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Formal Derivation of Direct Torque
Control for Induction Machines

Zakdy Sorchini, Student Member, IEEE, and Philip T. Krein, Fellow, IEEE

Abstract—Direct torque control (DTC) is an induction motor
control technique that has been successful because it explicitly con-
siders the inverter stage and uses few machine parameters, while
being more robust to parameter uncertainty than field-oriented
control (FOC). This paper presents a formal derivation of DTC
based on singular perturbation and nonlinear control tools. The
derivation elaborates an explicit relationship between DTC per-
formance and machine characteristics; low-leakage machines are
expected to perform better under DTC. It is shown that DTC is
a special case of a sliding-mode controller based on the multiple
time-scale properties of the induction machine. The known trou-
blesome machine operating regimes are predicted and justified.
Explicit conditions to guarantee stability are presented. DTC is
shown to be a suboptimal controller because it uses more control
effort than is required for flux regulation. Finally, compensation
strategies that extend DTC are discussed. The derivation does not
require space vector concepts thus, it is established that the tradi-
tional link between DTC and space vectors is not fundamental.

Index Terms—AC motors, direct torque control (DTC), induc-
tion motor drives, singularly perturbed systems, vector control.

I. INTRODUCTION

F IELD-ORIENTED control (FOC) [1] and direct torque
control (DTC) [2], [3] are common for induction motor

control. DTC is attractive because it uses few machine parame-
ters and explicitly considers the inverter stage. Both techniques
were originally derived from heuristic field geometric argu-
ments. Initially it was a challenge to understand their principles
and limitations. Since then, FOC has been extensively studied
and its properties are well understood [4], [5]. A link between
FOC and feedback linearization has been established [6], [7].
Significant work has been done to improve DTC [8] and the
heuristic derivation of DTC has been clarified [9], but rigorous
derivations are still scarce. In [10], geometric control tools are
used to formally derive DTC. In that reference, a decoupling
property of DTC is revealed. It is shown that performance will
be as predicted at low speed under light load, and an improved
DTC strategy using correction terms is proposed.
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The objective of this paper is to improve the theoretical un-
derstanding of DTC, particularly of the flux and torque regu-
lating mechanisms, and the implications of flux angle quantiza-
tion (i.e., sector condition) and the power electronics inverter.
An alternative formal derivation of DTC is presented, based on
singular perturbation techniques rather than space-vector con-
cepts. The torque and flux magnitude dynamics are considered
explicitly and a sliding-mode controller for flux regulation and
torque tracking is derived. If a quantized version of the flux
angle is used and only the voltages available from the inverter
are considered, the resulting control is conceptually equivalent
to DTC. The analysis confirms the main results of [10]. In addi-
tion, motor parameters are linked to good performance. Also, it
is shown that DTC is not an optimal controller since it uses more
control effort than is required for flux regulation. Finally, com-
pensation strategies that extend DTC are discussed. For sim-
plicity, full state measurements are assumed here.

II. SINGULAR PERTURBATION THEORY BACKGROUND

A singularly-perturbed dynamic system is one that exhibits
multiple time-scale behavior, i.e., the evolution of some vari-
ables is “slow,” while for others it is “fast” [11]–[13]. For sys-
tems in the so-called standard singular perturbation form

(1)

a small parameter exists such that in the limit as the param-
eter goes to zero, the order of the model is reduced. For this
form to be a valid singularly-perturbed model, certain technical
conditions have to be satisfied [12]. The theory of singular per-
turbations is useful for systems with distinct time scales and for-
malizes the 0 approximation. The typical application is to
separate a complicated system into fast and slow dynamics.

The model (1), in which and are the slow and fast vari-
ables, respectively, is said to be the system representation for
the slow (or normal) time scale . The system representation in
the fast time scale, defined as , is given by

(2)

where the slow variables are treated as parameters in the state
equation for . The equilibrium points of the fast system move
slowly according to the value of the slow variables; this behavior
is known as quasi- or dynamic steady state [12]. For both the
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slow and fast representation of the system, the corresponding
reduced models are obtained by setting 0 in (1) and (2),
respectively.

