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 
Abstract— In this paper a model-based Bayesian filtering 

framework called the “marginalized particle-extended Kalman 
filter (MP-EKF) algorithm” is proposed for electrocardiogram 
(ECG) denoising. This algorithm does not have the extended 
Kalman filter (EKF) shortcoming in handling non-Gaussian non-
stationary situations because of its nonlinear framework. In 
addition, it has less computational complexity compared with 
particle filter. This filter improves ECG denoising performance by 
implementing marginalized particle filter framework while 
reducing its computational complexity using EKF framework. An 
automatic particle weighting strategy is also proposed here that 
controls the reliance of our framework to the acquired 
measurements. We evaluated the proposed filter on several normal 
ECGs selected from MIT-BIH normal sinus rhythm database. To 
do so, artificial white Gaussian and colored noises as well as non-
stationary real muscle artifact (MA) noise over a range of low SNRs 
from 10 to -5 dB were added to these normal ECG segments. The 
benchmark methods were the EKF and extended Kalman smoother 
(EKS) algorithms which are the first model-based Bayesian 
algorithms introduced in the field of ECG denoising. From SNR 
viewpoint, the experiments showed that in the presence of Gaussian 
white noise, the proposed framework outperforms the EKF and 
EKS algorithms in lower input SNRs where the measurements and 
state model are not reliable. Owing to its nonlinear framework and 
particle weighting strategy, the proposed algorithm attained better 
results at all input SNRs in non-Gaussian non-stationary situations 
(such as presence of pink noise, brown noise, and real muscle 
artifacts). In addition, the impact of the proposed filtering method 
on the distortion of diagnostic features of the ECG was investigated 
and compared with EKF/EKS methods using an ECG diagnostic 
distortion measure called the “Multi-Scale Entropy Based Weighted 
Distortion Measure” or MSEWPRD. The results revealed that our 
proposed algorithm had the lowest MSEPWRD for all noise types at 
low input SNRs. Therefore, the morphology and diagnostic 
information of ECG signals were much better conserved compared 
with EKF/EKS frameworks, especially in non-Gaussian non-
stationary situations.  

Index Terms— ECG denoising, extended Kalman filtering, 
model-based filtering, nonlinear Bayesian filtering, Rao-
blackwellized particle filtering.  
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I. INTRODUCTION 
 

lectrocardiogram (ECG) is widely popular among physicians 
because it contains helpful information for cardiac disease 
analysis and diagnosis. Due to presence of environmental 

and non-environmental interferences during ECG recording such 
as electromyographic (EMG) noise, noise originating from 
electrode misplacement, etc, ECG denoising remains a major 
concern for researchers. Non-model-based methods including 
Principal Component Analysis (PCA) [1], Independent 
Component Analysis (ICA) [2], [3], Neural Networks (NNs) [4], 
Wavelet Denoising (WD) [5]-[7], Ensemble Averaging (EA) [8] 
and Adaptive Filtering (AF) [9], [10] have been widely used to 
remove ECG contaminants.  

Some other researchers proposed to use model-based methods 
for ECG processing. McSharry et al. proposed a three state 
nonlinear dynamical model in Cartesian space for ECG synthesis 
[11]. Many researchers used the ECG Dynamical Model (EDM) 
proposed by McSharry et al. and Bayesian filtering approach, to 
solve the problem of ECG denoising and feature extraction. In 
[12], Sameni et al. converted the EDM to a simplified 2-state 
polar EDM in order to implement an extended Kalman filter 
(EKF) based algorithm (also known as EKF2) for denoising 
ECG signals. Sayadi et al. extended Sameni’s model by adding 
the characteristic parameters of polar EDM to state model and 
considered them as Auto Regressive (AR) states [13], [14]. 
Sayadi et al. used this modified model for ECG denoising and 
fiducial points extraction and stated that it exhibits better results 
compared with its predecessor [13], [14]. Also, in [15], the polar 
EDM was modified to represent a Gaussian wave-based state 
space model in which some states characterized certain segments 
of ECG wave, i.e. P, QRS, and T.  

