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Abstract

In fuzzy rule-based classification systems, rule weight has often been used to improve the classification accuracy. In past
research, a number of heuristic methods for rule weight specification have been proposed. In this paper, a method of fuzzy
rule weight specification using Receiver Operating Characteristic (ROC) analysis is proposed. In order to specify the
weight of a fuzzy rule, using 2-class ROC analysis, the threshold that the rule achieves its maximum accuracy is found.
This threshold is used as the weight of the rule. The proposed method is compared with existing ones through computer
simulations on some well-known classification problems with continuous attributes. Simulation results show that the pro-
posed method performs better than existing methods of fuzzy rule weight specification.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A Fuzzy Rule-Based Classification System (FRBCS) is a special case of fuzzy modeling where the output of
the system is crisp and discrete. Basically, the design of a FRBCS consists of finding a compact set of fuzzy if-
then classification rules to be able to model the input—output behavior of the system. The information avail-
able about the behavior of the system is assumed to be a set of input—output example pairs (i.e., a number of
pre-labeled classification examples). Many approaches have been proposed for generating fuzzy classification
rules from numerical data. These include heuristic approaches [1,17,25], neuro-fuzzy techniques [5,26,27,33],
clustering methods [2,24,31], support vector machines [6,22] and genetic algorithms [4,10-13,15,16,21,29,32].

In this work, we assume that for each attribute of our classification problem, a number of pre-defined fuzzy
sets, each having a linguistic meaning, is given by domain experts. Each fuzzy classification rule should use one
of these fuzzy sets to specify the value of each attribute. The task of constructing a FRBCS can be handled by
finding a compact set of fuzzy rules for the problem in hand. Rule weight can then be used as a simple mech-
anism to improve the classification performance of the constructed rule-base.
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Rule weights are not used in many research works on FRBCSs (e.g. [2,4]). In many of these works, ante-
cedent fuzzy sets are generated and adjusted using numerical data. As shown in [28], the learning of rule
weights can be replaced by modification of membership functions of antecedent fuzzy sets. On the other hand,
learning of rule weights can only partially replace the learning of membership functions of antecedent fuzzy
sets. Since rule weight is a single parameter per rule, its adjustment is much easier than the learning of ante-
cedent fuzzy sets (i.e., the learning of a number of parameter values of each membership function). Apart from
simplicity of adjustment, another advantage of using rule weight is that the classification performance can be
improved without changing the position of fuzzy sets given by domain experts. A number of heuristic mea-
sures have been proposed to specify the weight of a fuzzy classification rule (see Section 3). In this paper,
we propose a new method of rule weight specification using ROC analysis.

ROC curve [9] s a technique for visualizing, organizing and selecting classifiers based on their performance.
It can be used to choose the best operating point (i.e., threshold) of a classifier resulting in minimum cost or
maximum accuracy. ROC curves are especially useful in case of having unequal classification error costs and
unbalanced classes (i.e., skewed class distribution).

In this work, given a rule-base for a problem, we use 2-class ROC analysis to specify the weight of each rule
in the system. ROC analysis is used to find the threshold that a rule achieves its best performance (i.e., max-
imum accuracy). The value of the best threshold which is a real number in the interval [0, 1] is used as the
weight of the rule.

The rest of this paper is organized as follows. In Section 2, the structure of a FRBCS and the method of rule
generation used in this paper are discussed. In Section 3, existing methods of rule weight specification are
given. In Section 4, after introducing ROC curves, the mechanism for selecting the best operating point for
2-class problems is discussed. In Section 5, the proposed method of rule weight specification is presented.
In Section 6, the simulation results are presented. Section 7 concludes the paper.

2. Fuzzy rule-based classification systems

A FRBCS is composed of three main conceptual components: database, rule-base and reasoning method.
The database describes the semantic of fuzzy sets associated to linguistic labels. Each rule in the rule-base spec-
ifies a subspace of pattern space using the fuzzy sets in the antecedent part of the rule. The reasoning method
provides the mechanism to classify a pattern using the information from the rule-base and database. Different
rule types have been used for pattern classification problems [7]. We use fuzzy rules of the following type for
an n-dimensional problem.