An important tool of the singular perturbation method is com-
posite feedback control [12], [13], which decomposes the con-
trol signal as , with the slow controller being
only a function of the slow variables. Control of singularly-per-
turbed systems is simplified because the slow and fast dynamics
can be considered independently. When a controller based on
the multiple time-scale properties of the system is used, the be-
havior of the actual system will remain “ -close” to that pre-
dicted by the analysis and design.

III. SLIDING-MODE CONTROL BACKGROUND

Sliding-mode control is a specific type of variable structure
control [14], [15]. For nonlinear systems of the formh

(3)

where and are unknown functions, sliding-mode control can
achieve high robustness. This is done by forcing the system’s
dynamic behavior through switching. Formally, a sliding sur-
face or manifold 0 is defined such that the dynamic be-
havior of the system is forced while on the manifold. The de-
sign process guarantees no matter what is the initial condition
the states will reach the sliding manifold in finite time. Once
on the manifold, the states “slide” independently of the systems
dynamics as dictated by the control objective. A typical control
for a sliding-mode design is of the form

(4)

where is a function that bounds the uncertainty of the system;
commonly, the function is just a large gain [15].

Sliding mode control has been considered for singularly-per-
turbed systems [16], in which controllers are designed for slow
and fast subsystems. Because of the discontinuous nature of
the slow controller, the time-scale separation argument does not
hold during switching. Therefore, additional technical condi-
tions have to be satisfied to guarantee stability [16].

IV. INDUCTION MACHINE MODEL

The well-known, two-phase equivalent model of a sym-
metrical, balanced, squirrel-cage induction machine in the
stationary reference frame and with rotor quantities referred to
the stator is given by [4]

(5)

where , , , and , denote mechanical speed, flux linkage,
current, and voltage, respectively; , , , , , , and
denote inertia, number of pole pairs, mutual inductance, self in-
ductance, resistance, electromagnetic torque, and load torque,
respectively; subscripts and stand for stator and rotor; and

denote the components of a vector in the stationary refer-
ence frame. For simplicity, the terms flux linkage and flux will
be used interchangeably. The electromagnetic torque of the ma-
chine is given by

(6)

Currents and fluxes are related by nonlinear magnetic equations.
If magnetic saturation is not present, the relationship can be ap-
proximated linearly as

(7)

In terms of stator fluxes and currents the model is

(8)

where 1 and . The
electromagnetic torque is given by

(9)

The model (8) is in the standard singular perturbation form, with
speed and fluxes as slow variables and currents as fast variables.
The leakage factor is the perturbation parameter.

Consistent with the control objectives, it is natural to define a
(parameter-independent) state transformation

(10)
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where is a normalized torque, is the flux magnitude squared,
and is the flux angle. The definition of follows from the
choice of the other states. Although the transformation is not
defined for zero flux, this limitation is common in induction
motor control and is not a critical concern. If desired, flux can
be initialized to a nonzero value.

Given stator input voltages and , input transformations
based on the flux angle are useful and yield equivalent inputs
based on

(11)

By using (10) and (11), (8) can be transformed into

(12)

The model (12) is in the standard singular perturbation form
with as the perturbation parameter. Speed, flux magnitude
squared and flux angle are the slow variables while normalized
torque and are the fast ones. Given control voltages and

, the actual instantaneous voltages that need to be applied to
the machine can be obtained by using

(13)

which is the inverse of (11) combined with a two-phase to three-
phase transformation [4].

V. ALTERNATIVE DTC DERIVATION

The state equation for in (12) clearly shows that to drive
the flux magnitude in a desired direction, must be made suffi-
ciently positive or negative. It is not immediately clear from (12)
how to control the torque. Recalling that for a well-designed ma-
chine is typically small, a sufficiently positive or negative
should be able to drive torque in the desired direction. Instanta-
neous input voltages can then be obtained from and using

(13), and depend on flux position. This is the heuristic justifi-
cation behind DTC. It has been shown [17], that DTC can be
derived as a quantized approximation to a continuous-time con-
troller. A more rigorous derivation which confirms that DTC is
a sliding-mode controller is presented below.