In some works, the effects of applying particle filter (PF) for 
ECG signal processing were studied. Readers may refer to [16] 
for more information about particle filters. Lee et al. in [17] used 
a particle filter based framework along with a modified polar 
EDM in order to extract the atrial signal from ECG for detection 
of Atrial Flutter (AFL) and Atrial Tachycardia (AT). To 
overcome the computational complexity of PF, Lin et al. in [18] 
proposed to use a marginalized particle filter (MPF) for ECG 
denoising and  implemented the “triangular” model proposed by 
SchÖn et al. [19]. However using the “triangular” model, not 
only required a notable modification of the original 2-state polar 
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EDM, but also limited the choices of linear states. In other 
words, in this algorithm, some linear AR states had to be 
approximated using PF that would increase computational 
complexity. 

The nonlinear nature of ECG signal itself and the presence of 
non-Gaussian non-stationary noises such as muscle artifact (MA) 
noise restrain EKF-based frameworks to reach an optimal 
recursive solution. Moreover, in highly noise contaminated 
ECGs, the state model or the measurements are not reliable. 
These limitations motivate us to look for better solutions using 
other Bayesian based frameworks such as particle filters. 
However, we intend to benefit from both EKF and particle filter 
frameworks. In other words, we want to improve ECG denoising 
performance by implementing PF framework while reducing its 
computational complexity using EKF framework.  To do so, in 
this paper, a new Bayesian filtering framework is introduced 
which utilizes both marginalized particle filter and EKF 
frameworks. With minimal modification in the 2-state polar 
EDM [12] (adding a third state), the proposed framework can 
denoise highly noise contaminated ECG signals more efficiently. 
We also propose an automatic particle weighting strategy that 
balances the dependency of the framework to the obtained 
measurements. This strategy effectively aids the algorithm in 
estimation of the ECG signals at low input SNRs. The 
benchmark methods to evaluate our algorithm are the EKF and 
extended Kalman smoother (EKS) denoising algorithms which 
were first introduced in [12]. From SNR viewpoint, the 
experiments show that in the presence of Gaussian white noise, 
the proposed framework outperforms the other two algorithms at 
lower input SNRs. The simulations also indicate that it attains 
better results in non-Gaussian situations such as presence of pink 
noise, brown noise, and real muscle artifacts at all input SNRs. 
Another advantage of this framework is its implementing 
flexibility with other variants of EDM. In addition, the impact of 
the proposed filtering method on the distortion of diagnostic 
features of the ECG was studied and compared with  EKF/EKS 
methods for 4 different noise types at 4 low input SNRs. The 
results proved that the morphology and diagnostic information of 
ECG signals are much better conserved in comparison to the 
EKF/EKS frameworks. 

This paper is organized as follows. Section 2 provides an 
introduction to EDM and marginalized particle filter concept. 
The proposed algorithm is presented in Section 3. The 
experimental results and analyses are given in Section 4 and 
finally conclusions are drawn in the last Section. 

  
II. ECG DYNAMICAL MODEL AND RAO-BLACKWELLIZED 

PARTICLE FILTER 
In this section, the EDM and its variants for EKF based 

denoising frameworks are explained briefly. Then the 
marginalized particle filter concept is reviewed. 
A. ECG Dynamical Model and Extended Kalman Filter 

McSharry et al. in [11] proposed a  three dimensional state 
differential equation for ECG synthesis in Cartesian space. The 
model characterizes the ECG as summation of 5 Gaussian 

kernels corresponding to ECG feature segments i.e. P, Q, R, S 
and T waves. This model is as follows: 

   2
02, , , ,

ΔΔ exp .2
j

j j
j P Q R S T j

x x y
y y x
z a z zb
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In the above model dxx dt  (derivation of ݔ with respect to 
time), the same goes for y and z , 2 21z x y   , 

   Δ mod 2j j     , 1tan y
x      , 2

T
  (T is RR 

peak interval in time). , , j j ja b  , , , )( ,j P Q R S T  are the 
amplitude, angular width, and location of each Gaussian kernel, 
respectively. By changing these feature parameters, one can 
synthesize many types of ECG signals on a circle with radius ݎ = 1 and phase between 0 and 2π (or -π and π). In addition, 
Mcsharry et al. added the parameter ݖ଴ in order to model the 
baseline wander in the synthetic phase wrapped ECG. 

