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Abstract—This work proposes a novel heuristic-hybrid op-
timization method designed to solve the nonconvex economic
dispatch problem in power systems. Due to the fast computational
capabilities of the proposed algorithm, it is envisioned that it
becomes an operations tool for both the generation companies and
the TSO/ISO. The methodology proposed improves the overall
search capability of two powerful heuristic optimization algo-
rithms: a special class of ant colony optimization called API and
a real coded genetic algorithm (RCGA). The proposed algorithm,
entitled GAAPI, is a relatively simple but robust algorithm, which
combines the downhill behavior of API (a key characteristic of op-
timization algorithms) and a good spreading in the solution space
of the GA search strategy (a guarantee to avoid being trapped
in local optima). The feasibility of the proposed method is first
tested on a number of well-known complex test functions, as well
as on four different power test systems having different sizes and
complexities. The results are analyzed in terms of both quality of
the solution and the computational efficiency; it is shown that the
proposed GAAPI algorithm is capable of obtaining highly robust,
quality solutions in a reasonable computational time, compared to
a number of similar algorithms proposed in the literature.

Index Terms—API, ant colony optimization, economic dispatch,
genetic algorithm, global optimization, hybrid models, nonconvex
optimization, power system operation, robust search.

NOMENCLATURE

Coefficients of the fuel-cost function of unit .

API Ant colony algorithm for continuous domains.

Transmission loss coefficients matrix.

Ramp-down/up rate limit of unit (MW/h).

Coefficients for the valve-point effect of unit .

Counter for the number of consecutive failures
when searching inside one site.

Total generation cost .

Number of dispatchable units in the system.

ns Counter for the sites memorized by an ant.

Total number of sites an ant can memorize.

NL Number of lines in the power network.
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Number of prohibited operating zones (POZ) of
unit .

popRCGA Population size in the RCGA algorithm.

Predefined API constant for consecutive
unsuccessful searches.

Active power output vector (MW).

Total average power demand forecasted for the
dispatch period (MW).

Maximum active power output of unit (MW).

Minimum active power output of unit (MW).

Lower boundary of POZ of unit (MW).

Upper boundary of POZ of unit (MW).

Total active power losses of the network (MW).

Maximum thermal limit of transmission line
(MVA).

Apparent power flow through transmission line
(MVA).

SR Total spinning reserve in the system (MW).

Spinning reserve contribution of unit (MW).

Maximum spinning reserve contribution of unit
(MW).

Total spinning reserve required by the system
(MW).

Dispatch period.

Set of all online units.

Set of all units with POZ restrictions.

I. INTRODUCTION

T HE economic dispatch of generation in power systems is
one of the most important optimization problems for both

the generating companies competing in a free electricity market
and the systems operator (SO) in charge with a fair handling of
transactions between electricity suppliers and their customers.
The fuel cost component is still the major part of the variable
cost of electricity generation, directly reflected in the electricity
bills.

Economic dispatch aims at allocating the electricity load de-
mand to the committed generating units in the most economic
or profitable way, while continuously respecting the physical
constraints of the power system. In a free electricity market,
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the (transmission/independent) system operator (TSO/ISO/SO)
needs to obtain the most economic schedule of generation taking
into account a number of system limitations, such as the heat
rate curves, generation limits or ramping limitations of the gen-
erating units, limitations of the transmission lines, or reliability
preventive parameters of the system (e.g., the power reserve).
Thus, the optimization problem may be stated as a minimization
problem [1], when the objective is to minimize the total cost of
supplying the load (the TSO’s point of view), or as a maximiza-
tion problem [2], when the objective is to maximize the profit
of the generating company (GENCO’s point of view).

