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This paper suggests a mechanism for the dynamic performance of damping controllers in the condition of
strong resonance. The mechanism explains theoretically how the variation of a control parameter can
move the resonance point in such a way to stabilize or destabilize the coupled modes. As an application,
this mechanism is applied to justify the performance of power system stabilizers (PSSs) in a 2-area 4-
machine test system, in which an exciter mode and an inter-area mode interact near a strong resonance.
It makes the performance of the PSSs on the stability of the inter-area mode become severely dependent
on the place of the PSS and the position of operating point with respect to the resonance point. In this
circumstance, the PSSs of one of the system areas destabilize the inter-area mode. Considering the pro-
posed mechanism, the appropriate location of the PSS and its proper gain value are identified to obtain
the maximum damping of inter-area mode at each of the operating points. In addition, it is shown that
due to the strong resonance, conventional methods make incorrect placement of the PSS; however, by
using the real part of speed participation factors, suitable machines are chosen to place the PSS. This index
provides important information regarding the impacts of strong resonance on the performance of PSSs.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Interaction of oscillatory modes can make the dynamic behavior
of power systems more complicated. It can make the performance
of the system controllers unpredictable so leading to instability of
the system oscillatory modes. A reason for increasing the coupling
and interaction between two modes arises from resonance, in
which an exact coincidence of eigenvalues occurs in damping
and frequency. There are two types of resonance: strong and weak
[1]. If the linearization is not diagonalizable at the resonance point
(due to coincidence of eigenvectors), the resonance is called a
strong resonance; otherwise, it is a weak resonance. Strong reso-
nance causes a severe interaction between two modes. In practice,
an exact strong resonance is not common in power systems. How-
ever, as power system parameters vary, it is quite expected for two
complex modes to pass near a strong resonance which gives rise to
similar interactions. In this condition, the eigenvalues and eigen-
vectors of two modes become extremely sensitive to parameter
variations and the eigenvalues move quickly and turn by approxi-
mately 90 degrees on the complex plane [1]. It can make one of the
modes become unstable.

There are various research works regarding the study of the res-
onance phenomenon in power systems and mechanical systems.
Dobson et al. [1] have thoroughly reviewed these works up to
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the year 2000. They suggest that the modal interaction of two
oscillatory modes near a strong resonance can be treated as a
mechanism for inter-area oscillations, which can yield instability
of modes. At first by mathematical analysis it is demonstrated
how the eigenvalues move while passing near strong resonance,
and then it is featured in 3- and 9-bus examples as generator
power is redispatched. It is important to consider both modes
while trying to stabilize the system near strong resonance.

In another work, Dobson [2] has studied the strong resonance
effects on normal form based indices, which are used to quantify
the nonlinear modal interactions. It is mathematically shown that
the indices become very large near a strong resonance. In addition,
the paper shows that modal interactions associated with a pertur-
bation of weak resonance can cause subsynchronous resonance
instability. These interactions are illustrated as a pair of near strong
resonances.

The effect of strong resonance on the normal form analysis is
also one of the topics of the next works [3,4]. The perturbations
of a weak resonance are analyzed thoroughly in [5]. Two distinct
perturbations are mathematically identified and then illustrated
with interactions between electromechanical modes in a 2-area
4-machine test system.

Seyranian and Mailybaev [6] have presented a general theory of
interaction between eigenvalues of matrix operators depending on
multiple parameters. Strong and weak resonances and their
geometric interpretations on the complex plane are analyzed when
one parameter changes.
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Padiyar and Saikumar [7] have investigated the strong reso-
nance in power systems with STATCOM supplementary damping
controller. Examples of 3- and 4-machine show that variations of
the controller parameters cause two modes to pass near a strong
resonance. Results indicate the importance of considering the
effect of strong resonance on the coupled modes in designing of
damping controllers.