In [12], Sameni et al. converted this model to a compact 
discrete time state space polar form. This model had only two 
states as follows:     
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where ߜ is the sampling period,    Δ mod 2j k j      and 
 is a random Gaussian white noise which models the ߟ
uncertainty of the modified EDM. Other variables are similar to 
the namesake variables in (1). Sameni et al. used this model to 
construct an EKF based denoising framework and called it 
“EKF2” [12]. Sayadi et al. added the 15 feature parameters 

, , j j ja b  as AR states to the aforementioned polar model and 
used the same EKF based approach to denoise and compress 
ECG signals [13] and proposed a method to extract the fiducial 
points  in each ECG cycle [14]. They also proposed a Gaussian 
wave-based state space model in which some states correspond 
to certain segments of ECG wave, i.e. P, QRS and T. This 4-state 
model was used for premature ventricular contractions (PVC) 
identification [15]. 
B. Marginalized Particle Filter 

The basic idea in marginalized particle filter is to decrease the 
variances of state estimates by separating the linear states from 
nonlinear states in mixed linear/nonlinear state space models. 
This method is sometimes called Rao-Blackwellization [20]. In 
marginalized particle filter, it is assumed that the state vector ܠ௞ 
consists of a linear state vector ܠ௞௅  and a nonlinear state vector

NL
kx , i.e.

L
k

k NL
k

    
xx x . The linear states are estimated using 
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Kalman filter and the nonlinear states are estimated by standard 
particle filter. In [19], SchÖn et al. introduced three types of 
models, “diagonal model”, “triangular model”, and “general 
model”. These models are commonly used in mixed 
linear/nonlinear state estimation situations. The “general model” 
describes the state space model in the following way:  1

NL NL NL NL L NL NL
k k k k k k kf A G   x x x ω  (3.a) 

 1
L L NL L L L L
k k k k k k kf A G   x x x ω  (3.b) 

   .N L N L N L L
k k k k k kh C  y x x e  (3.c) 

In this model, NL
kf  and L

kf  are nonlinear transition functions of
NL
kx . NL

kA and L
kA are transition matrices which are conditionally 

linear with respect to NL
kx . NL

kh is a nonlinear measurement 
function of NL

kx and NL
kC is the measurement matrix that is 

conditionally linear with respect to ܠ௞ே௅ . The uncertainty is 
modeled by noise vector  ~ 0,

NL NL
k k

k k kL L
k k

GG N QG    
ωω ω   in which

,

,( )
NL NL L
k k

k NL L T L
k k

Q QQ Q Q      is the state noise covariance matrix and
( , ) { ( ) }NL L NL L T
k k kQ E ω ω . The measurement noise is also modeled 

by  ~ 0,k kN Re [19]. 
The “triangular model” is a special case of the “general model” 
where L NL

k kG G I  , { ( ) } 0NL L T
k kE ω ω and 0L

kf  , i.e. :   1
NL NL NL NL L NL
k k k k k kf A   x x x ω  (4.a) 

1
L L L L
k k k kA  x x ω  (4.b)   .NL N L N L L
k k k k k kh C  y x x e  (4.c) 

If (4.a) is rewritten in the following form:   1 .N L N L N L N L L N L
k k k k k kf A   ξ x x x ωk  (5) 

It can be deduced that although ξk is not an actual measurement 
of L

kx , it has an additional implicit information about L
kx . The 

equations (4.c) and (5) are uncorrelated and can be assumed as 
separate measurements. Based on this idea, the marginalized 
particle filter for “triangular model” has an additional second 
prediction step. The marginalized particle filter for “triangular 
model” is expressed in the following steps [19]: 
Step 1: For time-step ݇ = 0, with importance distribution  0|0 0|0NL

NLpx x and initialization mean 0x and covariance matrix 0P , 

initialize the particles    
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Step 3: normalize importance weights: 
   

 
1

ii kk N j
kj

ww w
   

Step 4: Resample particles if necessary. 
Step 5: For each particle ݅ = 1, … , ܰ, perform Kalman filter 
measurement update according to: 