Traditional approaches to solve the ED problem use deter-
ministic methods based on Lagrange multipliers [1], linear
programming [3], quadratic programming [4], or dynamic pro-
gramming (DP) [5], [6]. These algorithms, except the dynamic
programming technique, require monotonically increasing in-
cremental cost curves, or, in other words, the existence of the
first and second order derivatives of the cost functions. Thus,
the problem is resumed to optimizing a convex function over
a convex set which is guaranteed to have a unique minimum.
However, as long as the input-output characteristics of the real
units are highly nonconvex because of factors such as valve-point
loading, multiple fuel usage, prohibited operating zones (thermal
instability points of the turbine), and nonlinear power flow
equality constraints, the problem cannot be solved in a classical
analytical approach anymore. Further, for a large scale system,
the conventional methods have oscillatory problems resulting in
a longer solution time [7]. As far as DP is concerned, this method
does not impose any restrictions on the structure of the optimiza-
tion system but it suffers from the “curse of dimensionality” [8],
especially when the number of system variables increases.

The economic dispatch problem considering partially or
entirely the above-mentioned nonlinearities and discontinuities
is termed in this paper as the nonconvex economic dispatch
(NCED). The complexity of the NCED problem has led to
the use of heuristic methods in an attempt to reach the near
global optimum solution even when including the nonconvex
characteristics of the problem [9]. Methods such as genetic
algorithm (GA) [10]–[12], evolutionary programming (EP)
[8], simulated annealing (SA) [3], [13], neural network (NN)
[14], fuzzy logic [15], Tabu search [16], and particle swarm
optimization techniques (PSO) [7], [17]–[20] are only a few
examples that solve the nonconvex economic dispatch problem.
These methods have the advantage of not having restrictions
on the generation cost function or generally on the type of the
system under investigation. On the other hand, they prove to
be efficient in finding near global optimal solutions within a
reasonable computational time.

The main drawback in the successful solution of the above-
mentioned heuristic methods may appear due to their prema-
ture convergence [20]. Thus, hybrid solutions were proposed
to solve this complex optimization problem [21]. Such hybrid
techniques include GA combined with SA [22], EP with sequen-
tial quadratic programming (SQP) [23], or NN methods with
PSO [24].

This paper proposes a novel hybrid stochastic method to solve
the nonconvex economic dispatch problem and it is an exten-
sion and improvement of [25]. The method proposed combines

an ant colony approach (API) with a genetic algorithm and it is
shown to provide a fast and robust solution. Four test power sys-
tems are used to validate the effectiveness and applicability of
the algorithm for solving the economic dispatch problem in its
different formulations. The main advantages of the optimization
tool proposed are its flexibility in adding more constraints with
minimum transformations in the approach, its reduced compu-
tational time, and the robustness of the solution.

The following section of the paper presents the formulation
of the nonconvex economic dispatch of generation. Section III
describes in detail the proposed GAAPI method used to solve
the NCED problem, and gives some hints over its performance.
Section IV of the paper shows the applicability of the proposed
method for four different benchmark systems by a detailed anal-
ysis of the results. The last section of the paper is allocated for
conclusions.

II. ECONOMIC DISPATCH FORMULATION

The main objective of the economic dispatch of generation in
power systems is to determine the output of each generating unit
based on the committed generation mix for the next dispatch
interval such that the total generation cost is minimized, while
continuously respecting system constraints.

Modern thermal units have multiple fuel admission valves
that are used to control the power output of the unit. When
starting to open each steam admission valve in a turbine, a rip-
pling effect is added to the fuel cost curve of the unit, which
represents the actual effect due to the sudden influx of steam.
This is called valve point effect and it is modeled by adding
a sinusoidal component to the quadratic approximation of the
fuel cost function [7], [12], [17]–[19]. Thus, the nonconvex eco-
nomic dispatch formulation may refer, in this paper, to: 1) the
nonconvex generator power output curve (nonconvexity caused
by the rippling effect of the multiple steam admission valves),
2) the nonconvex set of the feasible solution set due to transmis-
sion losses, prohibited operating zones, and ramp rate limits as
the constraints of the power system, and 3) both 1) and 2).