Rule R;: 1If x; is A;; and ... and x, is 4, then class C; with CF;, j=1,2,...,N. (1)

where, X = [x1,x2,...,x,] is the input feature vector, C; € [C},C; ..., Cy] is the consequent class of the rule,
Aji is the fuzzy set associated to x;, CF; is the certainty grade (i.e. rule weight) of rule R; and N is the number
of fuzzy rules in the rule-base.

In order to classify an input pattern X, = [x;1, Xz, - . .,X], the degree of compatibility of the pattern with
each rule is calculated (i.e., using a T-norm to model the “and’ connectives in the rule antecedent). In case
of using product as T-norm, the compatibility grade of rule R; with the input pattern X, can be calculated
as

) = T @

where ;(-) is the membership function of the antecedent fuzzy set A;.

In the case of using single winner reasoning method, the pattern is classified according to consequent class
of winner rule R,,. With the rules of form (1), the certainty grade of each rule is also used in finding the winner
rule:

ty(X7) - CFy = max{u,;(X,) -CF;: j=1,... N} (3)
w = argmax{y;(X,)-CF;: j=1,...,N} (4)
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Note that the classification of a pattern not covered by any rule in the rule-base is rejected. The classification
of a pattern X; is also rejected if two rules with different consequent classes have the same value of u(X,) - CF
in Eq. (3).

2.1. Generating fuzzy rules

For an M-class problem in an n-dimensional feature space, assume that m labeled patterns
X, =[xu, %2,y Xm), t=1,2,...,m from M classes are given. A simple approach for generating fuzzy rules
is to partition the domain interval of each input attribute using a pre-specified number of fuzzy sets (i.e., grid
partitioning). Some examples of this partitioning (using triangular membership functions) are shown in Fig. 1.

Given a partitioning of pattern space, one approach is to consider all possible combination of antecedents
to generate the fuzzy rules. The method to select the consequent class for an antecedent combination can be
expressed in terms of confidence and support from the field of data mining [3]. A fuzzy classification rule can
be viewed as an association rule of the form 4; = class C;, where 4; is a multi-dimensional fuzzy set repre-
senting the antecedent conditions and C; is a class label. Confidence (denoted by C) and support (denoted
by S) of a fuzzy association rule [18] are defined as

X, lz: c M/'(Xt)
C(Aj = class Cl) _ ,ECZSS—/ (5)
z} 'uj(Xt)
=
1
Sy = class C) =— S (X)) (6)
Xeclass C;

where, 1;(X;) is the compatibility grade of pattern X; with the antecedent of the rule R;, m is the number of
training patterns and C; is a class label. The consequent class C, of an antecedent combination is specified by
finding the class with maximum confidence. This can be expressed as

g =argmax{C(4; = class h): h=1,...,M} (7)

When the consequent class C; cannot be uniquely determined, the fuzzy rule is not generated.

The problem with grid partitioning is that an appropriate partitioning of each attribute is not usually
known. One solution is to simultaneously consider different partitions shown in Fig. 1. That is, for each
attribute, one of the 14 fuzzy sets shown in Fig. 1 can be used when generating a fuzzy rule. The problem
is that for an n-dimensional problem, 14" antecedent combinations should be considered. It is impractical
to consider such a huge number of antecedent combinations when dealing with high dimensional
problems.

One solution for the above problem is presented in [18] by adding the fuzzy set “don’t care’ to each attri-
bute. The membership function of this fuzzy set is defined as gy, care () = 1 for all values of x. The trick is not
to consider all antecedent combinations (which is now 15" and only short fuzzy rules having a limited number
of antecedent conditions (excluding don’t care) are generated as candidate rules.

