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Abstract—Massive MIMO has become a promising key tech-
nology for future 5G wireless communications to increase the
channel capacity and link reliability. However, with greatly
increased number of transmit antennas at the base station (BS)
in massive MIMO systems, the pilot overhead for accurate ac-
quisition of channel state information (CSI) will be prohibitively
high. To address this issue, we propose a block iterative support
detection (block-ISD) based algorithm for channel estimation to
reduce the pilot overhead. The proposed block-ISD algorithm
fully exploits the block sparsity inherent in the block-sparse equi-
valent channel impulse response (CIR) generated by considering
the spatial correlations of MIMO channels. Furthermore, unlike
conventional greedy compressive sensing (CS) algorithms that
rely on prior knowledge of the channel sparsity level, block-ISD
relaxes this demanding requirement and is thus more practically
appealing. Simulation results demonstrate that block-ISD yields
better normalized mean square error (NMSE) performance than
classical CS algorithms, and achieve a reduction of 87.5% pilot
overhead than conventional channel estimation techniques.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology has
been adopted by numerous wireless communication standards
like long term evolution-advanced (LTE-A) [1] due to its
attractive potential gains both in system capacity and link
reliability. Recently, massive MIMO using substantially more
antennas than traditional MIMO at the base station (BS)
has emerged as a key promising technology for future 5G
wireless communications. It is proved that massive MIMO
can reduce transmit power as well as increase spectrum
efficiency by orders of magnitude [2]. In massive MIMO
systems, accurate downlink channel state information (CSI) is
essential for channel adaptive techniques such as water-filling,
beamforming, etc. [3]-[5]. The pilot overhead for downlink
channel estimation in LTE-A standard with 8 antennas has
already exceeded 25% [6]. As the number of BS antennas
keeps increasing in massive MIMO systems, efficient low-
overhead channel estimation will be an increasingly important
and challenging problem.

Basically, the number of orthogonal pilots required for
downlink channel estimation is proportional to the number of
BS antennas, while the number of orthogonal pilots required
for uplink channel estimation is proportional to the number
of scheduled users [2]. Therefore, channel estimation in the
downlink is more challenging than that in the uplink, since the
number of BS antennas is usually much larger than the number

of scheduled users in massive MIMO systems. By exploiting
channel reciprocity in time division duplexing (TDD) systems,
the estimated uplink CSI can be directly applied in the
downlink, thereby alleviating the need of downlink channel
estimation. Nonetheless, frequency division duplexing (FDD)
generally outperforms TDD in terms of transmission delay,
communication range, mobility support, etc. [3]-[5]. That’s
why FDD still dominates the current wireless communication
systems, where the channel reciprocity does not exist. Thus,
it is of great importance to study the challenging problem
of downlink channel estimation, especially in FDD massive
MIMO systems.

Conventional downlink channel estimation techniques in-
clude least square (LS) and minimum mean square error
(MMSE) [7]. However, they are not suitable for massive MI-
MO systems due to the number of required orthogonal pilots
scales linearly with the number of antennas at the BS, which
results in prohibitively high pilot overhead. Recently, several
efficient channel estimation schemes based on compressive
sensing (CS) have been proposed to reduce pilot overhead by
taking channel sparsity into account [8]-[12]. CS is a new
signal processing theory that can recover high-dimensional
sparse signals from low-dimensional measurements with an
overwhelming probability at a sampling rate much lower than
the classical Nyquist sampling rate [13]. The utilization of
CS enables accurate CSI acquisition with acceptable pilot
overhead. Conventional CS-based channel estimation schemes
usually assume prior knowledge of the channel sparsity level,
i.e., the number of non-zero elements of channel impulse
response (CIR). However, in practice, channel sparsity level
is usually unknown and difficult to be accurately estimated.
In addition, due to the physical propagation characteristics
of multiple antennas and close antenna spacing at the BS,
CIRs associated with different antennas inevitably share some
correlations [14], [15], which have not been considered by
the existing CS-based channel estimation schemes to further
reduce the pilot overhead1.

1We have proposed a block-ISD algorithm to solve this problem in our
previously published paper [16], which only briefly discussed the algorithm
within two pages. In this paper, we will discuss this problem in detail with
more analysis of the pilot design problem and the computational complexity of
block-ISD. We also provide more numerical results to verify the performance
of the proposed block-ISD algorithm.



