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Abstract- A single predator, single prey ecological model, in 
which the behaviour of the populations is reliant upon two 
control parameters has been expanded to allow for multiple 
predators and prey to occupy the ecosystem. A focus has been 
placed on analysing the diversity of the ecosystem that 
develops as the model runs, assessing how many predator or 
prey species survive. This paper compares a standard Ricker 
model representation of prey behaviour with models based on 
the logistic and tent maps. It is found that the  overall 
dynamics of the system can depend significantly on the model 
used.  
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I. INTRODUCTION

Predator-prey modelling is where a combination of 
mathematical modelling and computational simulations are 
employed to investigate real world predator-prey 
environments e.g. foxes preying on rabbits. These 
simulations calculate the effect that both the predator and 
prey have on each other’s population. Mathematical 
simulations can be employed to simulate this natural 
ecology[1].  

The Lotka-Volterra model is the earliest predator-prey 
model and is formed using a set of differential equations 
originally described by Volterra in 1926[2] to describe the 
interaction between predator-prey species and then 
independently arrived at by Lotka[3] to describe a chemical 
reaction. 

Recent research has been undertaken looking at two species 
predator-prey models, where a single predator and a single 
prey occupy the ecosystem, these have been used to 
investigate the underlying chaotic population 
dynamics[4,5,6,7], the effect of the prey growth rate[8] and 
to investigate population dispersal[9,10,11]. Some work has 
also been carried out investigating the chaotic dynamics that 
occur in multispecies continuous time predator-prey 
models[12-14]. There has also been work carried out 
examining large competition models with many species[15-
17], however  little research has carried out investigating 
discrete predator-prey models in their generalised form, 
allowing for multiple predators and prey to occupy the 
ecosystem.  Due to the increased computational power of 
modern computers, it is possible to investigate diverse 
ecosystems with a large number of predators and prey by 

employing discrete time multiple species predator-prey 
models. 

This paper will utilise a generalised multiple species form of 
a discrete time predator prey model specified by Neubert et 
al[9] which utilises the Ricker model to simulate prey 
growth. We compare it to a further class of models where 
the Ricker model is replaced with the tent map and the 
logistic map.  The two species Ricker based predator-prey 
model that has been utilised will be introduced followed by 
a discussion on how this model has been generalized to 
allow for multiple species to occupy the ecosystem, the 
other models that will be utilised in place of the Ricker 
model will then be introduced. The paper will then discuss 
the diversity of the ecosystems that develop in the various 
models and show how they are similar and how they differ. 

II. TWO SPECIES PREDATOR-PREY MODEL

A two species discrete time predator-prey model proposed 
by Neubert et al [9] is generalised to allow for a multi-
species predator-prey ecosystem to be modelled. Their 
original model is defined as follows: 

  
                             

where Nt represents the current prey population, and is based 
on the well-known Ricker model for discrete time 
population dynamics, and  Pt represents the current predator 
population, with predator growth being directly proportional 
to the number of prey present. The two control parameters 
here define the behaviour of the predator and prey, the  
control parameter  c defines the interaction between the 
predators and the prey and the  control parameter  r defines 
the growth rate of the prey.  

III. GENERALISATION OF MODEL

In the process of generalisation we need to allow for 
multiple predators and prey to occupy the ecosystem. 
Equation 1.2 can be easily generalised in the form of 
equation 2.2 below. Equation 1.1 is harder to generalise
since a direct generalisation of 1.1 does not distinguish 
between the effectiveness of the predator in depleting the 
prey population as it contains no dependence on the control 
parameter c. It would therefore seem reasonable to include 
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Fig 1.1 Ricker Based Model with e = 10-6

Fig 1.2 Logistic Based Model

Fig 1.3 Tent Based Model

Fig 1. Feigenbaum diagrams for the various 
ways of modelling prey growth 

the matrix element cij. A further class of models can be 
written as:

  
                                                

  
The set of  equations now allow for m predators and n prey 
to occupy the ecosystem, with the jth  prey having an 
individual rj value corresponding to its reproductive rate, 
and the introduction of a [cij] matrix, which is a measure of 
the predatorial effectiveness of the ith predator upon the jth

prey. 