        , , ,
| | 1 | | 1ˆ ˆ ˆL i L i L iNL NL
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where  ,

|ˆ L i
k kx and  

| 1
i

k kP  are the predicted mean vector and 
covariance matrix for the linear part of particle  i

kx at time-step  
݇, respectively.   
Step 6: predict new particles for time-step ݇ + 1 using 
importance distribution according to: 

    , ,
1| 1|~ | ,NL i NL iNL

k k k k k kp X Y x x  (8) 
Step 7: For each particle ݅ = 1, … , ܰ, perform Kalman filter 
prediction using: 
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where ܠො௞|௞
௅,(௜) and ௞ܲ|௞

(௜) are the estimated mean vector and 
covariance matrix for the linear part of  particle ܠ௞(௜) at time-step 
݇, respectively.   
Step 8: For each particle ݅ = 1, … , ܰ, perform second Kalman 
filter prediction using: 
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where a b   means: “replace the value of a with b”. The 
difference in the linear prediction step of marginalized particle 
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filter and that of Kalman filter can be understood by inspecting 
(9.b) and (9.c). SchÖn et al. claimed that in the “triangular 
model” and “general model” there is hidden information about

L
kx in NL

kx and proved that by using the information of predicted 
nonlinear parts of the particles  ,

1| , ,, 1( )NL i
k k i N  x , a better 

prediction of linear parts  ,
1|( , 1, ,ˆ )L i

k k i N  x can be obtained 
[19].  

III. MARGINALIZED PARTICLE EKF FOR ECG DENOISING 
In this section, our proposed method for ECG denoising is 

expressed in detail. First, the modifications in the marginalized 
particle filter structure are formulated. Then, the method to 
extract EDM parameters is explained, and finally a novel 
automatic strategy for particle weighting is expounded.  

A. Modification in Marginalized Particle Filter Formulation 
 

To overcome the drawbacks of PF and EKF, a method for 
denoising ECG using a novel combination of marginalized 
particle filter and EKF frameworks is proposed here. 

We rewrite (2) in the form of:    
   1
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k k kf zx . By looking at the 2-

state EDM in (11), it is realized that due to the nonlinear term ,L NL
k kg x ω , this model is not a “general model”, hence it is 

not a “triangular model” either. In other words, the nonlinear 
function  ,L NL

k kg x ω restricts the implementation of the 
aforementioned marginalized particle filter algorithm. 
Furthermore L NL

k kω ω . So, the equations (10.b), (10.d) and 
(10.e) cannot be used in step 8 of marginalized particle filter 
algorithm in the current form and some modifications seem to be 
necessary. 

First the 2-state polar EDM should be modified in a way that
L NL
k kω ω . Adding   (angular velocity) to the state model as 

an AR state will solve the problem. Of course this approach was 
previously proposed by Lin et al. in [18].With this simple but 
effective modification, a 3-state polar EDM is constructed:  

   
 

1
2

1 2 2, , , ,

1

mod 2
exp

.
2

 

k k k

j j j
k k k

j P Q R S T j j

k k

az zb b





     
   

  



 


  
        

  
 




  (12) 

 
In this  model,    1 ,  }{0 1

L NL NL NL NL
k k k k kA Q E    x ω ω T

 1 1 1 1 1,[ , ]   ,L T NL NL NL
k k k k k k k kz f z       x x x ,  

 , , , ,, , , , , ,T TNL L
k j j j kj P Q R S Ta b            ω ω

,  
 

2

2 2
, , , ,

Δ Δg , exp 2
j j jL NL

k k k
j P Q R S T j j

a
b b
  


     x ω  . 

 and  are added to the 3-state EDM  to model the 
uncertainties of the linear state equations. In this polar model, the 
R-peaks are fixed at zero phases. It should be mentioned that 
although the “mod” operator (in (12)) is not linear, the phase 
jumps of the mod operator occur during the inter-beat baseline 
segments of the ECG, which are close to zero and minimally 
affected by its nonlinear effects. Therefore in practice, 1k  can 
be considered as linear state variable. 
The only remaining problem is the nonlinear function ,L NL

k kg x ω . By considering (11) and (12), first (10.a) is 
rewritten in the following way: 