In this paper, building upon the iterative support detection
(ISD) algorithm, we propose an improved block-ISD based
algorithm for downlink channel estimation in FDD massive
MIMO systems to reduce the pilot overhead. Specifically,
by considering the spatial correlations of MIMO channels
caused by the physical propagation characteristics of multiple
antennas and close antenna spacing at the BS, we generate
the block-sparse equivalent CIR with the preferred block
sparsity. Accordingly, we propose a block-ISD based algorithm
to significantly reduce pilot overhead required for accurate
channel estimation. Finally, we propose a pilot pattern and
theoretically show its capacity of achieving small maximal
mutual coherence (MMC), which ensures reliable channel es-
timation performance. Simulation results show that block-ISD
yields better channel estimation performance and significantly
reduces pilot overhead. Additionally, block-ISD requires no
prior knowledge of the channel sparsity level, and is thus more
practically appealing than conventional CS-based algorithms.

The remainder of this paper is organized as follows. The
system model of massive MIMO is introduced in section II.
Section III presents the downlink channel estimation based on
the proposed block-ISD algorithm. In Section IV, simulation
results are provided to illustrate the performance of block-ISD.
Finally, conclusions are drawn in Section V.

Notation: Lower-case and upper-case boldface letters denote
vectors and matrices, respectively; (·)T , (·)∗ and (·)H denote
the transpose, conjugate and conjugate transpose of a matrix,
respectively; diag{c} denotes the diagonal matrix with the
diagonal vector c. yΩ denotes the sub-vector consisting of the
elements with indexes from Ω. ∥ · ∥0 is the l0-norm denoting
the number of non-zero elements in a vector, and ∥ · ∥p is
the lp-norm. Ωc denotes the complementary set of Ω. Card(Γ)
denotes the number of elements in set Γ.

II. SYSTEM MODEL

We consider a massive MIMO system with Nt antennas at
the BS and K scheduled single-antenna users (Nt >> K)
with the commonly used orthogonal frequency division multi-
plexing (OFDM) modulation at the BS. Normally, frequency-
domain pilots are used for channel estimation in OFDM-based
systems [8]. At the user side, the received signal (including
data and pilots) in the frequency domain can be expressed as

y =

Nt∑
i=1

XiFLhi + n, (1)

where Xi = diag{xi} with xi ∈ CN×1 denotes the transmitted
signal (including data and pilots) from the ith transmit antenna,
where N is the OFDM symbol length. FL ∈ CN×L is a sub-
matrix consisting of the first L columns of the normalized
discrete fourier transform (DFT) matrix of size N × N .
hi = [hi(1),hi(2), · · · ,hi(L)]

T denotes the CIR between
the ith transmit antenna of the BS and the single receive
antenna of the user with the maximal channel length L.
n = [n1, · · · , nN ]T represents the noise vector consisting of
independent and identically distributed (i.i.d.) additive white
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Fig. 1. Generation of the block-sparse equivalent CIR.

complex Gaussian noise (AWGN) variables with zero mean
and unit variance.

In order to estimate CIR {hi}Nt
i=1, the received pilots yΩ

can be extracted from the received signal y as

yΩ =

Nt∑
i=1

Ci(FL)Ωhi + nΩ, (2)

where Ω is the index set of subcarriers assigned to pilots,
which can be randomly selected from the subcarrier set
[1, 2, · · · , N ]. (FL)Ω is the sub-matrix consisting of the rows
with indexes from Ω, Ci = diag{ci} with ci ∈ Cp×1 being
the pilot vector for the ith transmit antenna, and the number
of pilots is p. For simplicity, (2) can also be written as

yΩ = Ph+ nΩ, (3)

where P = [C1(FL)Ω,C2(FL)Ω, · · · ,CNt(FL)Ω] can be
regarded as the sensing matrix, h = [hT

1 ,h
T
2 , · · · ,hT

Nt
]T is the

aggregate CIR from Nt antennas to be estimated in massive
MIMO systems.

III. DOWNLINK CHANNEL ESTIMATION BASED ON
BLOCK-ISD

In this section, we firstly generate the block-sparse equi-
valent CIR by considering the correlations of CIRs associated
with different antennas. Then, we propose an improved block-
ISD algorithm for channel estimation to reduce the pilot
overhead. Finally, we further discuss the pilot design problem
which has a substantial impact on the channel estimation
performance.

