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1. INTRODUCTION

Since its introduction differential flatness (see e.g.
(Fliess et al., 1992) and (Martin et al., 1997))
has proved as an important tool in nonlinear
control theory. Many industrial applications have
already been addressed. The flatness property of a
dynamic system can be roughly characterized by
the existence of a (fictitious) flat output, which
parameterizes the input and the system states
with a finite number of its time derivatives. Con-
sequently, when a trajectory is planned for the flat
output, the corresponding input can be obtained
directly from the flat parameterization without
computing solutions of differential equations. To
stabilize the tracking of the trajectory, flat feed-
back is used. In general full state information is
needed to realize the flat feedback. As a conse-
quence, a nonlinear observer has to be designed.
The time varying observer gain of this observer
is determined on the basis of a linearization of
the observer error dynamics about the reference
trajectory such that methods for linear time vary-
ing systems can be used to stabilize the error dy-
namics (Fliess and Rudolph, 1996). The resulting

dynamic output feedback controller is therefore
only valid in the vicinity of the reference trajec-
tory. The control scheme which is presented in the
following uses the nonlinear feedforward controller
resulting from the flatness property. The feedback
part, however, is designed fully linear, using a
linear differential operator representation of the
plant. To this end, a linearization of the nonlin-
ear system about the reference trajectory is used
to get a linear time varying system description.
The tracking is then stabilized via linear dynamic
output feedback. This approach has already been
proposed in (Deutscher, 2002). However, the
obtained results are limited to systems where a
linearization of the differential parameterization
of the inputs and outputs yields a differential
operator representation with column reduced de-
nominator matrix. In Section 2 a new scheme for
deriving the differential operator representation
for static feedback linearizable systems is pre-
sented, guaranteeing the denominator matrix to
be column reduced about the reference trajectory.
Hence, the resulting differential operator represen-
tation is well defined for the complete trajectory.
In Section 3 the design of dynamic output feed-



back controllers is presented which amounts to
solving a time varying Diophantine equation. In
Section 5 the introduced control scheme is applied
to a uniaxial vehicle model. This example also
demonstrates that the control scheme can easily
be extended to dynamic feedback linearizable sys-
tems.

2. DIFFERENTIAL OPERATOR
REPRESENTATION OF NONLINEAR FLAT

SYSTEMS

2.1 Transformation to nonlinear controller form

Consider the following nth order nonlinear flat
system

ẋ= f(x) + g(x)u (1)

y= h(x) (2)

with m inputs u and m outputs y. If system (1)–
(2) is static feedback linearizable (Isidori, 1995),
then the definition of flatness simplifies to the
following form: there exists a flat output

yf = Φ(x) (3)

with dim(yf ) = dim(u) such that

x=ψx(yf , ẏf , ..., y
(β)
f ) (4)

u=ψu(yf , ẏf , ..., y
(β+1)
f ) (5)

By setting β + 1 = (κ1, . . . , κm) and introducing
the (Brunovsky) states (Delaleau and Rudolph,
1998)

z = [z1
1 , . . . , z

1
κ1
, . . . , zm1 , . . . , z

m
κm ]T

= [yf1, . . . , y
(κ1−1)
f1 , . . .

. . . , yfm, . . . , y
(κm−1)
fm ]T (6)

system (1) can be transformed via the diffeomor-
phism

x = ψx(z) (7)

into the controller form (Isidori, 1995)

żik = zik+1, k = 1(1)κi − 1 (8)

żiκi = ai(z) +
m∑

l=1

bil(z)ul, i = 1(1)m (9)

with the controllability indices (κ1, . . . , κm) satis-
fying

∑m
i=1 κi = n. Whereby the diffeomorphism

(7) results from inserting (6) in (4). In (8) and
(9) the superscript i denotes the ith subsystem of
the controller form. In order to express (2) in the
z-coordinates, (4) is substituted in (2), yielding
with (6)

y = h(ψx(yf , ẏf , ..., y
(β)
f )) = h̄(z) (10)

2.2 Derivation of the differential operator
representation

In the following it is assumed that a reference
trajectory yf,d(t) for t ∈ [0, T ] has been planned
for the flat output (for further details see e.g.
(Martin et al., 1997)). The corresponding feedfor-
ward control ud is then given by

ud = ψu(yf,d, ẏf,d, ..., y
(β+1)
f,d ) (11)

in view of (5) and the reference trajectory zd
in the z-coordinates results from inserting yf,d
in (6). Furthermore, it is supposed in the sequel
that the diffeomorphism (7) is well defined in
a neighbourhood of zd. As a consequence, the
controller form (8)–(9) exists in a neighbourhood
of zd.

