SNR= -30 dB and L=1000

different sample size have used to obtain the ROC of the three techniques at a specific SNR.

Figure 6.11 shows the ROC of the three techniques at SNR = -40 dB when the number of

samples (L) is 1000. Figure 6.12 shows ROC of the three techniques at SNR = -40 dB and

L=5000. By comparing the results of these two figures, the performance of MF and CSFD
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Figure 6.11: ROC of the three techniques at SNR= -40 dB and L=1000
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Figure 6.12: ROC of the three techniques at SNR= -40 dB and L=5000
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enhances by increasing the number of samples from 1000 to 5000. However, the number of

samples must be chosen carefully to be as small as possible in order to perform sensing in

short time.
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Figure 6.13: Probability of detection under different SNR using fixed threshold

Figure 6.13 shows the probability of detection under different SNR values using a fixed

threshold (Pfa=0.1). The results show that in low SNR, the ED’s detection probability is

quite low compared to the MF and CSFD’s. From Figure 6.13, at SNR ≈ −30 dB, Pd(ED)

starts increasing up till reaches 1 at SNR =-10 dB. Although MF’s detection probability

also starts at low value, at SNR= ≈ −50 dB, it increases faster than ED’s detection

probability does. On the other hand, in low SNR, CSFD’s detection probability is relatively

high compared to the other two techniques, and it rapidly increases and is saturated at

SNR = ≈ −30.

The results show that at SNR is almost -10 dB, Pd of the three techniques is equal to

1. This finding indicates that energy detector, matched filter, and cyclostationary feature
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detector can detect PU’s signal when SNR ≥ −10. Determining this SNR value is required

to implement the technique selector unit in the proposed model. The technique selector

can be designed to select which techniques perform spectrum sensing based on the value of

SNR. If SNR is greater than -10 dB, sensing can be performed only by the energy detector.

However, ED cannot differentiate between the noise and signals while MF and CSFD can

do so. As a result, even in positive SNR values, combining detection results makes the

detection decision more reliable and adds confidence to the results. Based on these facts,

spectrum sensing can be performed by both the matched filter and energy detector when

SNR is positive. In this case, the sensing time will be relatively small. For negative

SNR, spectrum sensing is performed by the three techniques, and the sensing time is the

summation of the CSFD detection time and the fusion process time.
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Figure 6.14: Probability of detection under different SNR using dynamic threshold

The performance of the three detection techniques is also compared using the dynamic

threshold setting method. Figure 6.14 shows the probability of detection under different
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Figure 6.15: Probability of false alarm under different SNR using dynamic threshold

SNR values. Figure 6.15 shows the probability of false alarm under different SNR values.

From the results, the dynamic threshold increases the detection probability in low SNR

environment; on the other hand, it negatively affects the false alarm probability of the

three techniques. However, CSFD is still the superior technique in low SNR situations.

Before combining techniques’ results, the correlation among the detection techniques

must be determined. To do so, the correlation matrix of techniques’ results was calculated.

The results of this matrix using fixed threshold (Pfa = 0.1) is as follows:

RD =




1 0.5 0.34
0.5 1 0.7
0.34 0.7 1




where RD is a decision’s correlation matrix.

The diagonal of the correlation matrix indicates the correlation between each technique

and itself, which is always one since the technique detection is perfectly correlated with
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itself. The correlation matrix is symmetric since the correlation between each two tech-

niques is calculated twice. According to the results, the correlation between the decisions

of the energy detector and matched filter is 0.5, and the correlation between the decisions

of the energy detector and cyclostationary feature detector is 0.34. The correlation be-

tween the decisions of the matched filter and cyclostationary feature detector is 0.7. The

results indicate that there is a significant correlation between the CSFD and MF as well as

between the ED and MF. These findings are considered in implementing the MAP fusion

model.

6.2.3 Fusion Results

The final stage of implementing the proposed model is to perform the decision fusion.

Voting based on both AND-rule and OR-rule were used to perform the decision fusion. In

addition, MAP decision fusion model was used, in which P (H0) is assumed to be 0.3, and

P (H1) is assumed to be 0.7. The experiments have conducted for a fixed number of samples

L=5000. Figure 6.16 shows the fusion results using the And-rule, Or-rule voting model,

and MAP model and compares their probability of detection to techniques’ under fixed

Pfa. Figure 6.17 presents the fusion results and compares their probability of detection to

techniques’ using the dynamic threshold. Figure 6.18 shows the fusion results and compares

their false alarm probability to techniques’ using the dynamic threshold.

For the fixed threshold, using And-rule minimizes the overall probability of detection

and makes it smaller than the detection probability of ED in low SNR, but using the

dynamic threshold we can obtain Pfa < 0.1 while Pd value is raising. For example, from

Figure 6.16 at SNR= -40, the detection probability of ED, MF, and CSFD are approx-

imately equal to 0.1, 0.35 and 0.55, respectively. Pd after combining these probabilities

using And-rule is 0.02, while false alarm probability decreases from 0.1 to 0.001. This
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Figure 6.16: Detection probability of techniques and fusion under fixed Pfa

finding can be explained by the fact that ED is weak of detecting PUs in low SNR ; con-

sequently, agreement among the three techniques of detecting the presence of PU is less

likely to happen.