Shu Liu et al. [8,9] have assessed the nonlinear behavior of a
power system and proposed nonlinear approaches for the place-
ment of power system stabilizers (PSSs) by using normal form
analysis. They simulated an ample range of operating conditions
of a 2-area 4-machine test system in their case study. The power
transfer between the interconnected areas is increased from
180 MW to about 410 MW in steps, as a variable parameter which
implies the degree of system stress. It is shown that the inter-area
mode of the system passes near a strong resonance at operating
condition with power transfer of about 350 MW. Authors indicate
that unlike the low stress condition (180 MW), at a high stress case
(410 MW) the conventional linear methods of PSS placement
(using mode shape, residues, and participation factors) do not
identify suitable machines to place PSS, so lead to destabilization
of the inter-area mode. As the authors in their studies have not
considered the effect of passing near strong resonance on the
performance of the system PSSs, they have concluded that this
inefficiency of the conventional linear methods is due to the in-
crease of system stress and growth of nonlinearity resulting from
nonlinear modal interactions near second-order resonances.
Accordingly, they suggest that the nonlinear approaches to be used
in determining the most effective machines for placing PSSs.

In the present paper, the same case study as [8,9] is employed,
while focusing on the linear phenomenon of strong resonance. At-
tempt has been made to clarify PSSs performance using linear anal-
ysis and to solve the problem of PSS placement for system inter-
area mode by using a new linear index. In Section 2, theoretically
a mechanism is suggested through which the stabilizer controllers
can apply the condition of near strong resonance to stabilize or
destabilize the system oscillatory modes. In Section 3, as a case
study, the mechanism is illustrated in the performance of PSSs of
a 2-area 4-machine test system. The problem of PSS placement
in this system at various operating conditions is another topic of
this section. Finally, the conclusion is offered in Section 4.

2. Theoretical concepts
2.1. Modal interaction near a strong resonance
Occurrence of a strong resonance can be illustrated in the com-

plex eigenvalues of a matrix like M in (1) which is parameterized
by the real number « [1]

r s 0 O
o r 0 O

M = 1
00 r s (1)
00 o r

where r and s # 0 are constant complex numbers. Also M can be
written as

-t 4)

in which the 2 x 2 complex matrixes M, and M are complex con-

jugate. The eigenvalues of M are the set of eigenvalues of M, (are

calculated by r + \/os) and their complex conjugates. Choosing
=-15+4jand s=1—jin (1) gives
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Fig. 1. Movement of two eigenvalues of matrices M and M’ as « varies.
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Note that M can be structured as the real matrix

-15 1 4 -1
o -1.5 0 4
-4 1 -15 1
0 —4 o —15

As o varies from —2 to 2 in steps of 0.1, two eigenvalues of M
move on the complex plane as shown in Fig. 1a. By increasing o
from —2 to zero, the eigenvalues approach each other and coincide
at oo = 0 as strong resonance at the point of —1.5 + 4j. As « increases
through zero, the eigenvalues change their direction by 90° and
separate from each other and subsequently one of them crosses
the imaginary axis and becomes unstable. Around the resonance
point, eigenvalues are extremely sensitive to parameter variations
and move quickly.

By adding a perturbation to the matrix M, the eigenvalues inter-
act near a strong resonance [1]. Consider a matrix M’ as follows:

0 00O
M =M+ AM,AM = 10 4
B U loo0 00 @
2 000
Substitution of (3) in (4) yields
-15+4j 1-j 0 0
—15+4j 1 0
M = x M . . (5)
0 0 -1.5-4j 1+j
2 0 o -15-4j

Fig. 1b shows the movement of two eigenvalues of M’ on the
complex plane as o varies from —2 to 2. Passing near strong reso-
nance leads to interaction between eigenvalues similar to one
caused by exact strong resonance except that the right paths of
eigenvalues movement change into two parabolic curves around
an operating point at which the distance between two interactive
eigenvalues is minimum. We call this point as an interaction center,
which is associated with o = 0.0 in the present case. Eigenvalues
turn quickly and one of the modes subsequently becomes unstable.

Fig. 2 shows the damping ratio of the modes of matrix M’ as the
parameter o varies from —2 to 2. Although passing near strong res-
onance causes one of the modes to become unstable, it provides an
appropriate damping for the mode in the vicinity of the interaction
center.
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Fig. 2. Damping ratio of the modes of matrix M’ as « varies.