The formulation of the economic dispatch problem as a
single-objective optimization problem is adopted in this paper,
and two specific components of the optimization system are
depicted below: the formulation of the objective function, and
the formulation of the constraints to be taken into account.

A. Optimization Function

The objective function can be set up either as 1) piecewise
linear, or 2) convex (smooth) (the typical industry format), or
3) nonconvex (the more realistic picture when dealing with
thermal units with multiple steam admission valves). Many util-
ities prefer to represent their generator cost functions as single-
or multiple-segment linear cost functions [1], as illustratively
presented in Fig. 1.

A convex thermal generation function is a quadratic approx-
imation of the incremental cost curves that could include the
operation maintenance cost, and is of the form

(1)
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Fig. 1. Linear or piecewise linear generator cost function. (a) Single-segment
representation. (b) Multiple-segment representation. � �� � is the generation
cost of one unit.

A nonconvex thermal generation function incorporates sinu-
soidal components that represent the valve point loading effect
produced by opening the steam admission valves of the gener-
ating unit:

(2)

where is the total generation cost, the terms , and
are the fuel-cost coefficients of unit , and , and are the

sinusoidal term coefficients that model the valve-point effect of
unit is the output power of the th unit, and is the
number of generators in the system, all reported at the dispatch
period .

B. Constraints

1) Balance Constraint: The total electric power generation
has to meet the total electric power demand and the real power
losses. Hence

(3)

where is the load demand for the dispatch period
represents the transmission losses associated with

the power flow determined for the dispatch period , and
is the output power of unit at the dispatch period .

2) Transmission Constraints: The transmission power losses
can be computed through a power flow computation

(DC or AC approach). However, for simplification and sepa-
rability of the problem, a common practice is to approximate
the total transmission losses either as a quadratic function of
the power output of generating units (known as Kron’s loss for-
mula), or through a simplified linear formula [1]. The quadratic
representation of the Kron’s loss formula is adopted in this paper
as follows:

(4)

The matrix coefficients are assumed to be constant during
the dispatch procedure. Reasonable accuracy can be expected
when the actual operating conditions are close to the case at
which these coefficients were computed. To determine the

coefficients for a new case study, a power flow program must be
run in advance. In this power flow run, the security limits of the
system are also taken into account. Hence

(5)

where is the apparent power flow through the transmission
line, and is the upper thermal limit of the apparent power
admitted by the transmission line.

3) Generation Limit Constraints: For stable operation, the
real power output of each generator is restricted by lower and
upper limits as follows:

(6)

4) Ramp Rate Limits: Increasing or decreasing the output
generation of each unit is restricted to an amount of power over
a time interval due to the physical limitations of each unit. The
generator ramp rate limits change the effective real power oper-
ating limits as follows:

(7)

where is the output power of generator in the previous
dispatch.

5) Prohibited Operating Zones (POZ): Modern generators
with valve point loading have many prohibited operating zones
[5]. Therefore, in practical operation, when adjusting the gen-
eration output of unit , the operation of the unit in the pro-
hibited zones must be avoided. The feasible operating zones of
unit can be described as follows:

(8)

where is the number of prohibited zones of unit .
6) Spinning Reserve Constraints: Due to security reasons in

case of unexpected outage of generating units or heavily loaded
transmission lines, the committed generating units are not fully
loaded: 5% to 10% of the capacity of each dispatchable unit is
kept available in case of emergency situations. The prohibited
operating zone (POZ) constraint heavily limits the flexibility
of the respective units in providing spinning reserve [11]. So,
the spinning reserve constraint, which applies only to the online
units which are not restricted by POZ, is stated as follows:

(9)

(10)

(11)

where is the total spinning reserve in the system
(MW), is the spinning reserve contribution of unit (MW),
SR is the maximum spinning reserve contribution of unit

(MW), is the set of all units online, and is the set of all
online units with POZ.
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III. GAAPI FOR THE NCED PROBLEM

This paper focuses on the solution of the NCED problem with
valve point loading, ramp rate limits, and prohibited operating
zones, employing a hybrid method that incorporates favorable
features of two powerful optimization algorithms: RCGA and
API.