In contrast to the And-rule, in low SNR, the Or-rule improves Pd and makes the overall

probability of detection higher than the one obtained by CSFD with both the fixed and

dynamic threshold. However, OR-rule increases Pfa, as shown in Figure 6.18. Since Or-

rule is based on detecting PUs by at least one of the techniques, its results reliability is

affected by the reliability of techniques that report the presence of PU. Although using

OR-rule guarantees no interference with PUs, it may cause missing available frequency.

Consequently, spectrum will be underutilized.

From Figures 6.16, 6.17 and 6.18, the MAP-results are close to the results obtained

by the cyclostationary feature detector, but Pd is smaller and Pfa is larger than CSFD’s.

From these findings, it can be concluded the MAP fusion model works just like the CSFD.
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Figure 6.17: Detection probability of techniques and fusion using dynamic threshold
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Figure 6.18: False alarm probability of techniques and fusion under dynamic threshold

This finding raises the question whether it is necessary to use more than one technique to

perform local spectrum sensing and combine their results. The answer of this question is
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that the decision fusion makes local decision more reliable in low SNR.

Determining which fusion model is the best for combining the fusion results depends

on the CR application and the sensed band. If it is essential not to miss any frequency

opportunities, the And-rule is the best voting rule. In case that avoiding interference with

PUs has the highest priority, the Or-rule is the most suitable rule. To achieve the best

advantage of detection fusion, the MAP-rule is the optimal choice among the fusion models

used in this study; however, other fusion models can be considered and may obtain better

results. The reason why other fusion models such as neural networks is not employed in

this study is to reduce the complexity of the fusion process so it can be implemented in CR

devices. In addition, in the base station of cognitive radio network, another fusion model is

employed to combine the spectrum sensing results of the different users (meta-fusion). In

other words, there is no need to use a powerful fusion method at the user level. Therefore,

the fusion method used in the CR users should be chosen to be as simple as possible.

6.3 Summary

This chapter presents the experimental work conducted to analyze the performance of the

proposed spectrum sensing system. First, the experimental work evaluated the performance

of the energy detector, the matched filter, and the cyclostationary feature detector under

fixed and dynamic threshold settings. It is found that dynamic thresholding enhances the

probability of detection in low SNR, while it compromises false alarm probability. Second,

the performance of the three detection techniques were compared. The findings indicate

that the cyclostationary detector outperforms the energy detector and the matched filter

in low SNR. The correlation between the techniques results was examined. The results

show that techniques results are correlated. Finally, the decision fusion was performed
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using the voting model (And-rule and Or-rule) and the MAP model. The results of the

decision fusion methods were discussed and compared.
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Chapter 7

Conclusion and Future Works

7.1 Conclusion

Cognitive radio is a new intelligent radio paradigm proposed to overcome spectrum scarcity

and underutilization problems. This study has investigated spectrum sensing in cognitive

radio. The importance and challenges of spectrum sensing have been demonstrated. In

addition, current SS techniques, including local and cooperative sensing, have been pre-

sented and compared. This research was undertaken to design a reliable local SS model

based on multi-detection techniques. In other words, the present study was designed to de-

termine whether it is possible to enhance local sensing results in low SNR if more than one

technique contributes in detection decision based on one of decision fusion method. In this

study, the energy detector, matched filter, cyclostationary feature detector were selected.

According to the techniques’ evaluation, these techniques can collaborate to enhance SS

reliability in low SNR.

In order to develop the proposed model, the performance of the selected techniques

was examined and compared based on two threshold setting methods: the fixed false

alarm rate and the minimum total error rate. The findings support previous studies which
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showed that the cyclostationray feature detector surpasses both the energy detector and

matched filter in low SNR. The results also showed that the ED’s performance is the worst

among the three techniques in low SNR situations. It was also found that the dynamic

thresholding setting method enhances the detection probability and compromises the false

alarm probability in low SNR situations. Another important finding is that the three

techniques can detect primary users when SNR is greater than -10 dB. According to this

result, the technique selector unit in the proposed model can be designed to select two

techniques to perform spectrum sensing when the SNR is within this range.

The important findings from the decision fusion results can be summarized as follows:

the And-rule is the best voting rule to achieve high spectrum utilization in low SNR but

with a significant risk of misdetecting the PUs. In contrast, Or-rule guarantees no inter-

ference with PUs in low SNR but at cost of missing possible spectrum opportunities. The

MAP decision fusion model provides satisfying and reasonable performance with respect

to the probability of detection and false alarm in low SNR. Other fusion methods can be

used to perform the decision fusion. The optimal fusion model can be selected based on

the CR application and the sensed band.

7.2 Future Work

The research work in this thesis focuses on spectrum sensing in cognitive radio. A number of

possible future studies can be done in this area. First, further research might explore other

threshold setting methods to determine the optimal threshold according to certain error

probability constraints instead of only minimizing the total error. Since three detection

methods perform spectrum sensing in the proposed model, power consumption significantly

increases. Therefore, it is recommended that future studies attempt to adapt the proposed
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sensing model to be energy-aware.

Further experimental investigations are also needed to assess the effects of fading on the

sensing results. It would be interesting to compare the results of this study to the results

of two-stage spectrum sensing proposed in related literatures. More work can also be done

to evaluate and compare the performance of the proposed model based on other decision

fusion methods in order to find the optimal one. A further study should examine the

overall performance of the proposed model after performing the meta-fusion in the CRN

base station and compare it to current cooperative spectrum sensing techniques. Another

possible related research topic is to assess the proposed model using real data.
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