A. Generation of the block-sparse equivalent CIR

The massive MIMO channel to be recovered is h =
[hT

1 ,h
T
2 , · · · ,hT

Nt
]T . Due to the physical propagation char-

acteristics of multiple antennas and close antenna spacing at
the BS, CIRs associated with different antennas have similar



path arrival times, and thus they share a common support [14],
i.e.,

Γh1 = Γh2 = · · · = ΓhNt
, (4)

where Γhi = {k : hi(k) ̸= 0} denotes the support of hi. This
special structure of h is illustrated in Fig. 1, where the colored
blocks denote the non-zero elements of CIRs.

Since the CIRs associated with different transmit antennas
share a common support, we can group the elements of hi

with the same indexes into non-zero blocks and zero blocks
as shown in Fig. 1 to generate the block-sparse equivalent
CIR g = [g1,g2, · · · ,gL]

T . More specifically, the relationship
between h and g can be expressed as

g((l − 1)Nt + nt) = h((nt − 1)L+ l), (5)

where l = 1, 2, · · · , L and nt = 1, 2, · · · , Nt. It is important
that if we equally divide g into L blocks with Nt elements in
each block, these Nt continuous elements in the lth block gl

are all zeros or non-zeros. Thus, the generated block-sparse
equivalent CIR g enjoys the preferred block sparsity. This
implies that we can treat the Nt continuous elements of the
support Γg of g as a whole and update them simultaneously.

Accordingly, similar to (5), we can obtain a new sensing
matrix Θ by rearranging the columns of P in (3) as

Θ(:, (l − 1)Nt + nt) = P(:, (nt − 1)L+ l). (6)

Therefore, the channel estimation problem (3) can be refor-
mulated as

yΩ = Θg + nΩ. (7)

This is an underdetermined problem with g of size NTL× 1
and yΩ of size p × 1, where p is usually much smaller than
NTL due to the large number of antennas and the limited pilot
overhead. Traditional channel estimation techniques like LS
and MMSE can not recover CSI with limited pilot overhead.
In what follows we propose a block-ISD algorithm to solve
this problem by fully exploiting the block sparsity inherent in
the generated block-sparse equivalent CIR.

B. Downlink channel estimation based on block-ISD

The pseudocode of block-ISD is in Algorithm 1. Note that
block-ISD updates the recovered signal g(s) in the sth iteration
through solving the truncated basic pursuit (BP) problem [17]
in step 4:

min
g(s)
∥g(s)

W (s)∥1 s.t. yΩ = Θg(s) + nΩ, (8)

where ∥g(s)

W (s)∥1 =
∑

w∈W (s) |g(s)(w)|. This problem can be
efficiently solved by calling a BP algorithm such as YALL1
[18]. Then, the support Γ(s)

g is also updated in the sth iteration
through the adjacent support detection in steps 5-9. In these
five steps, we firstly sort g(s) in an ascending order in step 5
to obtain v(s). Then we detect the support of v(s) based on
the ‘first significant jump’ rule [10] in step 6, which searches
the smallest i that satisfies:

|v(s)(i+ 1)| − |v(s)(i)| > |τs|, (9)

Algorithm 1 Block-ISD Algorithm
Input:

1) Measurements yΩ,
2) Sensing matrix Θ.

1: Initialization:
s = 0 and g : Γ

(0)
g = ∅.

2: while Card(Γ(s)
g ) < NTL− p do

3: W (s) = (Γ
(s)
g )c;

4: g(s) ← ming(s) ∥g(s)

W (s)∥1 s.t. yΩ = Θg(s) + nΩ;
5: v(s) = Sort(g(s));
6: i← min i s.t. |v(s)(i+ 1)| − |v(s)(i)| > |τ (s)|;
7: ϵ(s) = |v(s)(i)|;
8: Γ

(s)
v = {k s.t. |v(s)(k)| > ϵ(s)};

9: Γ
(s)
g = {(l − 1)Nt + 1 : 1 : lNT s.t. Card({(l −

1)Nt + 1 : 1 : lNT } ∩ Γ
(s)
v ) > Nt/2};

10: s = s+ 1.
11: end while
12: return ĝ = g(s)

Output:
Recovered block-sparse equivalent CIR ĝ.

where |v(s)(i)| denotes the absolute value of ith element of
v(s), and τ (s) = (LNT )

−1∥v(s)∥∞ [18]. The smallest i is the
index where the ‘first significant jump’ occurs in an ascending
ordered vector v(s). Next we set the threshold ϵ(s) = |v(s)(i)|
in step 7, then the support of v(s) can be updated based on
the threshold ϵ(s) in step 8 as

Γ(s)
v ) = {k s.t. |v(s)(k)| > ϵ(s)}. (10)

Finally, due to the block sparsity of g(s), the support of g(s)

can be updated in step 9 as

Γ(s)
g = {(l − 1)Nt + 1 : 1 : lNT s.t.