        

 
, , , ,
1| | 1| |

1|ˆg , .
N L i N L i N L i N L iN L

k k k k k k k k k k
L
k k

f 



   


ξ x x x x
x ω NL

k

 (13) 

By using EKF concept,  1|g ˆ ,L
k kx ωNL

k is linearly approximated 
near a desired reference point  | ,ˆ( )L NL NL

k k k kx ωω E . The 
(13) and (4.c) become uncorrelated as well. As a result, the 
second prediction step expressed in (10) becomes:        

 

1| 1| |

1|
1| |

1|

1|

 g ,
g , |
g ,,  

ˆ ˆ ˆ
ˆ ˆ ˆˆ
ˆ |

L L L
k k k k k k k k k

L
k k L L

k k k k kL
k k

L
k k

k

 








    
 
 

ξ x ω x x ω ω
x ω x xx
x ω ω ωω

NL NL NL
k k k

NL
k

NL
k NL NL

k kNL
k

 





 (14.a) 

      , ,
1| 1| |g ˆ   ˆ  ˆ ,   L i L i L

k k k k k k k kL   x x ξ ω NL
kx  (14.b) 

   
1| 1|

i i T
k k k k k k kP P L N L    (14.c) 

      1
|  TiL NL

k k k k k k kL A P N  x   (14.d) 
     | .T Ti N L

k k k k k k k kN P Q      (14.e) 
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We call this modified algorithm “marginalized particle-extended 
Kalman filter (MP-EKF) algorithm”. It is similar to the 8-step 
marginalized particle filter explained in section 2, except that in 
step 8 instead of using (10), (14) is applied.  

B. ECG Parameter Extraction and Observation Equations 
 
The parameter extraction procedure in this paper is similar to the 
approaches in [12]-[15]. First, the R-peaks of ECG cycles in 
signal are detected and assumed to be positioned at ߠ = 0. The 
ECG samples between two sequential R-peaks will have a phase 
between 0 and 2π (or -π and π). By estimating the mean and 
variance of each sample in the overlaid ECG cycles, a phase 
wrapped ECG mean waveform (ܩܥܧതതതതതത(ߠ)) and a phase wrapped 
ECG variance waveform (ߪா஼ீ(ߠ)) are built. In [12]-[15], an 
off-line optimization method based on nonlinear least-squares 
approach, proposed by Clifford in [21], was used to extract the 
ECG feature parameters using these two waveforms. The same 
approach was used here for estimating the optimal values for   , , , , , , ,T

j j ja b j P Q R S T  . The covariance matrices NL
kQ

and L
kQ are constructed by computing the mean and variance of 

the estimated parameters. 
The measurement model is constructed similar to the model 

proposed in [22]. By detecting the R-peaks and linearly phase 
assigning to the samples between two consecutive R-peaks, an 
extra observation is obtained. It is also possible to add a linear 
observation equation corresponding to the angular velocity. If we 
differentiate phase in each R-R peak period, an angular velocity 
observation is obtained. As the phase variation between –  and ߨ
is considered linear, ߨ  is assumed constant between each R-R 
peak period but it may be contaminated by noise. As a result, the 
measurement model is: 

    
1 0      0

.   0 1       0
Ω 0     0       1 

, , , , ,  

k k k
k k k
k k k

T
k k k k k k k

u
s z v

w
R E u v w u v w

 


                               


 (15) 