It is well known that metaheuristic algorithms like GAs, EP,
SA, and PSO typically work well for small dimensional, less
complex problems, but fail to locate the global optima for more
complicated problems [26]. They have a very good search space
covering, but a weak search capability around the global so-
lution. On the other hand, API has a good “hill climbing be-
havior”, but does not cover the solution space very well. There-
fore, by incorporating these two algorithms into one technique,
it is expected to create a method that combines their good fea-
tures while overcoming their disadvantages. The GA used in
the proposed algorithm is a simple real coded genetic algorithm
(RCGA). The API algorithm and the RCGA that form the pro-
posed GAAPI method are described in the remainder of this
section.

A. Overview of the RCGA Algorithm

The main idea behind GAs is to improve a set of candidate so-
lutions for a problem by using several genetic operators inspired
from genetic evolution mechanisms observed in real life. Usu-
ally, the genetic operators used are selection, crossover, and mu-
tation. The selection operator makes sure that the best member
from a population survives. Crossover generates two new indi-
viduals (offspring) from two parent solutions, based on certain
rules such as mixing them with a given probability. Mutation
takes an individual and randomly changes a part of it with a cer-
tain probability [10].

In this paper, a real-coded genetic algorithm was adopted,
considering the difficulties of binary representation when refer-
ring to a continuous search space with large dimensions. There-
fore, the decision variable is represented by a real number within
its lower and upper bounds.

The RCGA operators were set as follows: 1) blend crossover
operator (BLX- ) with a probability of crossover of 0.3, and a
value of set to 0.366 [11]; 2) uniform mutation with a proba-
bility of mutation set to 0.35; 3) elitism: the best two individuals
are retained with no modifications in the population of the next
generation, such that the strongest genes up to this point are not
lost.

A dynamic number of individuals is adopted for the popula-
tion of RCGA, in a range between the total number of ants from
the API algorithm and 1000. The role played by the RCGA al-
gorithm is to give diversity in the solution generation accepting
both feasible and infeasible solutions from the API algorithm.
Thus, the population of the RCGA is dynamically formed from
the best hunting sites in the memory of all ants (e.g., if the nest
has ten ants, then the best site of each ant in the current gener-
ation is transferred to the population of the RCGA), as well as
from the forgotten (erased) sites (unsuccessful sites which will
be deleted from the ant’s memory in the next iteration). How-
ever, because the population size cannot increase infinitely, it
is bounded to 1000 individuals. When this number is exceeded
(more forgotten sites than the difference between 1000 minus

Fig. 2. Search mechanism of ants as used in the proposed method. ns is the
counter for the sites memorized by one ant and increases from zero to � (the
total number of sites an ant can memorize); �� � � is the counter for consecu-
tive failures when searching one site (e.g., if site � was randomly chosen to be
searched and the solution is not better than the previous one when searching the
same site � , then ���� increases by one); � is the total number of consecutive
search failures before one site is deleted from the memory of one ant; popRCGA
is the counter for the population size in the RCGA algorithm.

the number of ants), then, at first all duplicated individuals are
deleted from the population (it is possible that two or more ants
have the same best site or the same forgotten site, due to the
overlapping search procedure of API). If the number of sites is
still more than 1000, then the excess number of individuals is
discarded randomly. The lower bound in the population size of
the RCGA is ensured by the number of ants. Because only one
generation is used with the RCGA algorithm to generate a solu-
tion, the diversity in the generation of a solution for the proposed
GAAPI algorithm is ensured by this minimum number of indi-
viduals in the GA population being equal to or higher than the
population of ants in the API algorithm.

