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Abstract—Non-orthogonal multiple access (NOMA) is a
promising technique for the fifth generation (5G) wireless com-
munications. As users with good channel conditions can serve
as relays to enhance the system performance by using successive
interference cancellation (SIC), the integration of NOMA and
cooperative relaying has recently attracted increasing interests.
In this paper, a NOMA-based cooperative relaying system is
studied, and an analytical framework is developed to evaluate
its performance. Specifically, the performance of NOMA over
Rician fading channels is studied, and the exact expression of the
average achievable rate is derived. Moreover, we also propose an
approximation method to calculate the achievable rate by using
the Gauss-Chebyshev Integration. Numerical results confirm that
our derived analytical results match well with the Monte Carlo
simulations.

Index Terms—5G, non-orthogonal multiple access (NOMA),
Rician fading channels, cooperative relaying, achievable rate.

I. INTRODUCTION

IT is highly expected that future 5G networks should achieve
a 10-fold increase in connection density, i.e., 106 con-

nections per square kilometers [1]. Non-orthogonal multiple
access (NOMA) has been proposed as a promising candidate
to realize such an aggressive 5G goal [2]–[5]. NOMA is
foundamentally different from conventional orthogonal multi-
ple access (OMA) schemes such as FDMA, TDMA, OFDMA,
etc., since it allows multiple users to simultaneously transmit
signals using the same time/frequency radio resources but
different power levels [3]–[5]. The key advantage of NOMA
is to explore the extra power domain to further increase the
number of supportable users. Specifically, users are identified
by their channel conditions, those with good channel con-
ditions are called strong users and others are called weak
users. For the sake of fairness, less power are allocated to
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strong users at the transmitter side. In this way, the transmitter
sends the superposition of signals with different power levels
and the receiver applies successive interference cancellation
(SIC) to strong users to realize multi-user detection [5], [6].
Such non-orthogonal resource allocation enables NOMA to
accomodate more users and makes it promising to address
the 5G requirement of massive connectivity, with the cost of
controllable increase of complexity in receiver design due to
SIC [5].

In NOMA systems, the use of SIC implies that strong users
have prior information about the messages of other users, so
essentially they are able to serve as cooperative relays. More-
over, cooperative relaying is able to significantly enhance the
system performance of cellular networks [7]. Thus, combining
cooperative relaying and NOMA is promising to improve the
throughput of future 5G wireless networks, and has attracted
increasing interests recently [8]. Specifically, a cooperative
NOMA transmission scheme was proposed in [9], where
strong users decode the signals that are intended to others and
serve as relays to improve the performance of weak users.
Another NOMA-based cooperative scheme was proposed in
[10], where the performance of a NOMA-based decode-and-
forward relaying system under Rayleigh fading channel was
studied. However, most of existing NOMA schemes only
consider the Rayleigh fading channel, which is suitable for
rich scattering scenarios without line of sight (LOS), while
little attention has been drawn to the more general Rician
fading channel, which takes both LOS and non LOS (NLOS)
into consideration. In some typical 5G application scenarios,
such as massive machine-type communications (mMTC) and
Internet of things (IoT), “users” may be low-cost sensors
deployed in a small area, where both LOS and NLOS exist,
which can be better modeled by the Rician fading channel.

In this paper, we investigate the performance of the NOMA-
based cooperative relaying transmission scheme in [10] under
Rician fading channels1. Evaluating system performance under
Rician fading channel is rather challenging as the probability
density function of Rician distribution variables consists of
Bessel function, which makes it difficult to calculate the
average achievable rate through integration. In order to derive
the exact expression of the achievable rate, we propose an
analytical method using Taylor expansion of Bessel function
and incomplete Gamma function. However, the complexity
of the incomplete Gamma function makes it still difficult to
get the exact values, so we further propose an approximation

1Simulation codes are provided to reproduce the results presented in this
paper: http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html.
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(a) (b)

Fig. 1. System models of two cooperative relaying systems: (a) Traditional cooperative relaying systems; (b) NOMA-based cooperative relaying systems.

method using Gauss-Chebvshev Integration to simplify the
calculation. Finally, simulations confirm that our analytical
results match well with the Monte Carlo results.

The rest of the paper is organized as follows. The system
model of the NOMA-based cooperative relaying system is
introduced in Section II. In Section III, we provide a detailed
analysis for the achievable rate of the system and acquire both
accurate and approximated results. Section IV provides numer-
ical results to validate the theoretical analysis and section V
concludes the paper.