where  , ,Ω T
k k k ksy is the measurement vector and the 

noise vector   , ,  T
k k k ku v wv describes the measurement 

model’s uncertainty.    
C. Particle Weighting 
 

 
Since the only measurements from ECG signals are the noisy 
amplitudes, linearly assigned phases, and angular velocities, a 
particle weighting strategy in each step must be well-defined. If 
the particle weighting relies only on noisy ECG, the filtered 
ECG follows the noisy signal which is not desirable. To solve 
this problem, we propose to use a synthetic ECG signal 
 which is constructed using the feature parameters (௦௬௡௧௛ܩܥܧ)
extracted from ܩܥܧതതതതതത(ߠ). The length of this synthetic signal is 
exactly the same as the noisy ECG signal. The location of R-
peaks in ܥܧ ௦௬௡௧௛overlaps with the location of R-peaks in the 
noisy ECG signal and the samples between sequential R-peaks 
are linearly assigned with phases between 0 and 2ߨ. As shown in 
Fig. 1, ܩܥܧതതതതതത(ߠ) is calculated using phase wrapped ECG cycles. 
The feature parameters of ܩܥܧതതതതതത(ߠ) are then used to construct ܩܥܧ௦௬௡௧௛. The weighting strategy that we propose here, 
evaluates and weights the particles at each time-step based on 
their distance to the noisy measurements and ܩܥܧ௦௬௡௧௛. We used 
a statistical distance metric called the “Mahalanobis distance” as 
the closeness evaluation measure. The weighting strategy in each 
time-step for each particle

 
 

,
|
,

|

ˆ L i
k k

NL i
k k

    
x
x is as follows: 

1- The Mahalanobis distance between 
 
 
 

,
|
,

|
,

|

ˆ
ˆ
ˆ

L i
k k

NL i
k k

L i
k k

z




      
 and

k
k
k

s
     

is calculated (
k
k
k

s
     

is measurement vector at time step 

k) using:  
      

      
, , ,
| | |

, , ,1
| | |

( )       (  )  
( )       (

ˆ ˆˆ
ˆ ˆˆ  ) .

TL i N L i L i
m easur k k k k k k k k k

L i N L i L i
k k k k k k k k k k

d z s
R z s

  
  

     
      

 (16) 

The value of measurd  represents the closeness of the ith 
particle to the current noisy measurement. If this value is small, 
it suggests that the ith particle probably gives a good estimate of 
states and should get a higher weight, and vice versa. Although 
weighting the particles using measurd  seems quite reasonable in 
high input SNRs, relying on this value alone in noisy situations 
doesn’t guarantee proper state estimations. 

   
(a) (b) (c) 

Fig. 1 Synthetic ECG construction procedure; (a) noisy (MA noise) ECG signal with SNR=3 dB, (b) ECG mean ܩܥܧതതതതതത(ߠ), (c) synthetic ECG  ܩܥܧ௦௬௡௧௛. 
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2- The Mahalanobis distance between
 
 
 
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syn
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ecg k




     
is calculated using: 
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   

 (17) 

The value of  synthd  represents the closeness of the ith particle 
to the current sample in ܩܥܧ௦௬௡௧௛ (  synecg k ). If this value is 
small, it suggests that the ith particle probably gives a good 
estimate of states and should get a higher weight, and vice versa. 
Because ܩܥܧ௦௬௡௧௛ has a constant morphology, although particle 
weighting using synthd  alone is a good choice in low input 
SNRs, the changes in ECG morphology cannot be traced 
properly, especially in high input SNRs. 

3- The weight ݅݇ݓ for particle
 
 
 
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|

ˆ
ˆ
ˆ

L i
k k
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k k

L i
k k

z




      
is calculated: 

1
1 1 .i i

k k
synth measur

w w d d
     

 (18) 
With this strategy, the proposed filtering framework relies on 
both noisy ECG and synthetic ECG signals. This equation 
automatically involves the behaviors of both noisy and synthetic 
ECG signals in assigning particle weights. When the ECG signal 
is too noisy, this weighting scheme automatically enforces the 
synthetic ECG’s characteristics to balance the marginalized 
particle filter’s behavior. However, in a good SNR situation, this 
scheme forces the filter to not only rely on the synthetic ECG 
signal but also on the noisy ECG signal. 

IV. RESULTS AND DISCUSSION 
The proposed algorithm was implemented in Matlab on a 12-

core computer at 2 GHz with 12 GB RAM capable of parallel 
processing. To evaluate the performance of our algorithm, the 
MIT-BIH normal sinus rhythm database from PhysioBank [23] 
was used. 200 signal segments from different subjects of this 
database were selected (approximately 20 segments from each 
record). Each segment was an approximately 30 second signal 
and contained normal ECG cycles with no significant 
arrhythmias. 