Card({(l − 1)Nt + 1 : 1 : lNT } ∩ Γ(s)
v ) > Nt/2}.

(11)

Note that the support Γ(s)
g is independent of Γ(s−1)

g in block-
ISD, which is essentially different from the classical greedy
algorithm orthogonal matching pursuit (OMP) [13]. In OMP,
only one element of Γ

(s)
g is updated in each iteration, and

once an element is added to Γ
(s)
g , this element will not be

removed in the following iterations. From this aspect, block-
ISD is similar to subspace pursuit (SP) [19] and compressive
sampling matching pursuit (CoSaMP) [13]. They update all
elements of the recovered signal in every iteration, whereby
the support detection not only selects desired elements but also
removes undesired elements. However, the support detection
of SP and CoSaMP is based on the signal sparsity level to
be known as a priori, while the support detection of block-
ISD is based on the sparsity-independent threshold ϵ(s). Thus,
block-ISD can recover the signal without prior knowledge of
the channel sparsity level.

Compared with the classical ISD algorithm, the key differ-
ence of block-ISD is the consideration of the block sparsity of
g(s) in step 9. For a certain non-zero block of g, continuous



Nt elements of this block are supposed to be non-zeros. Their
indexes are supposed to be included in Γ

(s)
g . However, some

indexes of the block may be detected incorrectly due to the
impact of noise. Nevertheless, we can determine whether this
block is a zero block or a non-zero block by comparing the
number of indexes included in Γ

(s)
g with Nt/2 (half of the

block length). Only when more than half of the indexes of
the block are included in Γ

(s)
g , then all Nt indexes of the

block will be added in Γ
(s)
g . This mechanism considering the

block sparsity is expected to increase the robustness of the
support detection and thus improve the channel estimation
performance as will be verified by simulation results in section
IV. Moreover, compared with ISD, block-ISD only adds some
comparison operations, and thus the overall complexity does
not increase much.

C. Pilot design based on mutual coherence properrty

Note that the sensing matrix P in (3) plays an important
role in the sparse signal recovery performance. There are
various results regarding what conditions P should satisfy to
guarantee a robust signal recovery. The widely used conditions
include the restricted isometry property (RIP) [19] and mutual
coherence property (MCP) [13]. In this paper we discuss the
sensing matrix based on MCP.

The maximal mutual coherence (MMC) of a matrix P ∈
Cp×LNT is defined as the largest normalized absolute inner
product between any two columns of P, i.e.,

µ(P) = max
1≤i ̸=j≤LNT

| < Pi,Pj > |
∥Pi∥2∥Pj∥2

. (12)

Let the signal h be K-sparse (i.e., the number of non-zero
elements in h is K), and y = Ph + n, where n is noise
vector consisting of i.i.d. AWGN variables with zero mean
and variance γ. Then, h can be recovered by

ĥ = min
h
∥h∥1 s.t. ∥y −Ph∥2 ≤ ϵ. (13)

Suppose that K ≤
1

µ(P)+1

4 and ϵ ≥ γ, then the signal recovery
error is bounded by [13]

∥ĥ− h∥2 ≤
γ√

1− µ(P)(4K − 1)
. (14)

It’s clear that a smaller MMC results in a better signal recovery
performance.

Accordingly, the MMC of the matrix P can be expressed
as the maximal absolute element of the Grammar matrix G =
P̃HP̃ except for the diagonal elements:

µ(P) = max
i ̸=j
|gij |, (15)

where P̃ denotes the column-normalized version of P, i.e.,
P̃(:, i) = P(:,i)

∥P(:,i)∥ .
As P = [C1(FL)Ω,C2(FL)Ω, · · · ,CNt(FL)Ω], the MMC

µ(P) is determined by the pilots ci for 1 ≤ i ≤ Nt. To
achieve a small MMC, we propose the following pilot pattern
where the elements of the pilot sequences ci have independent
random phases but a unit amplitude. Thus, the l2-norm of the

columns of P are constant
√
p, and thus the Grammar matrix

G can be written as

G =
1

p
PHP. (16)