2.2. A mechanism for stabilizers performance

Suppose that matrix M’ is the Jacobian of a nonlinear dynamic
system which is linearized at the equilibrium point corresponding
to an operating point. Moreover, suppose that the value of « is a
function of the system dominant parameters which determine
the system operating point (such as load and generation dispatch
in a power system). Therefore, each value of « corresponds to an
operating point of the system. Fig. 2 shows that for operating
points corresponding to (approximately) o = 1.5, the status of sta-
bility is critical. It is obvious that if there is a control parameter
whose variation causes the interaction center to be shifted towards
operating point with o = 0, the system stability increases. Such a
parameter can be denoted by a real number k which is subtracted
from o in the matrix M. The new matrix M, in (6) shows this
parameter.

0 0 0 0
A
=My 0 0 o0
0 0 —k 0
1544 1-j 0 0
_ o 1.5+ 45 1 0 ©)
0 0 15-4 14 |
2 0 o _15—4j

In simple words, parameter k makes the interaction center
move to the operating point of o = k. Obviously, positive value of
k causes the curve of Fig. 2 to move to the right so the critical mode
damping at « >~ 1.5 increases. In contrast, negative value of k shifts
this curve to the left; hence the critical mode damping is reduced.

Fig. 3 shows two examples for the effect of the variations of the
parameter k on damping of M, modes. In each case, only those
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Fig. 3. Damping ratio of M; modes for different values of k as o varies; a: k=1, ¢:
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Fig. 4. Two eigenvalues of matrix M} as « varies from —2 to 2: (a) k=1 and (b)
k=-1.

modes having the lowest damping are shown. In this figure, the
curve corresponding to k=0 (the middle one) is the same as
Fig. 2, which is associated with the original matrix M'. The right-
shifted curve is associated with k=1 and shows a good stabiliza-
tion of the mode for o - 1. However, the mode damping has de-
creased at the operating points with o < 0. On the contrary, the
left-shifted curve associated with k=—1 shows a destabilization
of the mode for « ~ 0. It also has increased the mode damping at
the operating points with o < —1. For two cases of the above exam-
ple, Fig. 4 shows the movement of two eigenvalues of M) on the
complex plane.

The above results show that at all operating points, due to the
strong resonance, the effect of the parameter k on the damping
of M), modes is dependent on two factors: (1) the position of oper-
ating point with respect to the original interaction center and (2)
the magnitude and the sign of the parameter k. Thus, for any cer-
tain operating point, by choosing an appropriate value for k, the
condition of strong resonance can be employed to enhance the sys-
tem stability. It implies that if the control parameter of a stabilizer
such as the gain value of a PSS has the same effect as the parameter
k, it is essential to consider the effects of strong resonance on the
stabilizer performance.

Other parameters also can be considered which affect on the
damping ratio of M’ modes by changing the resonance condition.
For example, in the original matrix M in (1), variation of r causes
the resonance point to move on the complex plane; Moreover, var-
iation of s turns the eigenvalues movement paths round the reso-
nance point and changes the length of eigenvalues branches.
Furthermore, variation in the perturbation of AM in (4) changes
the diameter of the parabolic curves of the eigenvalues movement
and the distance between them. This variation can also alter the
turn direction of eigenvalues paths so causes the transference of
instability between eigenvalues branches [10]. Therefore, it is
important to investigate the effect of stabilizers parameters on
the above mentioned variations while trying to stabilize system
oscillations in the condition of strong resonance. Reference [7]
presents a similar investigation in power system examples.

3. Case study
3.1. Test system

The developed theorem is applied on a 2-area 4-machine test
system from [11]. This system has been widely used for studying
inter-area oscillations and power system dynamics [12-15]. This
system includes two areas which are connected together via a
weak tie line. Each area has a local mode, and an inter-area mode
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Fig. 5. Schematic of 2-area 4-machine test system.

is common between two areas. Fig. 5 shows a simplified single-line
diagram of this system. In this study, all generators are modeled by
the two-axis model [16]. Each of them is equipped with a static ex-
citer and automatic voltage regulator (AVR) as shown in Appendix
A.1. All loads are modeled as constant impedances. The system
parameters and power flow data are given in Appendix A.2.