B. Search Strategy of API

The API (a short for apicalis) algorithm is based on the natural
behavior of pachycondyla apicalis ants described in [27]. The
search mechanism of API can be summarized as shown in Fig. 2.

The following process takes place for each search agent (ant):
initially, each ant checks its memory. If the number of hunting
sites in its memory (ns) is less than the total number of sites an
ant can memorize , then it will generate a new site in the
small neighborhood of the center of the ant (the current position
of the ant), save it to its memory, and use it in the next itera-
tion as the next hunting site. Otherwise (memory of the ant is
full, ), one of the sites in the memory of the ant is se-
lected as the hunting site. The ant then performs a local random
search around the neighborhood of this hunting site. If this local
search is successful, the ant will repeat its exploration around the
site (same site) until an unsuccessful search occurs; otherwise
(if the previous exploration was unsuccessful), the ant will se-
lect an alternative site among its memorized sites. This process
will be repeated until a termination criterion is reached. The ter-
mination criterion used in this phase is that the procedure will
stop automatically once the number of successive unsuccessful
explorations reaches a predefined value , or there is no im-
provement after a number of iterations. All the sites whose ex-
plorations reached this predefined value will go to the popula-
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Fig. 3. Determining the first approximation of the ED solution.

tion of the RCGA, and, when the nest moves to a new position,
they will be erased form the memory of the ant.

C. GAAPI: The Proposed Solution

The proposed hybrid GAAPI algorithm uses only one nest of
ants. The first step of the proposed GAAPI algorithm is to find a
starting point for the search (referred from here on as the initial-
ization process). This starting point is given by the solution of
the Lagrange multipliers method applied to the quadratic objec-
tive function (1). The reason for this choice is provided below.

If one uses a quadratic cost function or a generation function
with valve point effects (Fig. 3) and ignores transmission losses
and all other constraints (except the balance constraint), an ap-
proximate area containing the optimal solution may be iden-
tified. Taking the particular case presented in Fig. 3, the bal-
ance constraint is a straight line crossing the cost function at
the point where the generation output equals the load demand
(the geometrical view for one generator). With more constraints
taken into account, this geometrical delimitation is more diffi-
cult to draw, especially when more constraints must be consid-
ered. Therefore, if at time , the losses are computed using an
approximate solution given for the economic dispatch problem
for this time frame and set as a constant value in the balance
constraint equation, then this equation becomes linear. Then,
using the quadratic approximation of the generation function,
a good starting point for the next, more accurate search can be
determined. This starting point is the optimal solution of the op-
timization system given by (1), (3), and (7).

Note that after the initialization process, each ant of the nest
takes a different position according to their “experience” (e.g.,
some ants search/take positions closer to the nest if they are less
experienced, while some others search in larger areas around the
nest, up to the entire search space). The amplitude coefficient
differs from one ant to another. The flowchart of the proposed
GAAPI algorithm is given in Fig. 4 and the explanation of its
functionality is described below.

The GAAPI algorithm uses a modified API procedure along
with RCGA. The key modifications in API are summarized in
points 1 and 2 below, while point 3 explains the RCGA proce-
dure as modified to be used with API in the GAAPI algorithm.

1) Generation of New Nest: The initialization process refers
only to one initial starting point (the initial position of the nest)

Fig. 4. GAAPI flowchart.

and this is generated with Lagrange multipliers method. After
initialization with the approximate solution from the Lagrange
multipliers method, the nest moves only to the best solution
found in the current search cycle (between two consecutive
movements of the nest). The “downhill” property is not very
strong in this case, so the trapping in local minima is avoided.

2) Exploitation With API: For the sites which were explored
unsuccessfully, a predefined number of consecutive iterations
will be first memorized as part of the current population to be
explored by the RCGA, and then erased from the memory of the
ant.