II. SYSTEM MODEL

As illustrated in Fig. 1 (a) and Fig. 1 (b), we consider
a simple cooperative relaying system (CRS) consisting of a
source (S), a decode-and-forward relay (R) which works in
half-duplex mode, and a destination (D). We assume that all
links between them (i.e., S-to-D, S-to-R, and R-to-D) are
available. The independent Rician fading channel coefficients
of S-to-D, S-to-R, and R-to-D links are denoted as hSD, hSR,
and hRD, with the average powers of ΩSD, ΩSR, and ΩRD,
respectively. It is also assumed that ΩSD < ΩSR, since in
general the path loss of the S-to-D link is usually worse than
that of the S-to-R link [10].

In the traditional CRS presented in Fig. 1 (a), the source
transmits s1 to the relay and destination in the first time slot.
Then in the second time slot, the relay transmits s1 to the
destination. In this way, the destination only receives one
signal in two time slots.

In the NOMA-based CRS showed in Fig. 1 (b), the destina-
tion is able to receive two different signals in two time slots,
so it outperforms the traditional CRS in terms of throughput.
Specifically, in the first time slot, the source transmits the
superposition of two different data symbols s1 and s2 to the
relay and the destination as follows:

t =
√

a1Pt s1 +
√

a2Pt s2, (1)

where si denotes the i-th data symbol with normalized
power E[|si |2] = 1, Pt is the total transmit power, and ai
is the power allocation coefficient. It is noted that a1+ a2 = 1,
and a1 > a2 due to Ω2

SD < Ω2
SR [5]. Thus, the received signals

rSR and rSD at the relay and the destination in the first time
slot are respectively expressed as

rSR = hSR(
√

a1Pt s1 +
√

a2Pt s2) + nSR, (2)

rSD = hSD(
√

a1Pt s1 +
√

a2Pt s2) + nSD, (3)

where nSR and nSD denote the additive white Gaussian noise
(AWGN) with zero mean and variance σ2. The destination
only decodes symbol s1 by treating symbol s2 as noise, while
the relay acquires symbol s2 from (1) using SIC. Thus, the
received signal-to-interference plus noise ratios (SINRs) for
symbols s1 and s2 at the relay can be respectively obtained as

γ1
SR =

|hSR |
2a1Pt

|hSR |2a2Pt + σ2 , (4)

γ2
SR =

|hSR |
2a2Pt

σ2 , (5)

and the received SINR for symbol s1 at the destination is
obtained as

γSD =
|hSD |

2a1Pt

|hSD |2a2Pt + σ2 . (6)

In the second time slot, only the relay transmits the decoded
symbol s2 with full power Pt to the destination. Assuming
that the relay can perfectly decode symbol s2 in the first time
slot [5], the received signal at the destination in the second
time slot can be expressed as

rRD = hRD
√

Pt s2 + nRD, (7)

where nRD is the AWGN with zero mean and variance σ2,
and the received SINR for symbol s2 in (7) can be obtained
as

γRD =
|hRD |

2Pt

σ2 . (8)

As the expressions for received signals and SINRs are
already acquired, we will calculate both the exact and approx-
imated achievable rates in the NOMA-based CRS in the next
section.

III. ACHIEVABLE RATE ANALYSIS AND APPROXIMATION

In this section, we first derive the exact expression of the
average achievable rate of the NOMA-based CRS over Rician
fading channel. As the exact value of achievable rates are
difficult to calculate, we further propose an approximation
method using Gauss-Chebyshev Integration to simplify the
numerical calculation.

A. Achievable Rate Analysis

In this subsection, we analyze the average achievable rate
of s1 and s2. Let λSD , |hSD |

2, λSR , |hSR |
2, λRD , |hRD |

2,
and ρ , Pt/σ

2, where ρ represents the transmit SNR. As
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both the relay and the destination must successfully decode
s1 and s2, the rates of these two signals should be lower than
the rates of both links calculated by Shanon formula, so the
achievable rate is the minimum of the rates of two different
links. According to [10], we can obtain the achievable rates
Cs1 and Cs2 of signals s1 and s2 respectively as

Cs1 =
1
2

min
{
log2(1 + γSD), log2(1 + γ1

SR)
}

=
1
2

log2
(
1 +min{λSD, λSR}ρ

)
−

1
2

log2
(
1 +min{λSD, λSR}ρa2

)
, (9)

Cs2 =
1
2

min
{

log2(1 + γ2
SR), log2(1 + γRD)