The number of candidate rules generated with the above scheme can be quite large for many problems. A
compact set of rules can be constructed in the following manner. The generated candidate rules are divided

1.0 [ :l 1.0
0.0 0.0
0.0 1.0 0.0 1.0
1.0 l : : ] 1.0
0.0 0.0
0.0 1.0 0.0 1.0

Fig. 1. Different partitioning of each feature axis.
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into M groups according to their consequent classes. The candidate rules in each group are sorted in descend-
ing order of an evaluation criterion. A rule-base is constructed by choosing Q fuzzy rules from each class (i.e.,
M-Q fuzzy rules in total). Among many heuristic rule evaluation measures presented in the literature [19], we
use the measure presented in [11]. The evaluation of rule R; (i.e., 4; = class C;) with this measure can be
expressed as

eR)= D wX)— DY ) (8)

Xeclass C; X gclass C;

In practice, it can happen that multiple rules have the same value of rule evaluation criterion. To select a rule,
we apply the following criteria in a lexicographical order.

1. Rule evaluation measure (Eq. (8)).

2. Number of antecedent conditions.

3. The size of covering subspace of the rule that is calculated by multiplying the areas of fuzzy sets in the
antecedent.

Therefore, measure (8) is used as the main criterion. In a tie situation, the rule having fewer antecedent con-
ditions is selected. In case of a new tie situation, the rule having larger covering space is selected. In case multi-
ple rules having the same value of the three criteria, a rule is selected in random among those best fuzzy rules.

The above simple method of rule-base construction should not be expected to achieve high classification
performance. The reason for this is that:

1. An equal number of rules are selected from each class to construct a rule-base. In an optimal rule-base (i.c.,
with high classification accuracy), the number of rules from each class may be different.

2. The combinatorial effect of fuzzy rules (i.e., the interaction among them) is not taken into account when a
rule-base is constructed.

We use this simple method of rule-base construction since our intention is to compare various rule weight-
ing schemes with each other (i.e., not to construct optimal rule-bases). For a specific data set, we can easily
construct many rule-bases by varying the parameter Q and asses the performance of each method of rule
weighting across these rule-bases.

In order to construct rule-bases with high classification performance, above problems can be solved by
directly searching for good rule sets (i.e., combination of fuzzy rules). One way of doing this already used
by other researchers is to use Genetic Algorithms (GA) to directly search for good subsets of candidate rules
generated using the heuristic criterion [18,19]. In this scheme, each individual in GA population represents a
rule-base. Error rate on train data is usually used to evaluate an individual. A rule-weighting scheme is used to
tune the rule-base before calculating its fitness. The choice of rule weighting scheme obviously can have a sig-
nificant effect on the classification performance of the final rule-base.

3. Rule weight specification methods

In order to assign a weight to each fuzzy classification rule, four heuristic measures proposed in past
research will be investigated here. In the first method [7], the confidence of the fuzzy association rule is used
as its weight

CF} = C(4; = class C)) )
The second definition of rule weight proposed in [14] can be stated as
CF? = C(4; = class C;) — Cayerage (10)

where, Caverage 15 the average confidence of the fuzzy association rules having the same antecedent but con-
sequent classes other than C;. For an M-class problem, it can be expressed as
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1 M
Z C(4; = class h)
h=1 (11)

h#C;

CAverage = ﬁ

The third definition of rule weight used in [18,20] can be stated as
CF; = C(4; = class C;) — Csccond (12)

where, Csecong 18 the largest confidence of fuzzy association rules having the same antecedent but consequent
classes other than C;.

Cseconda = max{C(4; =class h): h=1,...,M and h # C;} (13)
The fourth definition of rule weight proposed in [20] can be stated as
CF} = C(4; = class C;) — Csum (14)

where, Csum, 18 the sum of confidence over fuzzy association rules having the same antecedent but consequent
classes other than C;.

M
Csum = Z C(4; = class h)
h=1 (15)

htC,

Note that with fourth definition of rule weight (14), the weight of a rule can be negative while with other def-
initions it is always positive. The weight of the rule is set to zero in case the calculated value of rule weight
using Eq. (14) is negative.