3.2. Providing the condition of near strong resonance

Bilateral symmetry in the original version of the 2-area 4-ma-
chine system would cause a weak resonance between local modes
[5]. In [8,9] by choosing different values for the damping coefficient
and the exciter gain of the machines, the condition of near strong
resonance has been provided. In the present study, the same de-
fined parameters are used.

The variable parameter is the power transfer between areas,
which is varied from 180 MW to 420 MW. To establish this condi-
tion, the installed load at bus 5 is decreased from 1120 MW to
880 MW (in steps of 5 MW) and the installed load at bus 6 is in-
creased from 1180 MW to 1420 MW (in the same steps). The sys-
tem generator data for the first and the last operating points
(with 180 MW and 420 MW transmitted power respectively) is gi-
ven in Appendix.

Tables 1 and 2 show the information of the system oscillatory
modes for the first and the last operating points respectively. We
use the knowledge of participation factors to identify the type of
oscillatory modes By this method, distinguishing between two
modes, which interact near strong resonance is too difficult around
the interaction center because of the growth of coupling between
modes. However, it is possible to identify these modes at operating

Table 1

Oscillatory modes of system at the first operating point.
Mode no.  Eigenvalues Frequency (Hz) Damping (%) Mode type
11,12 —-1.114 +j7.71 1.227 14.30 Local, areal
13,14 -1.815+j7.42 1.182 23.75 Local, area2
16, 17 -0.426 £j2.99 0.476 14.11 Inter-area
19, 20 -1.296 +j1.12  0.179 75.54 Exciter
21,22 -0.949+j1.02 0.163 68.05 Exciter
25, 26 —0.306 £j0.46  0.073 55.71 -
27,28 —0.285 +j0.44  0.069 54.68 -

Table 2

Oscillatory modes of system at the last operating point.
Mode no.  Eigenvalues Frequency (Hz) Damping (%) Mode type
9,10 ~1.157 +j7.74 1.232 14.78 Local, areal
11,12 -1.794 £j7.56  1.203 23.09 Local, area2
15, 16 —3.806 £i0.42  0.067 99.39 -
17,18 —1.561+j2.07 0.330 60.13 Exciter
19, 20 0.005+j1.18 0.188 -0.40 Inter-area
21,22 —-1.033£j0.63  0.100 85.55 Exciter
24,25 -0.291 £j0.50  0.079 50.53 -

points far from the interaction center on both sides and pursue
them until the interaction center.

In order to recognize the existence of resonance between sys-
tem modes and study its modal interaction, linear modal analysis
is performed for all operating points. Fig. 6 shows the eigenvalues
movement of the system dominant modes on the complex plane.
The damping ratio of all system modes in terms of the power trans-
fer of the tie line is shown in Fig. 7. According to Fig. 6, with a grad-
ual increase in the transmitted power, the modes pass near strong
resonance twice. The first one occurs between two exciter modes
around the transmitted power of 225 MW. Its interaction center
is defined by guide-line (1) in Figs. 6 and 7. It doesnot cause insta-
bility in the related modes. However, the second one takes place
between the inter-area mode and one of the exciter modes around
the transmitted power of 345 MW. Its interaction center is denoted
by guide-line (2) in Figs. 6 and 7. As seen in Fig. 6, a severe inter-
action occurs between these modes and leads to instability of the
inter-area mode at high transmitted powers. The eigenvalues
movement and approximate eigenvectors coincidence of these
modes are also featured in [8, Fig. 3].

Fig. 7 shows that the damping of the inter-area mode increases
before the interaction center and decreases afterwards so becomes
unstable at the transmitted power of 420 MW. It should be noted
that although passing near strong resonance leads to instability
of inter-area mode at high transmitted powers, it causes the mode
damping to increase to a maximum value at the operating points
around the interaction center.
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Fig. 7. Damping ratio of the modes as transmitted power varies.
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The curves of the exciter mode and inter-area mode around the
guide-line (2) in Figs. 6 and 7 are quite similar to those of the ma-
trix M’ modes in the Figs. 1b and 2 respectively. There is a perfect
similarity between the inter-area mode and the lowest damping
mode of M'. As Fig. 7 shows, the inter-area mode needs to be sta-
bilized at the critical operating points associated with transmitted
powers higher than 400 MW. According to the proposed mecha-
nism presented in Section 2, if the parameter variation of designed
stabilizer shifts the interaction center into the operating points
with greater transmitted powers, the stabilizer utilizes the reso-
nance condition to stabilize the inter-area mode at the critical
operating points. In the next part, the performance of PSSs on
damping of inter-area mode is studied.