}

=
1
2

log2
(
1 +min{a2λSR, λRD}ρ

)
. (10)

Let z1 , min{λSR, λSD}, z2 , min{a2λSR, λRD}. According to
[11], we can get the cumulative distribution function (CDF)
of z1 as

F (z1) = 1 − Ax Ay

∞∑
k=0

∞∑
n=0

B̃x (n)B̃y (k)Γ(n + 1, ax z1)

× Γ(k + 1, ay z1)

(a)
= 1 − Ax Ay

∞∑
k=0

∞∑
n=0

B̃x (n)B̃y (k)n!k!e−(ax+ay )z1

×

n∑
i=0

k∑
j=0

ai
xa j

y

i! j!
zi+j1 , (11)

where Bx (n) = (Kn
x (1+Kx )n)/(Ωn

x (n!)2), By (k) = (Kk
y (1+

Ky )k )/(Ωk
y (k!)2), ax = (1 + Kx )/Ωx , ay = (1 + Ky )/Ωy ,

Ax = axe−Kx , Ay = aye−Ky , B̃x (n) = Bx (n)/an+1
x , B̃y (k) =

By (k)/ak+1
y . The subscript x denotes the S-to-D link, y denotes

the S-to-R link, w denotes the R-to-D link, and K is the Rician
factor. Note that the expansion form of incomplete Gamma
function is used for the second equality (a) of (11).

Then, we prove the convergence of the infinite summation
in (11) as follows.

Proof: Let Px = (Kx (1 + Kx ))/Ωx , Qy = (Ky (1 +
Ky ))/Ωy , we have

Γ(n + 1, ax z1)
n!

<
Γ(n + 1)

n!
< 1, (12)

Γ(k + 1, ay z1)
n!

<
Γ(n + 1)

n!
< 1, (13)

then

Ax Ay

∞∑
k=0

∞∑
n=0

B̃x (n)B̃y (k)Γ(n + 1, ax z1)Γ(k + 1, ay z1)

= Ax Ay

∞∑
k=0

∞∑
n=0

Pn
x

n!
Qk

y

k!
Γ(n + 1, ax z1)

n!
Γ(k + 1, ay z1)

k!

< Ax Ay

∞∑
k=0

∞∑
n=0

Pn
x

n!
Qk

y

k!

= Ax AyePx+Qy .

The final value will not change as k or n increases, so the
infinite summation in (11) is convergent.

Similarly, we can obtain the CDF of z2 as follows:

G(z2) =1 − Aw Ay

∞∑
n=0

∞∑
k=0

B̃w (n)B̃y (k)Γ(n + 1, aw z2)

× Γ(k + 1,
ay
a2

z2)

=1 − Aw Ay

∞∑
k=0

∞∑
n=0

B̃w (n)B̃y (k)n!k!e−(aw+
ay
a2

)z2

×

n∑
i=0

k∑
j=0

ai
w ( ay

a2
) j

i! j!
zi+j2 , (14)

where the parameters in (14) are similarly defined as those in
(11).

After the CDF of z1 , min{λSR, λSD} has been obtained
as (11), we can substitute it into (9), and then the average
achievable rate Cs1 of the signal s1 as shown in (9) can be
expressed as

Cs1 =
1
2

∫ ∞

0
[log2(1 + z1ρ) − log2(1 + z1ρa2)]dF (z1)

=
1

2 ln(2)

[
ρ

∫ ∞

0

1 − F (z1)
1 + z1ρ

dz1 − ρa2

∫ ∞

0

1 − F (z1)
1 + z1ρa2

dz1

]
.

(15)
Let D(ρ) = ρ

∫ ∞

0

1 − F (z1)
1 + z1ρ

dz1, and substitute (11) into

D(ρ), we have

D(ρ) = ρ
∫ ∞

0

1 − F (z1)
1 + z1ρ

dz1

= Ax Ay

∞∑
k=0

∞∑
n=0

B̃x (n)B̃y (k)n!k! ×
n∑
i=0

k∑
j=0

ai
xa j

y

i! j!∫ ∞

0

zi+j1 e−(ax+ay )z1

1 + z1ρ
d(z1ρ)

(b)
= Ax Ay

∞∑
k=0

∞∑
n=0

B̃x (n)B̃y (k)n!k! ×
n∑
i=0

k∑
j=0

ai
xa j

y

i! j!ρi+j

∫ ∞

0

ti+je−
ax+ay

ρ t

1 + t
dt, (16)

where (b) is obtained by setting t = z1ρ.
Now we have the following Lemma 1 to calculate the

integral
∫ ∞

0

ti+je−
ax+ay

ρ t

1 + t
dt in (16).