4. ROC curves

ROC curve is a technique for visualizing the performance of a classifier as a trade-off between sensitivity
and selectivity. It was first introduced in signal detection theory to demonstrate how well a receiver distin-
guishes a signal from noise [8]. ROC analysis has been extensively used in medical diagnostic tests to specify
sensitivity/specificity trades-off. Recently, a lot of interest is shown to use ROC as an analysis tool in the field
of machine learning [23,30].

A discrete classifier such as a classification tree only produces a class label for an input pattern. For a
2-class problem (with positive (p) and negative (n) class labels), given a test set of P positive and N negative
labeled patterns, a classifier of this type generates a 2 x 2 confusion matrix (shown in Fig. 2) representing the
performance of the classifier.

Actual Class

p n
w)

172]

<

@) True False
3 P [ Positives Positives
2

@ False True

A~ | Negatives Negatives
Column P N
Totals:

Fig. 2. Confusion matrix for a discrete classifier.



M.J. Zolghadri, E.G. Mansoori | Information Sciences 177 (2007) 2296-2307 2301

Some common metrics, which can be calculated from the confusion matrix, are:

. TP

True positive (TP) rate = - (16)
. FP

False positive (FP) rate = N (17)

. TP
Precision = TP+ FP (18)
TP + TN
Accuracy = —+ " (19)
P+N

The ROC curve for a two-class problem is a two dimensional curve in which TP rate is plotted on y axis and
FP rate is plotted on x axis. Discrete classifiers produce a single (TP rate, FP rate) pair, thus produce a single
point in ROC space. Many classifiers, such as Bayesian classifiers or FRBCSs, naturally assign a score f(X,) to
each input pattern X; (i.e., scoring classifiers). The score is a numeric value expressing the degree that X, is
thought to be positive. For example, naive Bayes classifiers output posterior probability distribution over clas-
ses. Let pr(p, X,) and pr(n, X,) denote the estimated probabilities that the pattern X, is of positive and negative
class, respectively. The score of a pattern can be defined as

_ pr(vat) _ pr(val)
pr(n,X,) 1-—pr(p,X,)

A scoring classifier can be converted to a discrete classifier by specifying a threshold on score. A pattern is
classified as positive if its score of the pattern is greater than the specified threshold, and negative otherwise.
In this way, each threshold produces a different point in ROC space. As the threshold is varied from 0 to oo, a
ROC curve can be drawn. The ROC curve starts from the point (0,0) where the classifier finds no positives
(everything is classified as negative) and stops at point (1, 1) where the classifier finds no negative (everything
is classified as positive).

An efficient method of constructing ROC curves is given in [9]. In this method, the patterns are sorted in
decreasing order of their scores. Starting at (0,0), the ROC curve is drawn by moving }, up (along y-axis) if the
next pattern is an actual positive and moving ﬁ to the right (along x-axis) if the next instance is an actual neg-
ative until we reach the point (1, 1). Since it can happen that some patterns from both classes having the same
score (i.e., n; patterns from positive class and n, patterns from negative class), the ROC curve is drawn by a
single diagonal element moving % up and %> to the right simultaneously.

f(X) (20)

4.1. Learning the best operating point for 2-class problems

ROC analysis provides an elegant mechanism for choosing the best operating point when the misclassifi-
cation costs are unequal. For two class problems, the best operating point must be chosen such that the clas-
sifier gives the best trade-off between the costs of failing to detect positives against the cost of failing to detect
negatives. Let Cy be the cost of misclassifying a negative and Cp be the cost of misclassifying a positive. The
expected cost of a point (x,y) in ROC space is

expected cost =
P+ N

(21)

In this paper, we assume that misclassification costs are equal to each other and unity (i.e., Cp = Cy = 1). For
a 2-class problem with P positive and N negative labeled patterns, the expected accuracy corresponding to a
specific threshold is

TP — FP N

expected accuracy = PIN + PIN (22)

Since we are only interested in finding a threshold which maximizes Eq. (22), with P and N being constant for
a problem, we can equivalently search for a threshold maximizing the following measure:
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accuracy-measure = TP — FP (23)