A. Sliding-Mode Controller for Flux Regulation and Torque
Tracking

Details about the formal procedure to design a sliding-mode
controller can be found in [15]. To derive the controller for flux
regulation, the slow, reduced model is obtained from (12) by
setting 0

(14)

Only the slow part of the control signals has to be considered
[12]. From the second algebraic relationship, the fast variable
can be expressed in terms of the slow variables as

(15)

Only flux magnitude is of interest in this time scale. The dy-
namic equation of speed is immaterial, since torque control is
going to be performed. The flux angle dynamics represent the
zero dynamics of the system [18], and do not affect stability of
(14) since they are stable and periodic [10]. The angle can be
viewed as an external variable that determines the control in-
puts and according to (11). Therefore the slow control
for torque can be set to zero by design. By using (15), the state
equation for flux magnitude squared can be written as

(16)

For flux regulation, a sliding surface is defined as

(17)

which has a time derivative equal to

(18)
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since the flux reference is constant. By defining a minimum con-
troller gain [15]

(19)

where is the squared, rated flux linkage of the machine,
a sliding-mode controller for flux regulation is proposed as

(20)

for any 0. Stability of the flux controller is proved by con-
sidering the Lyapunov function 1/2 [15], as is con-
ventional in sliding mode control analysis. The time derivative
of is given by

(21)

where is the remanent flux of the machine. Therefore, pro-
vided that there is remanent flux in the machine, flux regulation
is achieved for any initial condition.

The torque tracking controller can be derived in a similar way.
(Regulation in the fast time scale implies tracking in the normal
time scale.) First, the fast, reduced model is considered

(22)

which results by scaling time as and by setting 0.
Both the slow and fast parts of the control inputs are used. The
slow variables are treated as parameters. Since only the torque
equation is of interest, it is rewritten as

(23)

where the fact that the slow control for torque is zero is used. A
sliding surface is then defined as

(24)

whose derivative with respect to (w.r.t.) the fast time variable is
given by

(25)

where it is assumed that the derivative of the torque reference
w.r.t. the fast time variable is zero, i.e., the variation of is
slow in the sense of the fast time scale. By defining a minimum
controller gain [15]

(26)

where and are the maximum dynamic torque and
minimum flux level to be requested, respectively, the sliding-
mode controller for torque tracking is proposed as

(27)

for any 0. Stability of the torque controller is proved by con-
sidering the Lyapunov function 1/2 [15]. The deriva-
tive of w.r.t. the fast time variable is given by

(28)

Again, provided that there is a remanent flux in the machine,
torque tracking (in the sense of the slow time scale) is achieved.
Finally, the actual controller is obtained from the slow and fast
parts and is given by

(29)

Because of (13), the actual instantaneous voltages that need to
be applied to the machine depend on the flux angle.

Since flux control is based on the slow reduced model, it is
important that the state converges to the slow manifold, i.e.,
that (15) holds after the fast transient. To simplify the analysis,
define an auxiliary variable

(30)



1432 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 5, SEPTEMBER 2006

which is equal to the difference between and its slow manifold.
The derivative of w.r.t. the fast time variable is given by

(31)
By using (22) the expression simplifies to

(32)

In a standard singular-perturbation controller, the derivative of
the slow control, the last term in (32), would be zero. However,
here , slow is a discontinuous signal. The derivative must
be considered and can be viewed as an impulsive disturbance
[16]. As discussed there, for zero fast control and zero distur-
bance, is exponentially stable, therefore , fast can be set
to zero by design. If it is assumed that the disturbance is fast
w.r.t. the fast time scale, then the response observed in due
to this disturbance will be small. In essence, the discontinuity in
the slow controller causes to move away instantaneously from
the slow manifold. Then the state quickly converges back to the
manifold. Controller stability is not compromised [16].

The minimum gains specified by (19) and (26) are given in
terms of the parameters of the machine. Typically machine pa-
rameters are not perfectly known. By considering bounds on the
machine parameters, new gains can be determined. Robustness
is then obtained by increasing the controller gains beyond the
minimum values [15]. Therefore, the controller can then be re-
defined as

(33)

where and are obtained by taking into
account the parametric uncertainty of the model.