Lemma 1. For m ∈ Z∗ and β > 0, we have∫ ∞

0

tme−βt

1 + t
dt = eβm!Γ(−m, β), (17)

where Γ(−m, β) =
∫ ∞

β

e−t

tm+1 dt denotes the incomplete

Gamma function.

Proof: Let x = β(1 + t), we have∫ ∞

0

tme−βt

1 + t
dt =

eβ

βm

∫ ∞

β

(x − β)me−x

x
dx. (18)
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Then we define:

Jm(x) =
(x − β)m

x
, (19)

I (x) =
eβ

βm

∫ ∞

β
Jm(x)e−xdx. (20)

On the one hand, by substituting (19) into (20), we have

I (x) = −
eβ

βm

∫ ∞

β

(x − β)m

x
d(e−x )

= −
eβ

βm
(x − β)m

x
e−x ���

∞

β
+

eβ

βm
×∫ ∞

β

(x − β)m−1(mx − x − β)
x2 e−xdx

=
eβ

βm

∫ ∞

β
Jm−1(x)e−xdx. (21)

We can observe from (21) that as long as β is a root of
Jm(x), the integral can be successively calculated by using
(21) for m times. On the other hand, we know that Jm(x) =
(x − β)m/x = xm−1 + am−2xm−2 + ... + a0 + (−1)m βm/x, so
after m times of integration by part, we will have

I (x) = −
eβ

βm

∫ ∞

β

(x − β)m

x
d(e−x )

= −
eβ

βm

∫ ∞

β

(
xm−1 + ... + a0 + (−1)m

βm

x

) (m)
d(e−x )

= −
eβ

βm

∫ ∞

β

(
(−1)m

βm

x

) (m)
d(e−x )

= eβm!Γ(−m, β), (22)

where (·)(m) denotes m-order derivation.
Substitute (17) in Lemma 1 into (16), we can get the final

exact expression of Cs1 as

Cs1 =
1

2 ln(2)
(D(ρ) − D(ρa2)), (23)

where

D(ρ) = Ax Ay

∞∑
k=0

∞∑
n=0

B̃x (n)B̃y (k)n!k!

×

n∑
i=0

k∑
j=0

(i + j)!
i! j!

ai
xa j

y

ρi+j
e

ax+ay
ρ Γ(−i − j,

ax + ay
ρ

),

(24)
and D(ρa2) shares the same form as D(ρ).
Similarly, we can derive the exact expression of Cs2 as

Cs2 =
1

2 ln(2)
Aw Ay

∞∑
k=0

∞∑
n=0

B̃w (n)B̃y (k)n!k! ×
n∑
i=0

k∑
j=0

×
(i + j)!

i! j!
ai
w (ay/a2) j

ρi+j
e

aw+ay /a2
ρ Γ(−i − j,

aw + ay/a2

ρ
).

(25)
Although we have derived the exact expressions of the

achievable rates of s1 and s2 in (23) and (25) respectively,
such expressions are very complicated, since the incomplete
Gamma function is difficult to calculate. Thus, it is still
difficult to get the exact values of the achievable rates, which
motivates us to propose an approximation method to solve this
problem in the next subsection.

B. Achievable Rate Approximation

In this subsection, we propose an approximation method us-
ing Gauss-Chebyshev Integration [12] to simplify the numer-
ical calculation of the incomplete Gamma function Γ(−m, β).
However, Gauss-Chebyshev Integration is used on the limited
interval [−1, 1], while the integral intervals in incomplete
Gamma functions of (23) and (25) are infinite intervals. Thus,
we set t = 2β 1

x−1 and convert the incomplete Gamma function
as

Γ(−m, β) = (
1

2β
)m

∫ 1

−1

1
√

1 − t2
(t + 1)m−1e−

2β
t+1

√
1 − t2dt

= (
1

2β
)m
π

n

n∑
l=1

(cos(
2l − 1

2n
π) + 1)m−1

× e
−

2β
cos( 2l−1

2n π )+1 | sin(
2l − 1

2n
π) |, (26)

where n is the approximation order. Substituting (26) into the
exact expression of the achievable rate (23), we can finally
obtain the approximation of (23) as

Cs1 =
1

2 ln(2)

(
D(ρ) − D(ρa2)

)
, (27)

where
D(ρ) = Ax Ay

∞∑
k=0

∞∑
n=0

B̃x (n)B̃y (k)n!k! ×
n∑
i=0

k∑
j=0

(i + j)!
i! j!