A linear time varying differential operator rep-
resentation is computed using a linearization of
system (8)–(9) about the reference trajectory zd.
To this end the relations (9) of all m subsystems
of the controller form are written in the compact
form

ż∗ = a(z) +B(z)u (12)

where

z∗ = [z1
κ1
, . . . , zmκm ]T (13)

a(z) = [a1(z), . . . , am(z)]T (14)

bi(z) = [bi1(z), . . . , bim(z)]T , i = 1(1)m (15)

B(z) = [b1(z), . . . , bm(z)]T (16)

Linearizing (12) about (zd, ud) results in

∆ż∗ = A(t)∆z +B(t)∆u (17)

with ∆z∗ = z∗− z∗d , ∆z = z− zd, ∆u = u−ud and
the matrices

A(t) =
∂(a(z) +B(z)u)

∂z

∣∣∣∣
zd,ud

(18)

B(t) =B(zd(t)) (19)

Using the differential operator D = d
dt , ∆ż∗ can

be expressed as

∆ż∗ = diag(Dκi)∆yf (20)

where ∆yf = yf − yf,d. Introducing the blockdi-
agonal matrix

S(D) = diag([1, . . . , Dκ1−1]T , . . .

. . . , [1, . . . , Dκm−1]T ) (21)

it is furthermore possible to write

∆z = S(D)∆yf (22)

With (20) and (22) equation (17) reads

diag(Dκi)∆yf = A(t)S(D)∆yf +B(t)∆u (23)

As the the controller form (9) is well defined
in a neighbourhood of zd by assumption, B(z)



(see (12)) is invertible in a neighbourhood of the
trajectory zd (Isidori, 1995). Consequently, B(t)
is nonsingular for t ∈ [0, T ] (see (19)) and thus
(23) can be rearranged in the form

B−1(t) (diag(Dκi)−A(t)S(D))∆yf =∆u (24)

A linearization of (10) in the z-coordinates about
zd yields with ∆y = y − yd

∆y =
∂h̄(z)

∂z

∣∣∣∣
zd

∆z = C(t)S(D)∆yf (25)

where (22) was used. By introducing the polyno-
mial matrices N(D, t) and Z(D, t) according to

N(D, t) =B−1(t)(diag(Dκi)−A(t)S(D))(26)

Z(D, t) =C(t)S(D) (27)

(see (24) and (25)) one finally obtains the linear
time varying differential operator representation

N(D, t)∆yf = ∆u (28)

∆y=Z(D, t)∆yf (29)

Note that (28) is a differential equation for ∆yf .
The trajectory planning has to ensure that the
elements of the matrices A(t), B−1(t) and C(t)
are sufficiently smooth functions of time, such that
by (26) and (27) the coefficients of N(D, t) and
Z(D, t) are sufficiently smooth. With Γc[N(D, t)]
denoting the highest column degree matrix and
δci[N(D, t)] the ith column degree (Wolovich,
1974), N(D, t) in (26) can be expressed as

N(D, t) =

Γc[N(D, t)] diag(Dδci[N(D,t)]) +NR(D, t)
(30)

with NR(D, t) a polynomial matrix of lower de-
grees. Comparing (30) with (26) yields the follow-
ing relations

Γc[N(D, t)] =B−1(t) (31)

δci[N(D, t)] = κi, i = 1(1)m (32)

where (31) and (32) are implied by the nonlinear
controller form (8)–(9) and are satisfied for t ∈
[0, T ]. This shows that N(D, t) is column reduced
(Wolovich, 1974), i.e. det Γc[N(D, t] 6= 0 for t ∈
[0, T ].

If the system (1)–(2) is not static feedback lin-
earizable, it is always possible to introduce con-
troller states (based on the differential parame-
terization (4)–(5)) such that the resulting system
is static feedback linearizable. Then the differ-
ential operator representation can be derived as
described above (see the example in Section 4 for
details).

3. DESIGN OF LINEAR TRACKING
CONTROLLERS

3.1 Time varying flat feedback

If external disturbances or modelling errors affect
the tracking behaviour, a tracking controller is
needed to stabilize the tracking. This the more,
when the feedforward ud is applied to the system
(1)–(2), the dynamics of the tracking error ∆yf =
yf − yf,d in a neighbourhood of the trajectory is
gouverned by the differential equation

N(D, t)∆yf = 0 (33)

The error dynamics (33) are time varying and
might be too slow or even unstable, depending
on the system (1)–(2) and the trajectory yf,d. In
order to assign a desired time invariant dynam-
ics for the tracking error consider an additional
control action ∆u (see (28)) in the form