Having the relation between a threshold and corresponding accuracy of the classifier, the best threshold can
be easily found by varying the threshold from 0 to co. Actually, it is sufficient to consider those thresholds that
the classification of an instance changes from positive to negative. For this purpose, the patterns are ranked in
descending order of their scores (i.e., /(X)) > f(X2) > -+ > f(Xpn)). Considering any threshold between
f(Xk) and f(Xg.1), the first K patterns will be classified as positive and the remaining P + N — K patterns
as negative. In this way, a maximum of P + N+1 thresholds should be examined to find the best threshold.
The first threshold classifies everything as negative and the last threshold classifies everything as positive.
The rest of the thresholds are chosen in the middle of two successive scores f(Xx), f(Xki1) in the list where
f(Xk) # f(Xgi1). The best threshold is the one that maximizes Eq. (23).

5. Rule weight specification using ROC

For a specific problem, assume that a rule-base is constructed using the mechanism described in Section 2.1.
Our aim in this section is to propose a rule-weight specification method based on ROC analysis. Consider the
following rule as a typical rule of the system.

Rule R;: If x; is A4 and ... and x, is 4;, then class C; (24)

In order to use the mechanism described in Section 4.1, a 2-class situation is formed by denoting the conse-
quent class of the rule (class C;) as positive and all other classes as negative. That is, in rule weighting mech-
anism given in this section, class p denotes the consequent class of the rule under investigation (to specify its
weight) and class 7 is formed by merging all other classes. The score of each training pattern X, covered by rule
R; can be defined as

_H (X+)
1, (X0)

where 1,(X,) denotes the compatibility grade of pattern X; with rule R; (i.e., u,(X,) = w;(X;)) and p,(X,) is
defined as

J(X) (25)

1, (X;) = max{u;(X,)|R; € rule-base, Consequent(R;) # Class p} (26)

The numerator and denominator of Eq. (25) specify the degree to which X; is thought to be of class p and class
n, respectively.

Note that in calculating the score of each pattern covered by rule R;, all other rules in the system having
class C; in the consequent are ignored. In other words, to specify the weight of this rule, we assume that this
is the only rule in the system having class C;in the consequent. Using Eq. (25), the score of each training pat-
tern will be in the range of 0 to co. In this work, we use the following definition of score which normalizes the
score to a value in the interval [0, 1].

1, (X )

Score = 27
( [) tun(Xt)—"_:up(Xt) ( )
Notice that the two definitions of score (Eqs. (25) and (27)) are related in the following way:
1
Score(X;) = ——— 28

That is, ranking positions of patterns will not be affected if we use Eq. (27) as the definition of score and rank
the patterns in ascending order of their scores (instead of ranking them in descending order using (25)).

In order to specify the weight of fuzzy rule R;, in the first step, the scores of the patterns in the covering area
of the rule are calculated using Eq. (27). In the next step, the best threshold on score resulting in maximum
accuracy is calculated (using the mechanism described in Section 4.1). An algorithm for doing this is given
in Table 1. This algorithm receives the set of patterns X, and their scores Score(X;) as input and returns
the best threshold as output. The value of the best threshold is simply used as the weight of the rule (i.e.,
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Table 1
Algorithm for finding the best threshold

Input: patterns X,, scores Score(X,)
Output: the threshold (#/) resulting in maximum accuracy
current = accuracy-measure (Eq. (23)) corresponding to the threshold of 2 = 0 (i.e., classifying everything as negative)
optimum = current
best-threshold = 0
rank the patterns in ascending order of their scores
{assume that x; and X, are two successive patterns in the list}
for each different threshold th = (Score(X}) + Score(Xy41))/2 do
current = accuracy-measure corresponding to the specified threshold (i.e., all patterns X, having Score(X,) < th are classified as
positive)
if current > optimum then
optimum = current
best-threshold = th
end if
end for
current = accuracy-measure corresponding to 2 =1 (i.e., classifying everything as positive)
if current > optimum then
optimum = current
best-threshold = 1
end if
return best-threshold

CF, = best-threshold). Notice that with scores of patterns being in the interval [0, 1], the weight assigned to
each rule will be in this interval.