For each run of this model an initial population size of 0.5 is 
utilised for all predators and prey in all the runs in this 
paper. Further, if any population falls below a limiting value 
of ε=10-6 the population is deemed to have become extinct, 
and is set to zero for all future iterations of the system. This 
ε threshold value is necessary in the case of the Ricker 
model to determine that any population has collapsed since 
without this threshold value populations will never die off . 
A scaling term has been introduced where the [cij] matrix is 
scaled by the number of prey species that originally occupy 
the ecosystem, which  corresponds to each of the predators 
dividing its time hunting each of the prey species equally. 

IV. OTHER METHODS OF MODELLING PREY 

In equation 2.1 and 2.2 in the earlier two species predator-
prey model from Neubert et al, the Ricker model has been 
utilised to model the behaviour of prey. 

However, the model is easily generalised to the form:

which allows the insertion of other models in place of the 
Ricker model to model the behaviour of the prey species. 
Two obvious variants on the Ricker model are the logistic 
map (4)  and tent map (5) below: 

 
In each case the addition of the x term has been included to 
bring the bifurcation diagrams for the models in line with 
the Ricker model over the control parameter range [0,2].  

Figures 1.1-1.3 show the bifurcation diagram for each of the 
three models for a single prey in the absence of any 
predator. These bifurcation diagrams allow the visualisation 
of how changing the r control parameter affects the 
behaviour of the prey in the models. 

Figures 1.1 and visualise the bifurcation diagram for the 
Ricker based model in the absence of any predator 
populations with separate values being used for the epsilon  

value. Figure 1.2 visualises the bifurcation diagram for the 
logistic map and figure 1.3 visualises the bifurcation 
diagram for the tent map. These bifurcation diagrams 
visualise the various dynamic behaviours that take place in 
the models based on the r control parameter that is used.   

The Ricker and the logistic map show similar behaviour, 
with both initially converging on N = 1, then going through 
a process of bifurcation, where they converge upon multiple  
 separate values and oscillate between them, before 
eventually becoming fully chaotic.  The tent map’s 
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behaviour is slightly different, with it jumping straight 
between converging on N = 1 to becoming fully chaotic.. 

In Figure 1.1 a value of ε = 10-6 is being utilised. This is 
causing a cut-off point along the r axis of 3.96, above which 
the prey population is guaranteed to fall below 10-6, and is 
therefore guaranteed to collapse.  

In the logistic map based model survival occurs between r= 
0 and 3, with the tent based model seeing survival between r
= 0 and r = 2.4. Similar behaviour is also apparent in the 
initial stages, with both converging on a value of 1. Both 
this range and this behaviour differ from a normal logistic 
map bifurcation diagram.  

V. ANALYSIS OF RICKER BASED MODEL

The cij and rj control parameter values that are utilised in the 
model have been generated randomly, using uniform 
distributions over the range [0,maxC] and [0,maxR] 
respectively.  

A focus has been placed on identifying population diversity   
i.e. the number of different species which survive in the 
model based on the maxR or maxC value that is utilised.  

The model has been executed for 100 different sets for the 
control parameter values for each value of maxR and maxC, 
and executed for 5000 time steps for each set of values, with 
an average of the number of surviving predator and prey 
species being recorded for the different maxR and maxC 
values. The choice of 5000 time steps was found to be 
adequate to allow transient behaviour to die out. A step size 
of 0.1 has been used to scan across the maxR and maxC 
space. 

Figure 2 below shows the population survival rates for both 
the predator and the prey populations for a n=m=2, 
n=m=100, and n=m=200, ecosystem. In what follows we 
will describe these are 2x2, 100x100 and 200x200 systems 
respectively. Each of these graphs show the average number 
of surviving predator and prey species in the Ricker based 
model for each value of maxR and maxC. 

There are some areas of similarity in the maxR-maxC space 
across all of these graphs. For example, it can be seen that 
when maxC is between 0 and 1.7 there is no predator 
survival in the model. The c matrix of control parameters is 
indicative of the effectiveness with which  each of the 
predators  predates on each of the prey, a maxC value of 
lower than 1.7 creates a c matrix of values too low to 
support the survival of any of the predators. 