∆u = Γc[N(D, t)]ū+NR(D, t)∆yf (34)

with new input ū. Applying (34) to the differen-
tial operator representation (28) yields the time
invariant dynamics

diag(Dκi)∆yf = ū (35)

in view of (30). Via the new input ū it is possible
to assign the stable time invariant dynamics

diag(ñi(D))∆yf = 0 (36)

with the Hurwitz polynomials

ñi(D) =Dκi + ãi,κi−1D
κi−1 +

. . .+ ãi,1D + ãi,0

=Dκi + ñi,R(D), i = 1(1)m (37)

to the tracking error ∆yf , by setting

ū = − diag(ñi,R(D))∆yf (38)

Substituting (38) in (34) yields the corresponding
time varying flat feedback

∆u=−Γc[N(D, t)] diag(ñi,R(D))∆yf

+NR(D, t)∆yf (39)

Adding

Γc[N(D, t)] diag(Dκi)∆yf . . .

. . .− Γc[N(D, t)] diag(Dκi)∆yf (40)

to (39) leads to the more compact formulation

∆u = (N(D, t)− Ñ(D, t))∆yf (41)

with the polynomial matrix

Ñ(D, t) = Γc[N(D, t)] diag(ñi(D)) (42)

The tracking controller design results in the over-
all control law

u = ud +∆u (43)



With this control strategy only the the feedfor-
ward ud (see (11)) is applied when the system
(1)–(2) exactly tracks the reference trajectory yf,d
(i.e. ∆yf = 0).

3.2 Dynamic time varying output feedback

If the tracking error ∆yf or its time derivatives are
not available for measurement, the flat feedback
(41) can at least be estimated by a time vary-
ing output feedback. In the following, a generally
applicable approach to this problem is described
resulting in a dynamic feedback controller of rela-
tively high order. However, in some cases and for
specific assignments for the dynamics of the track-
ing error ∆yf (36) it may also be possible to find
a reduced-order or even static implementation.

Consider the following estimate

∆û = (N(D, t)− Ñ(D, t))∆ŷf (44)

of the control law (41) where ∆û and ∆ŷf denote
estimates for ∆u and ∆yf respectively. For the
dynamics of the estimation error ∆û −∆u the
following homogeneous differential equation can
be assigned

∆(D)(∆û−∆u) = 0 (45)

If ∆(D) is a stable polynomial matrix (i.e.
det ∆(D) is a Hurwitz polynomial), the estima-
tion error decays to zero. The dynamic output
feedback controller realizing the error dynamics
(45) is obtained by substituting (41) in the right
hand side of

∆(D)∆û = ∆(D)∆u (46)

yielding

∆(D)∆û = ∆(D)(N(D, t) − Ñ(D, t))∆yf (47)

Since the dynamic output feedback controller uses
∆u and ∆y as inputs, one has to set

∆(D)∆û= ∆(D)(N(D, t) − Ñ(D, t))∆yf
!

=Zu(D, t)∆u+ Zy(D, t)∆y (48)

Substituting ∆u = N(D, t)∆yf (see (28)) and
∆y = Z(D, t)∆yf (see (29)) in (48) yields

∆(D)∆u= ∆(D)(N(D, t) − Ñ(D, t))∆yf

=Zu(D, t)∆u+ Zy(D, t)∆y

= (Zu(D, t)N(D, t) + . . .

. . . Zy(D, t)Z(D, t))∆yf (49)

From (49) the Diophantine equation

Zu(D, t)N(D, t) + Zy(D, t)Z(D, t) =

∆(D)(N(D, t)− Ñ(D, t)) (50)

is deduced, which has to be solved in order to
determine the unknown matrices Zu(D, t) and

Zy(D, t). In (Limanond and Tsakalis, 2001) con-
ditions for the existence of a solution of (50) are
given, which can be used to find a general form
of Zu(D, t) and Zy(D, t) consisting of polynomi-
als in D with unknown time varying coefficients.
These coefficients are determined by a generally
under-determined system of linear time varying
equations, which is easily derived by inserting the
general expressions for Zu(D, t) and Zy(D, t) into
(50) and reordering subsequently. The resulting
set of equations is only solvable, if the Sylvester
matrix related to the pair Z(D, t) and N(D, t) has
full rank (see (Limanond and Tsakalis, 2001)). As
this can always be assured by suitable trajectory
planning, it does not mean serious restrictions.
Moreover, if the system of equations is very com-
plex, no general symbolic solution may be found.
In any case, however, sample values for the ele-
ments of Zu(D, t) and Zy(D, t) can be calculated
numerically for any discrete points in time of
interest. Remaining degrees of freedom may be
used to simplify the solution or to achieve addi-
tional requirements of the controller (see also the
example in Section 4). Accordingly, the dynamic
output feedback controller resulting from (48) and
(43) can be summarized as follows