With the four definitions of rule weight discussed in Section 3, the weight assigned to a fuzzy rule is inde-
pendent of other rules in the rule-base. On the other hand, our proposed method considers the rules of neg-
ative class in the rule-base to specify the weight of a rule. That is, the weight of a rule changes when included in
different rule-bases.

6. Simulation results

In this section, we evaluate the performance of the proposed rule-weighting scheme in comparison with
other methods discussed in Section 3. In computer simulations, we used four data sets in Table 2 available
from UCI machine learning repository. For each data set, each attribute was normalized into a real number
in the interval [0, 1]. Using “don’t care” in addition to 14 fuzzy sets in Fig. 1; we generated all fuzzy rules hav-
ing two antecedent conditions or less (excluding “don’t care’’). The consequent of each fuzzy rule was specified
using Eq. (7). The generated fuzzy rules were divided into M groups according to their consequent classes. A
rule-base was then constructed by choosing Q fuzzy rules from each group using the three criteria given in
Section 2.1. We used various values of Q (i.e., OQ=1,2,...,10) to examine the classification rate of fuzzy
rule-bases of different sizes. For each data set, we report on the classification rate for the following cases:

e Full Train—Full Test (FT-FT): The full data set is used in the training phase to construct the rule-bases of

different sizes (i.e., Q = 1,2,...,10). The full data set is also used in the testing phase to evaluate various
rule-bases.

Table 2

Data sets used in this paper

Data set No. of attributes No. of samples No. of classes

Glass 9 214 6

Pima 8 768 2

B. cancer 9 684 2

Wine 13 178 3
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e Leave one out (LV1): One sample is put aside for the testing phase and the rest of samples are used in the
training phase (i.e., to construct the rule-base). The procedure is repeated until all the samples are used in
the testing phase. The average classification rate on test data is reported as the performance of classifier.

Tables 3-6 give the FT-FT classification performance for the data sets used in this paper. For each con-
structed rule-base, we report on classification rate for the case of no rule weight, the four heuristic definitions
of rule weight and our proposed method. The best result in each column (i.e., each specification of Q) is shown
in boldface. As seen, the proposed method achieves the best performance in nearly all experimental cases (i.e.,
across different values of Q for all data sets).

Tables 7-10 give the average classification rates on test patterns of various data sets using LV1 evaluation
method. We can see that the classification performance of fuzzy rule-based systems with no rule weights are

Table 3

FT-FT evaluation of Glass data set

Rules/class 1 2 3 4 5 6 7 8 9 10

No. weight 51.86 52.33 53.27 56.54 58.41 60.28 60.28 60.28 66.82 66.82
CF! 53.27 53.33 54.20 58.87 59.81 61.21 61.21 61.21 66.35 66.35
CF? 53.27 53.33 54.20 57.94 59.34 60.74 60.74 60.74 65.88 65.88
CF? 54.20 55.14 56.07 57.47 59.34 61.68 61.68 61.68 64.01 64.01
CF* 57.00 57.47 57.00 59.34 61.68 62.14 62.14 62.14 62.14 62.14
ROC 60.74 61.21 60.28 63.55 66.35 66.82 66.35 66.35 70.09 70.09
Table 4

FT-FT evaluation of Pima data set

Rules/class 1 2 3 4 5 6 7 8 9 10
No. weight 73.30 73.30 73.30 67.44 67.57 67.18 67.18 67.18 67.18 67.18
CF! 73.30 73.30 73.30 68.61 68.75 67.83 67.83 67.83 67.83 67.83
CF? 73.82 73.56 73.82 70.96 71.09 70.57 70.57 70.57 70.57 69.92
CF? 73.82 73.56 73.82 70.96 71.09 70.57 70.57 70.57 70.57 69.92
CF* 73.82 73.56 73.82 70.96 71.09 70.57 70.57 70.57 70.57 69.92
ROC 73.95 74.73 74.73 74.86 74.86 74.60 74.60 74.60 74.60 75.00
Table 5