3.3. Studying the performance of PSSs
In order to analyze the performance of PSSs in the condition of

strong resonance, we assume a single PSS at a time on one of the
system machines and in each case, modal analyses are carried

Vs

max
1+ST3 /_
14Ty _/
Vs min

Fig. 8. Block diagram of the PSS.

sT5 1+5T

]
K,
L+sTs | |1+sT;

9

°

s

(=]

£

Q.

§ 10} operating points
ol \
ot (a) PSS at GEN1 g

180 200 250 300 350 400 420
Transmitted power (MW)

53
2
IS
[=)]
L=
£

I ating points
3 10 operating poi

5t
(b) PSS at GEN2
180 200 250 300 350 400 420
Transmitted power (MW)

Fig. 9. Damping ratio of inter-area mode as transmitted power varies for different
gain values (KPSS) of PSSs of Areal: (a) PSS at GEN1 and (b) PSS at GEN2.

out for all operating points, considering different gain values of
the PSS. In this study, a simple type of PSS as shown in Fig. 8 is
used. We utilize the same PSSs which have been designed in [8,
Table VIII]. Analyses by use of MATLAB Power System Toolbox
(PST) [17] show that for all operating points, the phase character-
istics of the PSSs appropriately provide the needed phase compen-
sation over the large range 0.1-2 Hz.

3.3.1. PSSs of Areal

The simulation results indicate that the overall performance of
the PSSs of GEN1 and GEN2 in Areal are similar. Fig. 9 shows how
the damping ratio of inter-area mode varies at different operating
points as the gain values of these PSSs (KPSS) vary gradually from 0
to 20. The curve associated with KPSS =0 is the same as one ob-
tained in Fig. 7 which is associated with the original system with-
out any PSS.

In Fig. 9, there are operating points in which the damping
ratio of inter-area mode is approximately independent of the
gain values of the PSSs. We call these operating points as neu-
tral operating points, which correspond to the transmitted power
of about 285 MW in Fig. 9a and about 295 MW in Fig. 9b. At
operating points before the neutral operating points, especially
those with transmitted power less than 250 MW, the PSSs have
the expected performance so by increasing the gain values of
the PSSs, more positive damping is provided for inter-area
mode.

However, at operating points after the neutral operating points,
because of the resonance condition, the performance of the PSSs on
the inter-area mode is quite dependent on the position of the oper-
ating points with respect to the interaction center of the system
without PSS (with KPSS = 0). At these operating points it is clearly
seen that by increasing the gain value of the PSSs, the interaction
center moves towards operating points with a higher transmitted
power. This function is similar to moving the curve of the system
without PSS to the right. At operating points before the interaction
center of the system without PSS, increase in the gain value of the
PSSs reduces the damping of inter-area mode. Therefore, in these
operating points, the performance of the PSSs becomes converse
so decreases the stability of this mode. The neutral operating
points are those at which this converse performance is balanced
with the common function of the PSSs to enhance the damping
of the mode. However, at operating points after the interaction
center of the system without PSS, by choosing an appropriate gain
value for the PSSs, it is possible to provide the maximum damping
for the inter-area mode in the vicinity of an interaction center.
Therefore, at these operating points especially those with transmit-
ted power higher than 400 MW (critical operating points), the per-
formance of the PSSs of Areal is quite satisfactory in stabilizing the
inter-area mode.

3.3.2. PSSs of Area2

Simulation results show that the general performance of the
PSSs of GEN3 and GEN4 in Area2 are similar. Fig. 10 shows
how the damping ratio of inter-area mode changes at different
operating points as the gain values of these PSSs vary gradually
from 0 to 20. Figure indicates that unlike the PSSs of Areal,
the PSSs of Area2 have a significant effect on the damping ratio
of inter-area mode at all operating points, which implies the high
contribution of the machines of this area to the oscillations of
this mode.