∆(D)∆û=Zu(D, t)∆u+ Zy(D, t)∆y (51)

u= ud +∆û (52)

If the initial conditions of the system (1)–(2) are
not significantly inconsistent with the starting
point yf,d(0) of the reference trajectory and no
disturbances are present, the error ∆û −∆u will
start converging to zero independently from the
inputs of the feedback controller ∆u and ∆y. As a
result, when assuming that the dynamics chosen
in (45) is sufficiently fast, the controller (51)–(52)
stabilizes the tracking according to the differential
equation (36). Even if disturbances must be taken
into account, this conclusion remains valid as long
as the caused errors ∆û−∆u are small.

4. EXAMPLE

In the following the normalized third order (n =
3) state space representation of a uniaxal vehicle

ẋ1 = 1
2 (u1 + u2) cosx3

ẋ2 = 1
2 (u1 + u2) sinx3 (53)

ẋ3 = 1
2 (u1 − u2)

y = [y1, y2]
T

= [x1, x2]
T

(54)

is considered, where the inputs u1 and u2 are the
the left and right track velocity, the outputs y1

and y2 represent the position in a fixed Cartesian
coordinate system and the state x3 means the
angle between vehicle velocity and y1-axis. A



flat output yf is given by the physical output y
(see (Martin et al., 1997)), i.e.

yf = [yf1, yf2]
T

= y (55)

As reference trajectory

yf,d = [r sin v0

r t,−r cos v0

r t]
T

(56)

is assigned, which describes a circular movement
with radius r = 10 at the constant speed v0 = 5.

In contrast to the assumptions in Section 2.1, the
model (53) is not static feedback linearizable. This
can easily be seen by evaluating relationship (5)
to

u=ψu(yf1, ..., y
(κ1)
f1 , yf2, ..., y

(κ2)
f2 )

=ψu(yf1, ẏf1, ÿf1, yf2, ẏf2, ÿf2) (57)

from which

κ1 + κ2 = 2 + 2 > n = 3 (58)

can be deduced. However, the problem can be
solved by introducing the controller state

x4 =
√
ẏ2
f1 + ẏ2

f2 (59)

with 1
2 (u1 + u2) = x4 and the new inputs

v = [v1, v2]
T

= [ẋ4,
1
2u2]

T
(60)

resulting in the extended static feedback lineariz-
able system described by

ẋ1 = x4 cosx3

ẋ2 = x4 sinx3

ẋ3 = x4 − 2v2

ẋ4 = v1

(61)

y = [y1, y2, x4]T (62)

Note that the measurable controller state x4 is
included as additional output in (62). Analogously
to (5) and (11), the new input v can be expressed
in terms of the flat output yf as

v = ψv(ẏf1, ÿf1, ẏf2, ÿf2) (63)

and the feedforward controller for the extended
system (61) is directly given as

vd = ψv(ẏf1,d, ÿf1,d, ẏf2,d, ÿf2,d) (64)

by inserting the reference trajectory (56) into (63).
The extended state space representation (61) is
converted into controller form by employing the
state transformation

z = [yf1, ẏf1, yf2, ẏf2]T (65)

= [x1, x4 cosx3, x2, x4 sinx3]
T

(66)

(see (6)). Subsequently, the result (see (8)–(9)) is
linearized about the reference trajectory zd given
by

zd = [yf1,d, ẏf1,d, yf2,d, ẏf2,d]
T

(67)

and vd (see (64)), which yields

∆ż∗ =

[
0 −5 cos

t
2 sin

t
2 0 − 11

2 +5 cos2 t
2

0
1
2 +5 cos2 t

2 0 5 cos
t
2 sin

t
2

]
∆z

+

[
cos

t
2 10 sin

t
2

sin
t
2 −10 cos

t
2

]
∆v (68)

∆y=




1 0 0 0

0 0 1 0

0 cos
t
2 0 sin

t
2


∆z (69)

(see (17)) where ∆z∗ = [∆z2,∆z4]
T

according to
(13), ∆v = v − vd and ∆y = y − yd. Using these
results the polynomial matrices

N(D, t) =[
cos

t
2D

2− 1
2 sin

t
2D sin

t
2D

2+
1
2 cos

t
2D

1
10 sin

t
2D

2+
11
20 cos

t
2D −

1
10 cos

t
2D

2+
11
20 sin

t
2D

]
(70)

and

Z(D, t) =




1 0

0 1

cos
t
2D sin

t
2D


 (71)

determining the differential operator representa-
tion (28) and (29) can be calculated by means of
(26) and (27). The dynamics of the tracking error
∆yf = yf − yfd is specified by