The benchmark methods used in this study were the EKF and 
EKS algorithms that were firstly introduced in [12] and reported 
to outperform other techniques (e.g. Wavelet Transform) in the 
field of ECG denoising. Due to the fact that a 3-state polar EDM 

in the MP-EKF was used, the same modified 3-state model was 
embedded in the structure of the benchmark methods. Therefore, 
the proposed method was compared with EKF3 and EKS3. To 
compare methods properly, we used similar EDM feature 
parameters and covariance matrices in each simulation. 

The denoising performance of the proposed method was 
investigated in 11 different non-equidistant input SNRs ranging 
from 10 dB to -5 dB. SNRs 10, 8, 6, 4, 2, 1, 0, -1, -3, -4, -5 dB 
were chosen because our study was focused on low input SNRs 
where the model and the measurements are not trustworthy and 
the performances of the aforementioned filters were challenged 
veritably. Four different noise types, Gaussian white noise, pink 
noise, brown noise, and MA noise were chosen. The first three 
noises were generated according to the following spectral 
density: 
  1S f f   (19) 

where ܵ(݂) and ݂ are the noise spectral density function and  
frequency in Hz. The parameter ߚ is 0, 1 and 2 for Gaussian 
white noise, pink and brown noise, respectively. For the non-
stationary MA noise simulation, real muscle artifact from the 
MIT-BIH Noise Stress Test Database was used [24]. This noise 
was recorded at a sampling rate of 360 Hz and needed to be 
resampled to 128 Hz (sampling frequency of test signals). For 
quantitative comparison, the SNR improvement measure was 
used [13]:  

   
   
output input

2

2

imp dB SNR SNR

10log n oi

d oi

x i x i
x i x i

 
     


 (20) 

where  ݔ௢ ,  ௗ represent the original ECG signal, the noisyݔ ௡ andݔ
ECG signal and the denoised ECG signal, respectively.  

Particle filters and their variants are computationally 
demanding. Therefore, any performance improvement of PF 
over traditional Kalman filters should be studied from the cost 
and benefit viewpoints. In our simulations each test signal 
received a different random noise input in each SNR. The 
number of particles for MP-EKF was empirically chosen 200 
ensuing 70~80 seconds calculation time for each simulation 
which was less than 1 second for EKF and EKS. Although our 
algorithm is much slower (as expected), by looking at Fig. 2, we 
can see its predominance over EKF/EKS frameworks in non-
Gaussian non-stationary situations. Fig. 2 depicts the SNR 
improvement of the MP-EKF, EKF and EKS frameworks in the 
presence of Gaussian white noise, pink, brown and MA noise in 
different input SNRs. From Fig. 2(a) it is realized that the EKS 
framework achieved best results for input SNRs>1dB in the 
presence of white Gaussian noise. Also, it can be seen that MP-
EKF framework performed better than EKF3 for input 
SNRs<4dB. The outperformance of EKF3 and EKS3 algorithms 
over our algorithm in SNRs>4dB in Fig. 2(a) can be justified by 
realizing the fact that in higher input SNRs, these frameworks 
could trace signal well for two reasons: 1) the model and the 
measurements are trustworthy in higher input SNRs, 2) their 
structures allow them to optimally filter out signals in the 
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presence of white Gaussian noise. However, the proposed 
marginalized particle filter apparently needs more particles to 
reach their accuracy. Nevertheless, the MP-EKF framework 
outmatches them in lower input SNRs. Figs.  2(b), 2(c) and 2(d) 
demonstrate the performance comparison of the MP-EKF to the 
EKF and EKS frameworks in the presence of pink, brown and 
MA noises in different input SNRs, respectively. With further 
investigation, it can be realized that the slope of SNR 
improvement line for EKS and EKF is almost flat in the presence 
of non-Gaussian noises.  It can also be understood that the SNR 
improvement of EKF and EKS outputs decreases substantially as 
the additive noise becomes more non-stationary. However, this 
drop-off in the MP-EKF is the least. For example by looking at 
Figs. 2(a), 2(b) and 2(c) at input SNR -5 dB, it can be seen that 
the SNR improvement of MP-EKF decreases from 14.03 dB for 
white Gaussian noise to 7.3 dB for brown noise. However, the 
decrement for EKS is from 12.09 dB to 0.10 dB. These figures 
demonstrate the superiority of the proposed framework over 
EKF and EKS in non-Gaussian non-stationary situations. An 
interesting fact can be discovered by looking at Fig. 2(d). It can 

be noticed that the performance of the MP-EKF in the presence 
of non-stationary MA noise is much better than its performance 
in the case of brown noise. 