B. Flux Angle Quantization and Inverter Considerations

Without loss of generality, only positive and negative values
of (33) can be used (identically-zero-errors are almost impos-
sible in an actual implementation). Fig. 1 shows the machine
voltages as a function of the flux angle for all combinations of
the signs of and , i.e., for the case of unity gains. The
control law jumps between sets of voltages (which evolve con-
tinuously as a function of the flux angle) according to the sign
of the errors.

Now, consider the case in which only quantized information
about the flux angle is available, with the quantizer given by

(34)

where defines the number of quantization steps. There is one
restriction on : for a given and , the resulting phase volt-
ages should preserve the sign information of the control volt-
ages. It is not difficult to show, by using (13) and its inverse

Fig. 1. Machine voltages as a function of the flux angle for given control sig-
nals.

Fig. 2. Machine voltages as a function of the flux angle for given control sig-
nals, when the flux angle is quantized with n = 5.

transformation, that the smallest number that satisfies the re-
striction is 5. The resulting phase voltages are shown in
Fig. 2.

Using the quantized flux angle instead of the actual angle im-
plies that the controller gain will change. Since a minimum gain
is required to guarantee stability, the actual controller gain has
to be increased by a factor which depends on the number
of quantization steps. Because of the nonlinear nature of (13)
w.r.t. the flux angle, it is easier to find the minimum gain by
numeric analysis. For 5, a gain 5 will preserve the
minimum gain requirement. For any larger this gain will de-
crease. Therefore the controllers can be redefined to compensate
for quantization as

(35)
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but now

(36)

must be used to obtain the machine voltages.
In Fig. 2, the machine voltages resulting from quantization

do not form a balanced, three-phase set. By increasing the
quality of the waveforms can be improved. Under normal oper-
ation this is perhaps immaterial since the control law jumps be-
tween voltage sets relatively fast. Only when the errors do not
change sign for a significant amount of time (i.e., for several cy-
cles of the flux angle) the waveform quality might be important.
For 5 the voltage waveforms are not ideal; 6 makes
the waveforms equal (displaced by 120 ), and 12 makes the
waveforms a balanced, three-phase set. In general, multiples of

6 will provide good quality waveforms.
Since an inverter is used to actuate the machine, the phase

voltages given by (33) or (35) have to be approximated, e.g.,
with PWM. If an approximation is not used, then the instanta-
neous behavior of the inverter has to be considered. A three-
phase inverter feeding a balanced load can only provide instan-
taneous phase voltages equal to 2/3 , 1/3 and 0, where

is the dc-bus voltage. These values cannot be obtained ar-
bitrarily per phase, since the voltages are not independent. At
any given instant in time, an inverter state, i.e., which switches
are on or off, has to be selected in such a way as to minimize
the error between the phase voltages determined by the control
law and the available voltages. Thus, the inverter can be viewed
as a nonlinear gain stage with discrete-valued outputs. It should
be pointed out that this fixed output resolution implies that in-
creasing the quantization of the flux angle does not have a sig-
nificant impact for large .

The sliding-mode controller only requires that the effective
gains be greater than the minimum gains needed for stability.
Therefore, the nonlinear gain effect of the inverter can be ne-
glected as long as a lower bound for the inverter gain can be
determined. Fig. 3 shows the phase voltages from the inverter
for the case of 5, 1 and unity controller gains. By
comparing it to Fig. 2, the nonlinear gain of the inverter is evi-
dent. By using the difference between the desired voltages and
the inverter voltages, it can be shown that a gain of three (i.e.,

3) is required to make the instantaneous inverter voltage
more positive or negative than the desired voltage. In fact, this
gain can be used regardless of . Therefore the use of an inverter
can be modeled as applying the control voltages

(37)

to the machine. This means that if the conditions

(38)

are satisfied, stability is guaranteed when using (37) and (36),
i.e., when the discrete inverter voltages are considered and only

Fig. 3. Machine voltages as a function of the flux angle for given control sig-
nals, when flux angle is quantized with n = 5, and an inverter with V = 1 is
considered.

the sign of the errors and the quantized flux angle are used to
determine the inverter state. By defining an auxiliary vector
as

(39)
then all the information needed to actuate the machine is con-
tained in this vector. The sign of an element of directly dic-
tates which switch (positive—upper, negative—lower) will be
active for the corresponding inverter leg. Because only a finite
combination of quantized flux angle values and error signs ex-
ists, (39) can be easily computed offline. Then, for given flux po-
sition and flux magnitude and torque errors, the corresponding
inverter state can be read from a look-up table.