In this scenario the prey populations can live on independent 
of the predator populations, acting as individual Ricker 
models controlled by their individual r parameter.  For this 
reason in this area of space similar behaviour can be 
expected no matter how many initial populations populate

Table 1. A table showing the behaviour of the Ricker based model at 
the position of peak predator population diversity for various initial 
population diversities 

the ecosystem, since the predators are dying off without 
extinguishing any prey populations, leaving a series of 
uncoupled Ricker models with no dependence on the c
control parameter. In this region the effect that the ε value 
holds upon the survival of the prey populations can be seen 
and related back to the earlier bifurcation diagram (Figure 
1.1), it can be seen that all the prey population survive until 
maxR becomes greater than 3.96, at which point some of the 
preys’ r values will be greater than 3.96, which guarantees 
that their population size will fall below the ε threshold

Another region of similar behaviour between the various 
initial population diversities is with a large maxC, where 
maxC exceeds 12. In this situation the maxC value is too 
high, causing the predators to over-predate on the prey, 
extinguishing all the population of prey before they collapse 
themselves.   

The area of most interest is the area of co-survival in the 
maxR-maxC space. In this area both the predators and prey 
species in the model co-exist, with some species of 
predators and some species of prey surviving as the model 
runs. 

Figure 2.1 above is a visualisation of the 2x2 model. Here 
predator survival can be observed between maxC = 1.7 to 
maxC = 9.5 and maxR = 0.3 to maxR = 7.6. In this 2x2 
ecosystem there is still some predator survival outside of 
this range.  There is little correlation here in the maxR-
maxC space where predator survival occurs in comparison 
to the runs with greater initial population sizes. It can also 
be visualised that the survival of predator species does not 
have a great impact on the survival of prey populations. 

Figure 2.2 visualises the output from the algorithm for a 
100x100 ecosystem. Predator survival in this case takes 
place in largely the same area as the 2x2 system. A very 
visible impact can be seen here of predator survival causing 
a decline in the survival rates of the prey populations. It is 
possible to see the shape of the surviving predator survival 
space in that of the surviving prey survival space. Figure 2.3 
shows the surviving population rate for the maxR-maxC 
space in a 200x200 ecosystem. Visibly the space where 
survival is taking place is the same between the 100x100 
and 200x200 ecosystems but it should be noted that the 
average number of surviving predators and prey are  

No.
Pred

No.
Prey

MaxC
Position

maxR 
Position

Pred 
Diversity 

Rate

Prey 
Diversity 

Rate
2 2 3.9 2.2 0.542 0.936

10 10 7 3 0.302 0.745
100 100 9.9 3.8 0.153 0.720
200 200 10.2 3.9 0.125 0.720
500 500 10.4 3.9 0.095 0.718
1000 1000 10.4 3.9 0.076 0.711
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Fig 2.1  Visualisations of population survival rates over 100 runs of a m=n=2 ecosysten  

Fig 2.2  Visualisations of population survival rates over 100 runs of am=n=100 ecosystem  

Fig 2.3  Visualisations of population survival rates over 100 runs of a m=n=200 ecosystem 

Fig 2. Visualisations of population survival rates for various initial numbers of populating species
This figure visualises population survival rates after 100 runs of the model and 5000 time steps at each run for n = m = 2, n =  m = 

100 and n =  m = 200. A greyscale colour bar is provided to identify the rate of survival at each point.
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declining as the initial population diversity of the ecosystem 
increases. It should also be noted that as shown in Table 1, 
which records the maxR-maxC position of peak predator 
population survival in this Ricker based model,  the position 
of this peak becomes static once the number of initial 
populations reaches 200x200. For this reason it is assumed 
that the 200x200 space is fully converged, with the same 
behaviours being observed for larger systems above 

VI. COMPARISON BETWEEN MODELS

As mentioned in the earlier analysis of the Ricker based 
model there is a small area along the maxC axis where the 
prey is not affected by the presence of predators, this area is 
present in all three models. For all three this is between 
maxC = 0 and maxC = 1.7. As in the case of the Ricker 
based model, in this area the population functions as 
uncoupled independent models for each of the prey; in 
Figure 3 these are uncoupled logistic functions and in 
Figure 4 uncoupled tent maps. In Figure 3 in this region 
total prey population is guaranteed with a maxR value of 
less than 3, while in Figure 4 this is guaranteed with a maxR 
less than 2.4. This can be related directly back to the earlier 
bifurcation diagrams, with survival being seen between r= 0 
and r= 3 in the logistic bifurcation diagram, and r=0 and 
r=2.4 in the tent map bifurcation diagram. Similar to the 
Ricker based model when maxR exceeds the maximum r
value of which the uncoupled prey populations can survive 
in the bifurcation diagram, some prey populations begin to 
die off. 