According to Fig. 10, the performance of the PSSs on the stability
of inter-area mode is greatly affected by the resonance condition.
This performance is quite dependent on the position of operating
points with respect to the interaction center of the system without
PSS (with KPSS = 0). By increasing the gain value of PSSs, the inter-
action center moves towards operating points with lower trans-



264 M. Gharebaghi, R. Ghazi/Electrical Power and Energy Systems 44 (2013) 259-266

Damping ratio (%)

KPSS=0 | ——— - - - — - “\5&*—‘«’5«%
~

0 —
BE
—5— KPSS=5 N
A0} | —+— KPSS=10 RN
—+—— KPS8=15 D\\T
20} | —+— KPS8=20 (a) PSS at GEN3
180 200 250 300 350 400 420
Transmitted power (MW)
i v & ol N _
. w g“’*( "\.k‘ }g\ e N /\
P P ‘\\ ‘ 1
. P ‘,wa-:,{\ o AN
£ 20 -*;wa“‘””'d j-«;}(\fg\ \ \ .
o - __,.——"'/' Y’\;«\&*t* e =, \
© P - ""*p\h“w\:?‘k ‘\'\. N
L L LN =
? ", ’*~\\ 5 \ \
‘a N kS
[=8 w5 \r\f ‘\\ \
E of KPSS=0 ----------- AR
a —&— KPSS=5 '\:}\\\;\
-10f | —+— KPSS=10 %
+— KPSS=15 \
20} b KPSS=20 (b) PSS at GEN4 \
180 200 250 300 350 400 420
Transmitted power (MW)

Fig. 10. Damping ratio of inter-area mode as transmitted power varies for different
gain values (KPSS) of PSSs of Area2: (a) PSS at GEN3 and (b) PSS at GEN4.

mitted power. This function is similar to moving the curve of the
system without PSS to the left as it is more obvious in Fig. 10b.
At operating points before the interaction center of the system
without PSS, by choosing an appropriate gain value for the PSSs,
it is possible to provide the maximum damping for inter-area
mode in the vicinity of an interaction center. Therefore, in these
operating points, the performance of the PSSs of Area2 is very
effective in stabilizing the inter-area mode. However, at operating
points after the interaction center of the system without PSS,
increasing the gain value of the PSSs severely reduces the damping
of inter-area mode. Therefore, at these operating points, the perfor-
mance of the PSSs becomes converse and causes to destabilize this
mode.

3.4. Discussion

The results obtained from investigating the performance of PSSs
show that passing near strong resonance causes the performance
of PSSs on the inter-area mode to become extremely dependent
on the location of the PSS and the operating point of the system.
The interaction center of the system without PSS (original system)
is an index of defining the performance of the PSSs. At operating
points after the interaction center, the performance of the PSSs of
Areal is stabilizing and of Area2 is destabilizing. At operating

points before the interaction center, the performance of the PSSs
of Area2 is stabilizing.

Passing near strong resonance also causes a maximum damping
ratio of inter-area mode at operating points in the vicinity of the
interaction center. By placing the PSS on an appropriate machine
and setting its gain by a suitable value, it is possible to move the
interaction center so that the maximum damping ratio to be ob-
tained at each of the operating points. It is in agreement with
[18, Figs. 2-4] which choose the gain value of a PSS corresponding
to an interaction center (if exists) as the optimum gain value ob-
tained by experiment.

The dominant function of the PSSs is shifting the interaction
center of the inter-area mode toward the operating points with
higher or lower transmitted power. However, there are some devi-
ations from this function, which cause the maximum damping ra-
tio of the mode to vary. This dominant function is quite consistent
with the proposed mechanism in Section 2, wherein placing a PSS
in the system corresponds to a non-zero value of the parameter k
in the matrix M,. The magnitude of k is proportional to the gain va-
lue of the PSS and the sign of k is dependent on the location of the
PSS: positive sign for PSSs of Areal and negative sign for PSSs of
Area2.

Results also imply the necessity of appropriate placement of the
PSS in the condition of strong resonance. The placement method
should be able to consider the effects of passing near strong reso-
nance on the performance of the PSS. The next part of the paper is
devoted to assessing this topic.