Table I shows the required inverter state as a function of flux
position and the flux and torque errors as dictated by (39), for
the case 6. This level of quantization represents a good
compromise, as already mentioned. An element of the table de-
termines which switch in the corresponding inverter leg will be
on (1-upper, 1-lower). Table II shows, with the notation used
here, the switching strategy for standard DTC as defined in [3]
(the errors in that reference are the negative of the errors used
here). It can be seen that the elements in Table I match exactly
with the corresponding elements in Table II. Therefore DTC has
just been derived.

VI. DTC STABILITY AND PERFORMANCE CONSIDERATIONS

It was already mentioned that if the conditions (38) are satis-
fied, stability is guaranteed. DTC makes an implicit assumption
that these conditions are satisfied for all operating conditions.
By using typical values in (19), it can be seen that flux regula-
tion is almost always guaranteed. On the contrary, from (26) it
can be seen that for rated load and rated speed conditions, the
conditions are almost guaranteed to be violated. Only when the
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TABLE I
SWITCHING STRATEGY FOR THE QUANTIZED SLIDING MODE CONTROLLER FOR n = 6

TABLE II
SWITCHING STRATEGY FOR STANDARD DTC AS IN [3]

machine is running under light load at low speed can stability
be guaranteed. This confirms and explains the erratic behavior
of DTC observed by practitioners under high-speed, high-load
operation [9]. It should be pointed out that the gain (26) guaran-
tees stability for all operating regimes, i.e., motoring, generation
and braking. For motoring operation, the gain might be too con-
servative. Also, (37) is an approximation that considers only the
minimum gain that the inverter can provide at all times. Because
of this, (38) is in general conservative on an instantaneous basis.

The derivation presented is based on the reduced models that
explicitly use the 0 approximation. On one hand, the sin-
gular-perturbation analysis implies that, for a small enough ,
stability is guaranteed [12], [16]. The actual behavior of the
machine will be dictated by the full dynamics. In particular,
the dynamic coupling between torque and plays a significant
role. Because of the nonlinear dynamics and switched nature
of the inputs, analysis is particularly challenging and is beyond
the scope of this paper. (The analysis can be done from the
point of view of hybrid systems by considering state-dependent
switching [19]. It is tractable since only four combinations of the
signs of the errors exist.) On the other hand, the use of 0
as a design basis has an important implication. Since is the
leakage factor of the machine, low-leakage machines are ex-
pected to perform better. Low-leakage machines are commonly
regarded as high-performance machines [5]. Therefore DTC is
well suited for control of high-performance induction machines.

A. Performance Improvement

The same conditions that guarantee stability of the sliding-
mode controller also make evident the main problem of DTC.
From (37) it is clear that DTC uses the same control effort to
regulate flux as it does to control torque. But from (38), (19),
and (26), flux regulation requires less control effort. By using
the proper weights for the control efforts, performance can, in
principle, be improved.

It has already been mentioned that DTC can also be derived
from a continuous control law [17]. The performance achiev-
able with that control law is, in principle, comparable to that of
DTC. Using a continuous controller has significant advantages,
particularly since the dynamic behavior and stability properties

are well-defined and easier to understand. Because of the prac-
tical significance of standard DTC in its sliding-mode control
form, it is important to point how its performance can be im-
proved.

It is known that sliding-mode control trades off robustness
with ripple amplitude [15]. This is particularly true for DTC,
since the structure of the induction machine dynamics is almost
completely ignored. By using information about the system
structure, it is possible to improve the performance while
reducing ripple [15]. Since only a nominal model is required,
robustness is not compromised. What this implies in the case
of DTC is that speed and torque compensation are required
to improve the dynamic behavior; the analysis confirms this
well-known fact [10], [17].