Similar behaviour is also observed in the convergence of the  

maxR-maxC space in which population survival takes place 
as the initial number of predator and  prey species 
populating the ecosystem  increases. As has been noted in 
the Ricker based model, the space for both the tent and the 
logistic based implementations converges and becomes 
visually similar between the 100x100, 200x200 and 
1000x1000 systems, with the 2x2 model being visually 
dissimilar. 

However it can be noted that the area in which predator 
survival occurs is visibly much smaller than the Ricker 
based model in the case of both the logistic and tent based 
models. Survival of predators takes place from 2 to 6.5 
along the maxC axis and 0.3 to 6 along the maxR axis in the 
logistic model and from 2 to 6 along the maxC axis and 0.3 
to 5 along the maxR axis in the tent based model, compared 
to the Ricker model that has survival from 2 to 11.8 along 
the maxC axis and 0.3 to 9.5 along the maxR axis. The prey 
species survival has also been compressed in a similar way 
long the maxC axis, with the predators overhunting and 
extinguishing all prey populations at a maximum of maxC = 
6 in both cases, whereas in the earlier Ricker model predator 
populations were not overhunted and continued to survive 
until a maximum of maxC = 12. The maxR-maxC space 
between the tent and logistic based models are more similar 
to each other than to that of the Ricker based model. 

The cause of this similarity of the maxR-maxC space 
between the tent and logistic based model and the 
dissimilarity found in the Ricker based model stems from 
the underlying behaviour of the growth function that is  

Fig 4 Visualisations of population survival rates over 100 runs of a 200x200 with the use of the Tent based model

Fig 3 Visualisations of population survival rates over 100 runs of a 200x200 with the use of the Logistic based model
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being utilised. This can be seen in Figures 5(a) and 6(b), 
which visualise the average summation of the predator and 
prey population sizes as the model runs for the peak position 
of predator survival and 5(b) and 6(b) which visualise this at 
maxR corresponding to the peak position and maxC 1 
greater than that of the peak position. 

Each of these is averaged over 1000 separate runs of the 
model. It can be seen that in the case of the Ricker based 
model in Figure 5(a), with a high maxC value of 10.2 and a 
maxR value of 3.9, there is a very sudden initial drop-off in 
the prey population size, which causes a drop-off in the 
predator population sizes, however the populations do not 
fall below ε, which in this case is set to 10-6 , and thus upon 
the recovery of the prey populations the predator 
populations  can also recover. At the point where maxC = 
11.2 all the predator populations fall below ε= 10-6 and 
therefore all become extinct within the first 10 generations 
as shown in 5(b). The tent and logistic models do not 
behave in the same way however. The death of a predator or 
prey is not reliant upon the ɛ value as it  is not used in their 
case. Therefore this area of suppression where predators 
continue to survive with very small population sizes does 
not occur. Figure 6 above visualises this for the logistic 
based function. Figure 6(a) shows the peak position of 
predator survival, where maxC = 5.1 and maxR = 2.9. There 
is a small initial drop-off in the prey and predator 
populations due to overhunting, but not as pronounced as 
the Ricker model peaks. Figure 6(b) utilises a maxC value 
of 6.1 with the same maxR value of that of the peak 
position, all predator populations overhunt the prey and 
completely die off, with the prey then recovering. Very 
similar behaviour occurs in the tent based model. 

VII. CONCLUSION

This paper has looked at a multispecies discrete time 
predator-prey model with different ways of implementing 
prey behaviour within the model. A focus has been placed 
on the final diversity of the ecosystem after 5000 
generations of execution with various values utilised for the 
control parameters. The results show that as the size of the 
system increases beyond 200 predators and 200 prey  
survival rates converge onto a well-defined region in the 
maxR-maxC space in which a stable ecosystem exists. This 
work also shows that the choice of model for prey behaviour 
can strongly influence the region of survival with it being. 
found that the maxR-maxC space in which survival is seen 
is much more similar between the tent and the logistic 
models than that of the Ricker based model. Finally, as CPU 
power increases more complex systems are now within 
computational reach and such systems are currently under 
consideration 
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Fig 5 The total surviving population sizes for the predator and the 
prey at the peak position and maxR corresponding to the peak 
position and maxC 1 greater than that of the peak position for the 
Ricker based model ( Predator = Solid line, Prey = Dotted)

Fig 6. The total surviving population sizes for the predator and the 
prey at the peak position and maxR corresponding to the peak 
position and maxC 1 greater than that of the peak position for the 
logistic based model( Predator = Solid line, Prey = Dotted)

5(a) 5(b)

6(a) 6(b)
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