3.5. Problem of PSS placement

3.5.1. Using conventional methods

Using mode shapes, residues, and participation factors are con-
ventional placement methods for common PSSs [19,20]. These
methods are based on linear analyses, which utilize the informa-
tion of linearized equations of the power system in the absence
of the considered PSS. As it was mentioned in Section 1, authors
of [8,9] have examined these conventional methods for placement
of a PSS at two operating points of the 2-area 4-machine system
with transmitted powers of 180 MW and 410 MW. They showed
that these methods identify the machines of Area2 as the best loca-
tion to place the PSS at both the operating points. As we showed in
the previous part, PSSs of Area2 provide appropriate stabilization
at operating point with transmitted power of 180 MW (before
the interaction center). However, at transmitted power of
410 MW (after the interaction center), these PSSs have an adverse
effect and lead to destabilizing the inter-area mode. Therefore, the
conventional methods have identified incorrect machines for PSS
placement at this operating point. Because the authors of these pa-
pers have not considered the effect of linear interactions caused by
passing near strong resonance on the performance of PSSs, they
have assumed that the inefficiency of conventional linear methods
is due to the increase of system stress and growth of nonlinearity.
Upon this assumption, they have suggested that in this operating
point the nonlinear approaches should be used in placement of
PSSs.

We have investigated the capability of the conventional meth-
ods of PSS placement at all operating points. As an example, we
show the speed participation factors of machines in the inter-area
mode for different operating points in Fig. 11. In order to show the
effect of the resonance condition on the values of the indices, nor-
malization is not performed. It is seen that GEN3 and GEN4 have
the largest relative values at all operating points (except the last
one). Therefore, this method chooses the machines of Area2 to
place PSS at all operating points (except the last one) The methods
of mode shapes and residues provide similar results (figures are
not shown) and identify a machine of Area2 as the best location
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Fig. 11. Speed participation factors of inter-area mode as transmitted power varies.

to place PSS for all operating points. As it was demonstrated in the
previous part, PSSs of Area2 cause destabilization of the inter-area
mode at the operating points after the interaction center of this
mode. Therefore, these methods choose incorrect machines to
place the PSS at these operating points. This inefficiency of the
methods is due to their inability to identify the destabilizing per-
formance of the PSSs on the mode. This inability is intrinsic to all
placement methods which utilize only the relative values of the
magnitude of linear indices.

In the present case, passing near strong resonance causes the
destabilizing performance of the PSSs of Area2 at the operating
points after the interaction center so leads to inefficiency of the
conventional methods of PSS placement.

3.5.2. Using the real part of the speed participation factors

Ref. [21] uses the real part of the speed participation factor
as an index for PSS placement. The magnitude of this index
quantifies the contribution of the considered machine in the
oscillations of the electromechanical mode, and its sign identi-
fies the stabilizing or destabilizing performance of PSS on the
oscillations of the mode. Positive index implies the stabilizing
performance, and negative index implies the destabilizing
performance [21].

Because of incapability of conventional methods to identify the
accurate location for PSS to enhance the damping of the inter-area
mode at operating points after the interaction center, we propose
using the real part of speed participation factors as a linear index
to solve this problem.

Fig. 12 shows the real part of the speed participation factors of
machines in the inter-area mode (values are not normalized). It is
seen that GEN3 and GEN4 have the largest, positive values at oper-
ating points before the interaction center. By contrast, GEN1 and
GEN2 have the largest, positive values at operating points after
the interaction center. Therefore, this method chooses the ma-
chines of Area2 to place PSS at operating points before the interac-
tion center and the machines of Areal at operating points after the
interaction center. These results confirm the efficiency of this
method to identify the accurate location for PSS to stabilize the in-
ter-area mode.

In addition, Fig. 12 shows that the indices of GEN1 and GEN2
change in sign from positive to negative at operating points with
transmitted power about 270 MW and 255 MW respectively. This
indicates that the real part of speed participation factors can esti-
mate the neutral operating points of Fig. 9. Moreover, the negative
values of indices of GEN3 and GEN4 at the operating points after
the interaction center confirm the destabilizing performance of
the PSSs of Area2 at these operating points. Changing the sign of
the indices at the interaction center accurately indicates the inver-
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Fig. 12. Real part of the speed participation factors of inter-area mode as
transmitted power varies.

sion of the PSSs performance due to passing near strong resonance.
These results confirm that this index provides important informa-
tion about the effects of strong resonance on the performance of
the PSSs.