In the derivation of DTC the use of the quantized flux angle is
arbitrary. Since the flux angle is available as a continuous vari-
able, it is reasonable to use all the information. Similarly, it was
shown that taking into account the instantaneous behavior of the
inverter provides no advantage and, in fact, is the reason why
standard DTC does not have a constant switching frequency.
In [10] it was shown that the average behavior of DTC is what
dictates dynamic behavior. By using a standard sliding-mode
control design, it should be possible to improve the dynamic
behavior of DTC. For example, following the design procedure
of [15], an alternative controller is given by

(40)

for which the machine voltages are now determined using (13),
and the voltages have to be approximated, e.g., with PWM. (Al-
ternatively, the sign of those voltages can be used to directly con-
trol the inverter switches.) The controller effectively uses torque
and speed compensation to improve DTC performance, and is
essentially the improved DTC strategy proposed in [10], where
experimental results are shown. Additional considerations for a
sliding-mode controller, beyond the scope of this paper, can fur-
ther improve the behavior [14], [15].
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TABLE III
CHARACTERISTICS OF THE MACHINE USED FOR SIMULATION

Fig. 4. Torque and flux response (top and bottom) for standard DTC, at medium
and high speed (left and right). Torque response at high speed shows the erratic
behavior of DTC.

VII. SIMULATION

The analysis presented in this paper shows that DTC can be-
have erratically under high speed and high load, and confirms the
behavior observed by practitioners. To exemplify this behavior,
simulations were performed for an induction machine (taken
from [4]) whose characteristics are shown in Table III. Standard
DTC and the sliding-mode controller (40) were simulated. For
the sliding-mode controller, the signs of the machine voltages
obtained from (13) are used to determine the inverter state. An
extensive simulation study of DTC can be found in [20].

A 400-V bus voltage is used for the simulations. The flux and
torque hysteresis bands were set to 0.01 Wb and 1 N m,
respectively. For the sliding-mode controller the flux and torque
gains where set to 100 and 150, respectively. A large inertia was
assumed; speed was held constant at 90 and 180 rad/s. At
0 s, flux is commanded to its rated value, and at 0.02 s,
torque is commanded to its rated value. Fig. 4 shows results for
standard DTC. The torque response at high speed is erratic, but
torque control is not lost; only a slightly lower average torque is
obtained. Notice that this behavior is not due to a lack of voltage,
since the inverter can achieve a phase voltage of at least 245 V
(at 67 Hz) [21], which is above rated machine voltage. Fig. 5
shows the results for the sliding-mode controller. The erratic

Fig. 5. Torque and flux response (top and bottom) for the sliding-mode con-
troller (40), at medium and high speed (left and right). Torque response at high
speed is improved.

torque behavior is not present, but the flux behavior is slightly
different.

VIII. CONCLUSION

A derivation of DTC that avoids heuristic approximations has
beenpresented.Thederivation isbasedon themultiple time-scale
properties of the induction machine. It is shown that DTC is a
sliding-mode controller on top of a singular perturbation struc-
ture. The derivation is not tied to space-vector concepts. The sta-
bility and dynamic behavior of DTC can be explained from the
analysis.Explicit conditionsnecessary forstabilityarepresented.
The troublesome machine-operating regimes observed in prac-
tice are predicted and justified. DTC applies the same control
effort to regulate flux as it does for torque; this is not required
and sacrifices performance. Since DTC is a sliding mode con-
troller, it can be improved by applying the control literature for
variable structure systems. By considering a nominal model of
the induction machine, performance can be improved by using
torque and speed compensation. Finally, an explicit relationship
between DTC performance and machine characteristics has been
revealed. This relationship can be exploited to improve DTC per-
formance by proper design of an induction motor.

APPENDIX

In this paper, the matrices used to transform the original three-
phase variables into the two-phase representation [4] are given
by

(41)

and

(42)

for the stator and rotor quantities, respectively. The angle is
the rotor position.
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