FT-FT evaluation of B. cancer data set

Rules/class 1 2 3 4 5 6 7 8 9 10
No. weight 94.44 93.42 93.42 95.17 94.88 94.88 95.02 95.02 95.32 95.32
CF! 94.44 93.12 93.12 94.88 94.44 94.44 94.73 94.73 95.17 95.32
CF? 94.29 93.12 93.12 94.73 94.29 94.29 94.59 94.59 95.17 95.32
CF? 94.29 93.12 93.12 94.73 94.29 94.29 94.59 94.59 95.17 95.32
CF* 94.29 93.12 93.12 94.73 94.29 94.29 94.59 94.59 95.17 95.32
ROC 94.73 93.56 93.56 95.90 95.76 95.76 96.05 96.05 96.34 96.34
Table 6

FT-FT evaluation of Wine data set

Rules/class 1 2 3 4 5 6 7 8 9 10
No. weight 89.32 93.82 92.69 92.69 92.69 93.82 93.82 93.82 93.25 93.82
CF! 89.32 93.25 92.69 93.25 93.25 93.25 93.82 93.82 93.82 94.38
CF? 89.88 93.25 92.69 93.82 93.82 93.25 93.82 93.82 93.82 94.94
CF? 89.32 93.25 93.25 95.50 95.50 95.50 95.50 95.50 94.94 96.06
CF* 89.88 93.25 93.25 94.94 94.94 94.94 95.50 95.50 94.38 96.06
ROC 91.01 94.38 94.38 95.50 95.50 95.50 95.50 95.50 94.38 96.06
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Table 7

Leave one out evaluation of Glass data set

Rules/class 1 2 3 4 5 6 7 8 9 10
No. weight 48.13 49.53 48.59 49.06 49.06 50.46 53.73 52.33 50.46 45.32
CF! 49.53 50.93 50.00 50.46 50.93 53.27 56.07 54.67 53.27 49.53
CF? 49.53 50.93 50.00 50.46 50.93 53.27 56.07 54.67 53.27 50.46
CF? 50.00 50.93 49.53 49.06 50.00 52.80 56.07 55.14 55.14 55.14
CF* 49.53 50.93 50.00 50.46 50.93 53.27 56.07 54.67 53.27 49.53
ROC 57.94 59.34 56.54 57.47 57.00 59.81 61.21 60.28 62.61 63.08
Table 8

LV1 evaluation of Pima data set

Rules/class 1 2 3 4 5 6 7 8 9 10
No. weight 73.30 73.30 65.23 67.44 67.57 67.18 67.18 67.18 67.18 67.18
CF! 73.30 73.30 66.40 68.61 68.61 67.83 67.83 67.83 67.83 67.70
CF? 73.82 73.43 69.53 70.83 70.96 70.44 70.44 70.44 70.44 70.05
CF? 73.82 73.43 69.53 70.83 70.96 70.44 70.44 70.44 70.44 70.05
CF* 73.30 73.30 66.40 68.61 68.61 67.83 67.83 67.83 67.83 67.70
ROC 73.82 73.82 74.60 74.73 74.21 74.60 74.60 74.60 74.60 74.60
Table 9

LV1 evaluation of B. cancer data set

Rules/class 1 2 3 4 5 6 7 8 9 10
No. weight 94.44 93.42 92.98 93.12 94.88 94.88 95.02 95.02 95.02 95.32
CF! 94.44 93.12 92.69 92.83 94.29 94.29 94.73 94.73 94.88 95.32
CF? 94.29 93.12 92.69 92.83 94.15 94.15 94.59 94.73 94.88 95.32
CF? 94.29 93.12 92.69 92.83 94.15 94.15 94.59 94.73 94.88 95.32
CF* 94.44 93.12 92.69 92.83 94.29 94.29 94.73 94.73 94.88 95.32
ROC 94.44 93.42 92.98 92.69 95.46 95.76 96.05 96.05 95.76 95.76
Table 10