3) Information Sharing With RCGA: In order to keep di-
versity in the solution space, information sharing is performed
using a simple RCGA method. A random site is chosen in the
memory of a randomly chosen ant, and it is replaced by the new
RCGA solution. This can be seen as a form of communication.
The RCGA procedure involves a population formed by the cur-
rently best hunting sites in the memory of all ants as well as the
forgotten sites. The best solution obtained after one set of GA
operations (selection, crossover, mutation) replaces the chosen
site in the memory of the selected ants. This technique is ap-
plied before moving the nest to the best position so far. The
RCGA contains the forgotten sites in order to keep diversity in
the population.

D. Constraint Handling in GAAPI

There are different ways to handle constraints in a constrained
optimization problem. One way is to use a penalty fitness func-
tion (optimization function) that aggregates the objective func-
tion with the constraint functions penalized [15], [17], [21].
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However, the penalty parameter must be carefully chosen in
order to distinguish between feasible and infeasible solutions.
Sometimes this parameter tuning is a difficult task even when
the problem is very well defined. Another way is to generate
only feasible solutions and work only with feasible solutions
during the search process. The second procedure was adopted
in this paper and is briefly described below.

First, an initial solution, is
generated respecting generation limits and prohibited operating
zones, according to

(12)

While the balance constraint considering losses as shown in (3)
is not satisfied, a random generator is chosen as slack from the
pool of generators, and its output is fixed to meet the balance.
If its limits are exceeded, then another random slack is chosen
from the pool. If all the generators are checked and
no one can cover the difference to meet the balance, then two
generators will be chosen as slack and share the difference, and
so on. When a generator is in a prohibited zone, then its output
is fixed to the closest feasible bound.

IV. NUMERICAL RESULTS AND ANALYSIS

A. Benchmark Power Systems

In order to validate the proposed GAAPI method that solves
the NCED problem, four test power systems have been used.
The first test system is a 3-unit system with a valve point effect
cost of generation and only the balance constraint considered.
The data for this system are given in [18]. The minimum cost
found for this system is 8234.07 $/h [20].

The second test system is a 6-unit power system (obtained
from the IEEE 30-bus test system) and having a demand of 1263
MW [5]. The cost of generation for this system is chosen to be
a smooth (quadratic) function and the nonconvexity is given by
the prohibited operating zones and ramp rate limits. The reason
for choosing these generator characteristics is to compare the re-
sults with other similar metaheuristic methods described in [5]
and [21]. Then, the complexity of the problem is increased by
using the cost of generation with valve point effect included, as
in (2). The comparison for this second case covers implementa-
tions of a binary GA and a simple RCGA and compared to the
best cost obtained with the GAAPI method. The data of this test
system can be found in [25].

The third test system is a 15-unit system with smooth
(quadratic) cost of generation, prohibited operating zones
and ramp rate limits and having a demand of 2630 MW. The
system data were taken from [5]. The minimum generation cost
reported so far for this system is 32 751.39 $/h [17].

The fourth test system is a larger system with 40 units, a
nonconvex generation function with valve point effect, and
considering power losses. The load demand for this system
is 10 500 MW [5], [21]. It seems that this system has not
been tested by other researchers using constraints such as
transmission losses. This system was chosen to demonstrate
the applicability of the proposed algorithm in relatively large

and complex systems. The B-loss coefficients used to compute
the transmission losses of this system were derived from the
B-loss coefficients of the 6-generator test system [25], by
multiplication on rows and columns up to 40 units.