Then, the MMC µ(P) of the sensing matrix P is

µ(P) =
1

p
max

i ̸=j or n1 ̸=n2

p∑
k=1

c∗i,kcj,ke
−j 2π

N mk(n1−n2), (17)

where 1 ≤ i, j ≤ Nt, 0 ≤ n1, n2 ≤ L − 1, ci,k denotes
the kth element of ci, and {mk}pk=1 is the set of subcarrier
indexes assigned to pilots. The conditions that i ̸= j or n1 ̸=
n2 ensures that the selected elements are not the diagonal
elements of G. To derive the expection of µ(P), we consider
three cases as below:

(a) If i = j and n1 ̸= n2, (17) can be simplified as

µ(P) =
1

p
max

p∑
k=1

e−j 2π
N mk(n1−n2). (18)

The expectation of µ(P) is zero because mk

N follows the i.i.d.
uniform distribution U [0, 1).

(b) If i ̸= j and n1 = n2, (17) can be simplified as

µ(P) =
1

p
max

p∑
k=1

c∗i,kcj,k =
1

p
max

p∑
k=1

ej2π(θj,k−θi,k).

(19)
The expectation of µ(P) is zero because θi,k and θj,k follows
the i.i.d. uniform distribution U [0, 1).

(c) If i ̸= j and n1 ̸= n2, (17) can be rewritten as

µ(P) =
1

p
max

i ̸=j and n1 ̸=n2

p∑
k=1

ej2π(
mk
N (n2−n1)+(θj,k−θi,k)).

(20)
Clearly, the expectation of µ(P) is zero because mk

N , θi,k and
θj,k follow the i.i.d. uniform distribution U [0, 1).

To sum up, the proposed pilot pattern results in a small
MMC, which ensures reliable channel estimation performance
of block-ISD.

IV. SIMULATION RESULTS

Simulations have been conducted to validate the perfor-
mance of block-ISD. We consider a Nt = 32 massive MIMO
system with the system bandwidth of 50 MHz and the OFDM
symbol length N = 4096. We adopt the ITU Vehicular B
channel model [8] with the maximal channel length L = 128.

Fig. 2 shows the normalized mean square error (NMSE)
performance comparison between block-ISD and the classical
ISD and BP algorithms, when the number of pilots is p = 640.
In addition, the performance of the exact least square (LS)
assuming the exact knowledge of the signal support is also
presented as the lower bound of NMSE. It can be observed that
block-ISD outperforms both classical ISD and BP algorithms.
Specifically, block-ISD achieves over 4 dB SNR gain than
ISD when the target NMSE of 10−1 is considered. The
performance gain is mainly attributed to the exploration of the
block sparsity of the block-sparse equivalent CIR. Note that
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block-ISD obviously outperforms ISD when SNR is not very
high. This is due to the fact that block-ISD is more capable of
correcting the support detection error caused by the additive
noise than ISD when SNR is not very high (e.g., SNR <
20 dB), which therefore enhances the support detection and
ultimately leads to a lower NMSE.

Fig. 3 illustrates the performance of the channel recon-
struction frequency against the number of pilots p ranging
from 300 to 900. The channel reconstruction frequency is
defined as the ratio between the times of reliable channel
estimation and the total times of simulation, where reliable
channel estimation refers to the case that the NMSE is smaller
than the NMSE threshold τ = 0.08 [18]. It is evident that
block-ISD significantly outperforms conventional ISD and BP
algorithms. The number of pilots required for reliable channel
estimation for block-ISD, ISD, and BP is 510, 585, and 840,
respectively. For conventional channel estimation techniques
such as LS and MMSE, the number of pilots should be as
large as NTL = 32 × 128 = 4096 to ensure (7) as an
overdetermined problem. That is to say, block-ISD achieves
a substantial reduction of (4096 − 510)/4096 = 87.5% pilot
overhead compared with these conventional channel estimation
techniques without considering the channel sparsity.

V. CONCLUSIONS

In this paper, we have proposed a block-ISD based algo-
rithm for downlink channel estimation with low pilot overhead
for FDD massive MIMO systems. It is found that by exploring
the block sparsity inherent in the block-sparse equivalent CIR,
which is generated by considering the spatial correlations of
CIRs sharing a common support, the proposed block-ISD
algorithm could improve the channel estimation performance
by over 4 dB than classical ISD and BP algorithms. In
addition, we have shown that block-ISD requires no prior
knowledge of the channel sparsity level, thereby making an
important step toward practical implementation. Simulation
results have demonstrated that block-ISD can achieve a re-
duction of 87.5% pilot overhead than conventional channel
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Fig. 3. The comparison of channel reconstruction frequency performance
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estimation techniques.
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