LVI evaluation of Wine data set

Rules/class 1 2 3 4 5 6 7 8 9 10
No. weight 89.32 93.82 92.69 89.32 89.88 90.44 92.13 92.13 92.13 92.13
CF! 89.32 93.25 92.69 90.44 90.44 91.01 92.69 91.57 91.57 91.57
CF? 89.32 93.25 92.69 90.44 90.44 90.44 92.69 90.44 90.44 91.01
CF? 89.32 93.25 92.69 92.13 91.57 91.57 93.82 92.13 92.13 92.69
CF* 89.32 93.25 92.69 90.44 90.44 91.01 92.69 91.57 91.57 91.57
ROC 90.44 93.25 93.25 92.69 92.69 92.69 94.38 93.82 92.13 92.13

improved in most cases using the proposed rule-weighting scheme. While the amount of improvement is small
in case of Wine and B. cancer data sets, in case of Glass and Pima data sets, a significant amount of improve-
ment is observed only with the proposed method of rule-weighting. One possible reason for this is that Wine
and B. cancer data sets do not have large overlap regions between different classes in the pattern space. For
these data sets, the proposed method (and in fact all other rule-weighting schemes) does not have a large effect
on the performance. In case of Glass and Pima data sets, with highly overlapped classes, a significant amount
of improvement is observed only with the proposed method of rule-weighting.

As the results of Tables 7-10 suggest, none of the past methods of rule-weighting (i.e. CF' — CF*) has a
clear advantage over the others. Selecting any of these methods does not have a large effect on the classifica-
tion performance. On the other hand, we can see that the proposed method performs consistently better in
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case of Glass and Pima data sets. The difference in performance of the proposed method with other methods is
significant for these data sets. For B. cancer and Wine data sets, the proposed method performs better in most
experimental cases. For these data sets, the difference in performance of the proposed method with other
methods is small.

Obviously, the computation time of the proposed method is higher in comparison with other methods. To
give you an estimate, in our computer program, specification of rule weights with the proposed method for the
case of Glass data set with 10 rules per class (i.e. a rule-base having 60 rules) takes about 2 s it takes around
0.4 s with other methods. For the same case, the construction of initial rule-base takes about 15 s in our sim-
ulation. As seen, the major bottleneck is the computation time needed to construct the initial rule-base not the
time required for rule-weighting.

A point to mention is that, when the value of measure (8) for a fuzzy rule is negative, the calculated weight
using the fourth definition of rule weight (14) is negative while with other definitions it is always positive. As
we have already mentioned, we do not use fuzzy rules with negative weights. Fuzzy rules with negative weights
are not used in case of fourth definition while they are used in other definitions. That is, the number of used
fuzzy rules in different rule-bases of Tables 3—10 can be different between fourth and other definitions. In order
to evaluate the pure effect of rule weights on the classification performance, all the fuzzy rules that are used to
construct different rule-bases in Tables 3—10 have in fact a positive value of measure (8).

7. Conclusions

In this paper, we proposed a new method of rule weight specification in fuzzy rule-base classification sys-
tems. Assuming that a rule-base for a problem is available, we used 2-class ROC analysis to find the best
threshold (i.e., resulting in maximum accuracy) for each rule in the rule-base. We introduced a new definition
of score for this purpose that gives the score of a pattern by a real number in the interval [0, 1]. The weight of a
fuzzy rule was then specified as its best threshold value.

Computer simulations on four well-known data sets with continuous attributes showed that the proposed
method can improve the performance of initial rule-base (i.e., the case of not using rule weight). For Glass and
Pima data sets, a significant amount of improvement was observed. In case of Wine and B. cancer data sets,
the rule-weighting scheme did not have a large effect on the classification rate.

In comparison with other rule-weight specification methods, simulation results showed that the proposed
method performs better in vast majority of simulated cases. While the difference in the performance of the
proposed method with other methods is rather large in the case of Glass and Pima data sets, in case of B. can-
cer and Wine data sets, a significant difference was not observed.
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