B. Parameter Settings

1) Parameters of API: The number of ants to perform the
search is directly proportional to the dimension of the system
(number of generating units). For all the test systems, the
number of ants is ten times the number of generating units.
Therefore, for a 3-generator test system, the number of search
agents in API is ants. The number of hunting sites
which each ant can memorize is five (as suggested
in [27]). The number of consecutive search failures of each
site in the memory of ants is five . The maximum
number of site exploitations (searches) is directly proportional
to the dimension of the system (five times the number of gen-
erating units, e.g., for a 3-generator test system, this number is

).
2) Parameters of RCGA: The population size is set dynami-

cally between the number of ants from API and 1000. The pop-
ulation size is a function of the number of the forgotten sites
appearing during each movement of the nest. Having a variable
population size of RCGA aids in increasing the probability of
the generated solution being different than the API-generated
solution, thus triggering the search in a region less explored (in
the case of large RCGA population). In case that the API search
improves the solution in an adequate pace, the role of RCGA is
limited by its small population size (less diversity in the solu-
tion). The probability of crossover is 0.3 and the probability of
mutation is 0.35; the factor of the blend crossover operator is
0.366.

C. Convergence and Robustness Tests

In the power systems literature, the convergence tests in the
field of economic dispatch are mainly related to the number
of iterations or generations (e.g., in the case of GAs and PSO)
until the solution falls below a certain threshold, and/or related
to the CPU time per iteration/generation [17], [18], [20], [21],
[28]. However, the number of iterations (generations) does not
provide adequate information about the computational effort
needed to perform this specific task in order to have the same
base of comparison. The CPU time is subject to the computer
infrastructure available, and therefore, it is a parameter that is
difficult to be used as an evaluation criterion. Thus, the mea-
sure of the speed of convergence adopted in this paper is the
mean number of (objective) function evaluations (denoted as
M-num-fun) until the algorithm stops [26]. The mean number of
function evaluations is defined as the average of the total number
of function evaluations during a predefined number of indepen-
dent runs of the algorithm. In other words, if the number of func-
tion evaluations in the th independent run of the proposed al-
gorithm is denoted as and there are a total of runs which
need to be taken into account in the evaluation process, then the
mean number of function evaluations is

(13)
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TABLE I
CHARACTERISTICS OF RASTRIGIN, ACKLEY,
AND GRIENWANGK BENCHMARK FUNCTIONS

TABLE II
COMPARISON WITH OTHER HEURISTIC METHODS

FOR THREE BENCHMARK FUNCTIONS

As a means of demonstrating the convergence and robust-
ness properties of the proposed optimization algorithm, three
well-known complex, nonsmooth functions (Rastrigin, Ackley,
and Grienwangk) have been used as test functions. The charac-
teristics and the mathematical form of these functions are pro-
vided in Table I.

In this work, the robustness of the solution is characterized
by two indices: 1) the standard deviation (denoted as Std in
Table II) and 2) the average best value (denoted as M-best in
Table II). These two indices are calculated from all optimal so-
lutions found by the algorithm in a number of predefined inde-
pendent runs (in this case, 50 runs). Note that all the algorithms
in Table II terminate when the best solution cannot be improved
further in 50 successive generations (nest movements) or when
the optimum solution is reached.

A comparison of the proposed GAAPI algorithm with sim-
ilar search techniques is given in Table II. Note that in Table II,
OGA/Q denotes the orthogonal genetic algorithm with quan-
tization [29]; M-L is the modified mean-level-set method [26];
LEA is the level-set evolution; and Latin squares algorithm [26].
Opt-F denotes the optimum known solution of the function to
be optimized.

As it may be observed from Table II, GAAPI is a promising
solution for problems which need fast, near real time con-
vergence, and robustness of the solution as it has always the

TABLE III
SIX-GENERATOR TEST SYSTEM, SMOOTH COST: COMPARISON ON ROBUSTNESS

TABLE IV
STATISTICAL RESULTS FOR THE 15-GENERATOR TEST SYSTEM

Fig. 5. Comparison on consistency of results over 50 independent runs: 6-gen-
erator test system with nonsmooth cost of generation.

minimum number of function evaluations until the solution is
close to the global known optimum. The standard deviation
is also lower than most of the other algorithms used in this
comparison.