ai
xa j

y

ρi+j

× e
ax+ay

ρ

(
1

2 ax+ay

ρ

) i+j
π

n

n∑
l=1

(cos(
2l − 1

2n
π) + 1)i+j−1

× e
−

2
ax+ay

ρ

cos( 2l−1
2n π )+1 | sin(

2l − 1
2n

π) |, (28)

and D(ρa2) shares the same form as D(ρ). Similarly, (25) can
be approximated as

Cs2 =
1

2 ln(2)
Aw Ay

∞∑
k=0

∞∑
n=0

B̃w (n)B̃y (k)n!k!
n∑
i=0

k∑
j=0

(i + j)!
i! j!

×
ai
w (ay/a2) j

ρi+j
e

aw+ay /a2
ρ

(
1

2 aw+ay/a2
ρ

) i+j
π

n

n∑
l=1

(cos(
2l − 1

2n
π) + 1)i+j−1 × e

−
2
aw+ay /a2

ρ

cos( 2l−1
2n π )+1 | sin(

2l − 1
2n

π) |.

(29)

Thus, the approximated achievable rates (27) and (29) can
be conveniently calculated numerically, and their accuracy will
be validated by the simulation results in the next section.

IV. NUMERICAL RESULTS AND SIMULATIONS

In this section, we compare the analytical results obtained
in the previous Section III with Monte Carlo simulations
to validate their accuracy. Specifically, 105 realizations of
Rician distribution random variables are generated, and the
approximation order for Gauss-Chebyshev Integration is set
as 100.

Fig. 2 presents the achievable rate performance of s1, s2 and
the corresponding sum rate of the NOMA-based CRS against
the power allocation coefficient a2. In the model of Rician fad-
ing channel, the parameter Ω denotes the average power gain
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of the channel [13], which is usually determined by distances
between transceivers. In our system, Ωi (i ∈ {SD, SR,RD})
denotes the average power gain of link SD, link SR, and link
RD, mainly reflecting the impacts of distances from S to D,
from S to R, and from R to D, respectively. Thus, we set
ΩSD = 9 < ΩSR = ΩRD = 36 [10], because the distances from
S to R and from R to D are usually smaller than the distance
from S to D, and thus link SR and link RD have higher average
power gains than link SD. According to [11], other parameters
are set as SNR=20 dB, KSR = KRD = 5, and KSD = 2. From
Fig. 2, we can observe that the derived analytical results using
Gauss-Chebyshev Integration match well with the simulation
results. In addition, as a2 increases, s2 will get more power and
its achievable rate increases accordingly, while the achievable
rate of s1 decreases. Moreover, the sum rate of two signals
first increases and then slowly decreases with the increase of
a2. Actually, we can see from (10) that when a2 is small,
the achievable rate of s2 is mainly determined by link SR,
as a2λSR will always be smaller than λRD. Due to SIC, s2
will have no interference in link SR, so increasing a2 will
largely increase the achievable rate of s2, and thus increase the
sum rate. However, when a2 increases, a2λSR will be larger
than λRD at last, and the rate of link RD will slowly become
the determinant factor, which is not influenced by a2. As a
result, the increase of s2’s achievable rate finally cannot make

up for the decrease of s1’s achievable rate, which causes the
decrease of the sum rate, as shown in Fig. 2. Thus, there exists
an optimal power allocation coefficient to maximize the sum
rate, which is an interesting research topic deserving further
investigation in the future.

Fig. 3 compares the achievable rates of the traditional CRS
and the NOMA-based CRS against the transmit SNR, where
we set a2 = 0.4, ΩSD = 9, ΩRD = 36, and ΩSR = 144. We find
that the simulation results and analytical results are consistent,
and the NOMA-based CRS achieves higher achievable sum
rate than the traditional CRS, since NOMA-based CRS can
transmit two signals in two slots, while traditional CRS can
only transmit one signal during the same time.

V. CONCLUSIONS

In this paper, we have investigated the performance of a
NOMA-based cooperative relaying system by deriving the
exact analytical expressions of the achievable rates. Moreover,
an efficient approximation method using Gauss-Chebyshev
Integration for the achievable rates was also proposed, which
enables the sum series of the achievable rate expressions
converge quickly. Simulation results have verified that our
derived analytical results match well with the Monte Carlo
simulations, and the NOMA-based CRS is able to achieve
higher achievable rate than the traditional CRS.
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