به نام خدا

سیستم زیر را در نظر بگیرید:

\[
\begin{align*}
\dot{x} &= Ax + Bu \\
y &= Cx
\end{align*}
\]

۱ - برای بررسی کنترل پذیری، ماتریس کنترل پذیری را به صورت زیر تشکیل می‌دهیم:

\[
C_0 = \begin{bmatrix} B & AB & A^2B & A^3B \end{bmatrix} = \begin{bmatrix} 0 & 0.9319 & -4.688 & 17.649 \\ 0 & -2.8222 & 14.2267 & 30.2479 \\ 0.9319 & -4.688 & 17.649 & -58.9141 \\ -2.8222 & 14.2267 & 30.2479 & -244.5561 \end{bmatrix}
\]

در صورتی که این ماتریس رنگ کامل داشته باشد، سیستم کنترل پذیر است.

\[
\det(C_0) = -6.1052 \times 10^{-3} \neq 0
\]

در نتیجه، سیستم کنترل پذیر می‌باشد.

۲ - برای بررسی رویت پذیری، ماتریس رویت پذیری را به صورت زیر تشکیل می‌دهیم:

\[
O_b = \begin{bmatrix} C \\ CA \\ CA^2 \\ CA^3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -36.0769 & 15.2397 & -0.0088 \\ 0 & 32.3605 & -76.8218 & -36.0847 \end{bmatrix}
\]
همان گونه که مشخص می‌باشد، دترمینان ماتریس رویت‌پذیری صفر می‌باشد، لذا سیستم رویت‌پذیر نخواهد بود.

۳ - برای قطری‌سازی، ابتدا به بررسی مقادیر ویژه ماتریس A می‌پردازیم:

\[
\begin{align*}
\lambda_1 &= 0, \\
\lambda_{2,3} &= -0.2912 \pm j5.7834, \\
\lambda_4 &= -4.4584
\end{align*}
\]

از آنجایی که مقادیر ویژه به صورت مختلط می‌باشند، بردارهای ویژه آن به صورت زیر می‌باشند:

\[
\begin{align*}
\mathbf{v}_1 &= \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \\
\mathbf{v}_{2,3} &= \begin{bmatrix} -0.0046 \pm j0.0069 \\ -0.0085 \pm j0.1698 \\ -0.0385 \pm j0.0283 \\ 0.9843 \pm j0 \end{bmatrix}, \\
\mathbf{v}_4 &= \begin{bmatrix} -13.91 \\ 0.169 \\ 0.62 \\ -0.7534 \end{bmatrix}
\end{align*}
\]

تبديل همانندی که برای تبدیل سیستم به سیستم قطری در نظر گرفته می‌شد، بردارهای ویژه آن به صورت زیر می‌باشند:

\[
T = \begin{bmatrix} \mathbf{v}_1 & \text{Re}(\mathbf{v}_2) & \text{Im}(\mathbf{v}_2) & \mathbf{v}_4 \end{bmatrix}
\]

جاپی که مقدار ویژه باید ویژه سیستم می‌باشد.

\[
T = \begin{bmatrix} 1 & -0.0046 & 0.0069 & -0.1391 \\
0 & -0.0085 & -0.1698 & 0.1690 \\
0 & -0.0385 & -0.0283 & 0.62 \\
0 & 0.9843 & 0 & -0.7534 \end{bmatrix}
\]

با بدست آوردن ماتریس تبدیل، سیستم قطری‌سازی به صورت زیر ایجاد می‌گردد:

\[
\begin{align*}
\mathbf{x} &= T\mathbf{z} \\
\dot{\mathbf{z}} &= T^{-1}A\mathbf{z} + T^{-1}Bu \\
\mathbf{y} &= CT\mathbf{z}
\end{align*}
\]

۴ - برای طراحی کنترل فیدبک حالت به صورت زیر عمل می‌کنیم، سیستم زیر را در نظر بگیرید:

\[
\begin{align*}
\dot{\mathbf{x}} &= \mathbf{Ax} + \mathbf{Bu} \\
\mathbf{y} &= \mathbf{Cx}
\end{align*}
\]
روش بس و گیورا:

چندجمله‌ای مشخصه سیستم:

\[\begin{bmatrix}
\lambda & 0 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 2.1026 & -5.0321 & -5.144 \times 10^{-4} \\
0 & -36.0769 & 15.2397 & -0.0088
\end{bmatrix} \]

\[\det (\lambda I - A) = \lambda^4 + 5.049 \lambda^3 + 36.129 \lambda^2 + 149.4996 \lambda = \lambda^4 + a_3 \lambda^3 + a_2 \lambda^2 + a_1 \lambda + a_0 \]

اگر چندجمله‌ای مشخصه مطلوب مورد نظر ما به صورت زیر باشد:

\[\alpha(s) = (s+1)(s+2)(s+3)(s+4) = s^4 + 10s^3 + 35s^2 + 50s + 24 \]

طبق روش بس و گیورا خواهیم داشت:

\[K = (\alpha - a) \Psi^{-1} \Phi^{-1} \]

\[\Psi = \begin{bmatrix}
1 & a_3 & a_2 & a_1 \\
0 & 1 & a_3 & a_2 \\
0 & 0 & 1 & a_3 \\
0 & 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 5.049 & 36.129 & 149.4996 \\
0 & 1 & 5.049 & 36.129 \\
0 & 0 & 1 & 5.049 \\
0 & 0 & 0 & 1
\end{bmatrix} \]

\[K = [10-5.049 \ 35-36.129 \ 50-149.4996 \ 24] \Psi^{-1} \Phi^{-1} = [0.9097 \ 0.7021 \ -3.5865 \ -2.9386] \]

5. برای طراحی روتیت گر حالت به صورت زیر عمل می‌کنیم:

شرط طراحی روتیت برای یک سیستم به صورت زیر می‌باشد:

شرط لازم و کافی طراحی روتیت گر روتیت پذیری سیستم است.
از آنجایی که سیستم فوق رویت پذیر نمی‌باشد، پس نمی‌توان برای آن رویت گر طراحی کرد.

برای طراحی رویت گر برای سیستم زیر، بدين صورت عمل می‌کنیم:

\[
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & -0.1536 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 4.8266 & 0
\end{bmatrix} = \begin{bmatrix}
0 \\
0.9233 \\
0 \\
-0.4473
\end{bmatrix}, \quad C = [1 \ 0 \ 0 \ 0]
\]

با انتخاب قطب‌های رویت‌گر در 2.8 ± 3.2j و 1.2j ± 2.8j ماتریس بهره رویت گر L باید به گونه‌ای باشد که قطب‌های معادله مشخصه ماتریس A - LC برای قطب‌های تعیین شده در فاصله باشد. این ماتریس برای آید که ریشه‌های معادله مشخصه ماتریس A - LC باشد:

\[
L = 10^6 \begin{bmatrix}
0.0012 \\
0.0204 \\
-0.713 \\
1.7962
\end{bmatrix}
\]

کدهای متلب این قسمت به صورت زیر می‌باشد:

```matlab
A = [0 1 0 0; 0 0 -0.1536 0; 0 0 0 1; 0 0 4.8266 0];
C = [1 0 0 0];
observability_rank = rank(obsv(A,C))
P = 4*[0.7+3i, -0.7-3i, -0.8+0.3i, -0.8-0.3i];
L = acker(A',C',P)
```