Robustness tests were also carried out for two of the test
power systems chosen for analysis in this paper: the second
(Table III) and the third test system (Table IV). The measures
used to emphasize the robustness in this case were the minimum
(min), maximum (max), and the average values gathered during
50 independent runs of the algorithms. The average solution in-
dicates the consistency of the best solution over the independent
trials, always satisfying the equality and inequality constraints.
Note that GAAPI gives again the best average and the best min-
imum cost over the independent runs of the algorithm or com-
parable results with other powerful heuristic methods.

In order to demonstrate the consistency of the results of
the GAAPI algorithm over independent runs, a plot of the
distribution of the best cost found by GAAPI for the 6-gener-
ator test system with nonconvex cost of generation is given in
Fig. 5. In the same graph, the optimum cost of two other recent
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TABLE V
THREE-GENERATOR TEST SYSTEM: BEST SOLUTION FOR A SMOOTH COST

FUNCTION

TABLE VI
SIX-GENERATOR TEST SYSTEM: BEST SOLUTION FOR A SMOOTH COST

FUNCTION

evolutionary based algorithms (the authors’ implementation
of SOH-PSO [20] and RCGA [11]) is plotted for the same
number of independent runs. It can be observed that GAAPI
outperforms the other two functions in terms of the minimum
cost of generation. Further, it is consistently giving the same
result (even though SOH-PSO appears to be slightly more
consistent). The proposed algorithm is clearly more consistent
than the RCGA.

For the smooth 6-generator test system (Table III), it can
be noticed that GAAPI gives comparable results with the
NPSO-LRS, SOHPSO in terms of the minimum best solution,
and better average than all other methods used in the compar-
ison table. GA binary refers to the GA optimization package
from MATLAB. The results used for comparison in the case
of GA, NPSO-LRS, and SOHPSO were obtained from [20]
and [30].

For the 15-generator test system (Table IV), it can be no-
ticed that GAAPI gives the best results compared to the GA and
SOHPSO [20] methods in terms of both minimum value and av-
erage value found in 50 independent runs.

D. Comparison of the Best Solution: Power System
Benchmarks

For the first three test systems used in this work, the best so-
lutions obtained in a predefined number of independent runs (in
this work this number is 50) are compared to the corresponding
values reported in the literature (Tables V–VIII). The fourth test
power system, including constraints, seems to have not been
used in the literature. The best solution determined using the

TABLE VII
SIX-GENERATOR TEST SYSTEM: BEST SOLUTION

FOR A NONCONVEX COST FUNCTION

TABLE VIII
FIFTEEN-GENERATOR TEST SYSTEM: BEST SOLUTION

FOR A SMOOTH COST FUNCTION

TABLE IX
FORTY-GENERATOR TEST SYSTEM: BEST SOLUTION

FOR A NONCONVEX COST FUNCTION

GAAPI algorithm (in 50 independent runs) for this last test
system is provided in Table IX.
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V. CONCLUSION

This paper presents a novel algorithm, entitled GAAPI, to
solve the nonconvex economic load dispatch problem. The pro-
posed algorithm emerges from the hybridization process of the
GA and API strategies. It is designed in such a way that the var-
ious system constraints may be modeled and respected. It is also
shown that starting from the solution obtained for the quadratic
cost function (Lagrange multipliers method), the search space
is reduced, and implicitly, the computational effort is reduced.
The strategy for handling the constraints is to always generate
feasible solutions and work only with these feasible solutions
during the search process. Compared to the penalty method, this
strategy has the advantage of not dealing with other parameter
settings that complicate user ability to use the method.

The proposed algorithm is proven to always find comparable
or better solutions in a number of independent trials, as com-
pared to other methods available in the power systems litera-
ture. GAAPI has provided the global solution, both in test func-
tions and test power systems, always satisfying the constraints.
Further, through the test cases presented, its superiority in ro-
bustness is evident: it has a high probability to reach the global
or quasi-global solution, especially in nonconvex formulations.
GAAPI converges smoothly to the global, avoiding fast conver-
gence that may lead to local optima.
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