In the application of the real part of the speed participation fac-
tors it is notable that the useful information is provided by both the
magnitude and the phase of the participation factors.

4. Conclusion

In this paper, from a new viewpoint, the effects of the strong
resonance phenomenon on the stability of dynamic systems have
been considered. Based on a proposed mechanism, the perfor-
mance of stabilizer controllers in the condition of near strong res-
onance has been investigated. The mechanism describes how the
variation of a control parameter can move the interaction center
of the resonance in such a way to stabilize or destabilize the cou-
pled modes. As an application, this mechanism has been applied
to justify the performance of PSSs in a 2-area 4-machine power
system. It has been shown that interaction of an exciter mode
and the inter-area mode near a strong resonance has significant ef-
fects on the performance of the PSSs on the stability of inter-area
mode and makes it become severely dependent on the place of
the PSS and the position of operating point with respect to the
interaction center of the resonance. Especially, at critical operating
points, the PSSs of one of the system areas destabilize the inter-
area mode. It has been illustrated that by considering the proposed
mechanism, the appropriate location of the PSS and its proper gain
value are identified to obtain the maximum damping of inter-area
mode at each of the operating points.

In addition, it is shown that the conventional methods of PSS
placement are not able to identify the destabilizing performance
of the PSSs caused by the strong resonance, so choose inappropri-
ate machines to place the PSS. We have suggested the real part of
speed participation factors as an index for placement of the PSS.
The obtained results showed that by utilizing this index, the appro-
priate machines are identified to place the PSS. This index provides
important information regarding the impacts of strong resonance
on the performance of the PSSs. Using this index is easier than
the nonlinear indices proposed by [8,9] for placement of PSS in
the same case study.

Appendix A
A.1. Block diagram of the AVR/exciter

See Fig. A.1.
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Fig. A.1. Block diagram of the exciter and AVR.

A.2. Numerical parameters of the case study

Tables A.1-A.5 give the numerical parameters of the system
which are the same as that given in [8].

We supposed that the amplitude of steady state terminal volt-
age of generators is constant at all operating points. Table A.6
shows the steady state generator data for the first and the last
operation points.

Table A.1
Generator parameters in per unit on generator base 900 MVA.

GEN D H Rq X4 Xq X Xg Tyo r;o
1 4 6.5 0.0025 1.8 1.7 0.3 0.3 8.0 04
2 2
3 11
4 10
Table A.2
Line parameters in per unit on system base 100 MVA.
Bus bars R X
1,2 and 3,4 0.0025 0.025
2,5and 4, 6 0.0010 0.010
5,6 0.0220 0.220
Table A.3

Load data of ith operating point (1 <i < 49).

Load Load Load Shunt susceptance
bus (MW) (MVAR) on system base
5 1120 - 5(i - 1) 250 2.551
6 1180 +5(i — 1) 250 2.543
Table A4
Exciter/AVR parameters.
GEN KA TA TB TC TR VRmin VRmax
1 180 0.01 10.0 1.0 0.01 -5.0 5.0
2 100
3 130
4 220
Table A.5
PSS parameters.
GEN T T, T3 Ty Ts Vsmin Vsmax
1 0.1 0.01 0.9 0.07 13 -0.1 0.1
2 0.1 0.03 1.5 0.03 10
3 0.1 0.05 1.3 0.03 10
4 0.3 0.05 0.18 0.03 3

Table A.6
Steady state generator data.

GEN The first operation point The last operation point

|V| yaY% Pgen Qgen |V| yaY% Pgen Qgen
p.u. deg MW MVAR p.u. deg MW MVAR
1 1.0200 27.3 664.4 13.2 1.0200 720 664.4 13.2
2 1.0136 18.1 6644 2832 1.0136 62.8 6644 5244
3 1.0200 0.0 5234 29 1.0200 0.0 5758 4.6
4 1.0146 -7.3 500.0 221.1 1.0146 -8.0 5000 528.6
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