Ñ(D, t) =

Γc[N(D, t)] diag(D2+2D+1, D2+2D+1) (72)

(see 42) and the dynamics of the error ∆v̂ −∆v is
assigned by

∆(D) =

[
D+10 0

0 D+10

]
(73)

Using the conditions established in (Limanond
and Tsakalis, 2001) it can be shown that the
Diophantine equation (50) can be fulfilled by
polynomial matrices Zv(D, t) and Zy(D, t) with
deg(Zv) = 0 and deg(Zy) = 1. Thus, the solution
can be written in the general form

Zv(D, t) =

[
z0
v11(t) z0

v12(t)

z0
v21(t) z0

v22(t)

]
(74)

Zy(D, t) =

[
z1
y11

(t)D+z0
y11

(t) z1
y12

(t)D+z0
y12

(t) z0
y13

(t)

z1
y21

(t)D+z0
y21

(t) z1
y22

(t)D+z0
y22

(t) z0
y23

(t)

]

(75)

Note that the first-order terms in the last column
of Zy(D, t) are omitted, since ẏ3 = ẋ4 = v1

(see (60)) meaning that without loss of generality
these coefficients can be included in the zero-order
terms in the first column of Zv(D, t). Inserting
the general expressions (74)–(75) into (50) leads
to a system of 12 independent linear time vary-
ing equations for the 14 unknown coefficients in
Zv(D, t) and Zy(D, t), which can be solved with
the assistance of the computer algebra system
MAPLE. The two resulting degrees of freedom
in the solution are determined by the condition
that all coefficients in Zv(D, t) and Zy(D, t) must



remain bounded for all times t. Hence, the dy-
namic output feedback controller (51) is specified
completely. One possible realization of the con-
troller (51) is obtained by introducing the con-

troller states ∆ξ = [∆ξ1,∆ξ2]T according to

∆ξ1 = ∆v̂1 − z1
y11(t)∆y1 − z1

y12(t)∆y2 (76)

∆ξ2 = ∆v̂2 − z1
y21(t)∆y1 − z1

y22(t)∆y2 (77)

which results in the state space representation

∆ξ̇ =

[
−10 0

0 −10

]
∆ξ +

[
−2 −5

11
20
−2

]
∆v+

[
− 15

2
cos t

2
+ 101

2
sin t

2
− 15

2
cos t

2
− 101

2
sin t

2
− 37

2

20 sin t
2

+cos t
2

−20 cos t
2

+sin t
2

13
2

]
∆y (78)

∆v̂ =∆ξ +

[
−5 sin t

2
5 cos t

2
0

− 21
10

sin t
2

21
10

cos t
2

0

]
∆y (79)

Thus, stabilized tracking is achieved by the inputs
(see (52))

v1 = v1,d +∆v̂1 (80)

v2 = v2,d +∆v̂2 (81)

where v1,d and v2,d are determined by the non-
linear feedforward controller (64). Note that the
overall order of the so defined controller is three,
since not only a realization of the state space
model (78)–(79) must be provided but also an
implementation of the system extension (59)–
(60). The presented feedback design was simulated
applying MATLAB/SIMULINK and the results
were compared to the well-established flatness-
based approach using a dynamic nonlinear state
feedback controller combined with a nonlinear
tracking observer with a linear time varying ob-
server gain (see e.g. (Fliess and Rudolph, 1996)
for details). Although the order of the considered
nonlinear controller was four, i.e. by one higher
than the corresponding order of the linear design,
both offered a very similar performance assuming
small errors in the initial state, which is shown
in Figure 1 for the initial state errors x1(0) −
x1,d(0) = −0.05r, x2(0) − x2,d(0) = 0.05r and
x3(0)−x3,d(0) = π

18 . Moreover, even for relatively
large errors and disturbances the simulated dy-
namic behavior did not worsen significantly when
using the linear approach.

5. CONCLUSIONS

In this contribution a systematic design procedure
for linear dynamic output feedback controllers for
nonlinear flat systems has been developed. The
controller achieves time invariant tracking error
dynamics in the vicinity of the reference trajec-
tory. The applicability of the proposed scheme
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Fig. 1. Comparison of the tracking errors with
linear and nonlinear tracking controller

has been shown for a uniaxial vehicle model. Even
more general linear time varying system descrip-
tions than (28)–(29) could be used for the con-
troller design, see e.g. (Levine and Nguyen, 2003).
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