The reason of MP-EKF superiority lies within its nonlinear 
structure and particle weighting strategy. The assumption of 
ECG signal as a nonlinear state vector in MP-EKF helps to trace 
the ECG signals better. Additionally as explained in the previous 
section, our weighting strategy acts as leverage. When the input 
SNR is low, the MP-EKF relies on the behavior of synthetic 
ECG signal too, while in higher input SNRs; it involves the 
measurements to trace the signal correctly. In addition, this 
leveraging is done automatically and there is no need to know 
how noisy the signal is. If the effect of the input noise is known, 
we can desirably adjust (18).  For example if it is known that the 
input noise has a high power spectrum, by using (21), we can 
reduce the effect of noisy measurements by reducing the 
coefficient of measurd and instead increase the coefficient of

synthd  1 2( )   to impose the behavior of synthetic ECG on 
the particles:

                                                   (a)                                        (b) 

                                               (c)                                        (d) 
Fig. 2. The mean (top) and standard deviation (bottom) of the filter output SNR improvements versus different input SNRs (a) white Gaussian noise, (b) pink 

noise, (c) Brown noise, (d) MA noise. 
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1 21

  i i
k k

synth measur
w w d d

 

     

 (21) 
The aforementioned characteristics of MP-EKF exhibit their 

grandness in the presence of non-Gaussian and non-stationary 
noises. Fig. 3 represents an example of denoising in the presence 
of Gaussian noise at input SNR of 2 dB for an ECG episode of 
record “19140”. From Fig. 3, it can be seen that all methods have 
effectively denoised the distorted ECG signal. It is obvious 

  (a) (a) 

  (b) (b) 

  
(c) (c) 

  (d) (d) 

  (e) (e) 
Fig. 3. Typical filtering results for record “19140” in the presence of white 

Gaussian noise in SNR 2 dB. (a) Original, (b) Noisy, (c) MP-EKF, (d) EKF, 
(e) EKS. 

Fig. 4. Typical filtering results for record “19090” in the presence of MA 
noise in SNR 6dB. (a) Original, (b) Noisy, (c) MP-EKF, (d) EKF, (e) EKS. 
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Table I.  Performance evaluation of MP-EKF, EKF, and EKS frameworks in the presence of white Gaussian and pink noises 
from MSEPWRD viewpoint. 

 MSEPWRD (࢔ࢇࢋ࢓ ±  (ࢂ࢓) (ࡰࡿ
 Gaussian White Noise Pink Noise 

METHOD 0 dB -1 dB -3 dB -5dB 0 dB -1 dB -3 dB -5dB 
MP_EKF 1.284±0.225 1.329±0.224 1.434±0.231 1.552±0.242 1.322±0.204 1.387±0.202 1.550±0.209 1.755±0.228 

EKS 1.358±0.180 1.458±0.196 1.678±0.237 1.923±0.288 2.192±0.288 2.415±0.325 2.939±0.414 3.585±0.528 
EKF 1.677±0.183 1.824±0.200 2.158±0.242 2.552±0.297 2.395±0.310 2.65±0.351 3.251±0.451 3.994±0.576 

  
Table II.  Performance evaluation of MP-EKF, EKF, and EKS frameworks in the presence of brown noise and real muscle artifact from 

MSEPWRD viewpoint. 
 

 MSEPWRD (࢔ࢇࢋ࢓ ±  (ࢂ࢓) (ࡰࡿ
 Brown Noise Real Muscle Artifact 

METHOD 0 dB -1 dB -3 dB -5dB 0 dB -1 dB -3 dB -5dB 
MP_EKF 1.335±0.204 1.408±0.205 1.585±0.219 1.810±0.251 1.468±0.199 1.552±0.200 1.747±0.223 1.987±0.255 

EKS 2.231±0.299 2.460±0.337 3.001±0.431 3.672±0.552 2.933±0.455 3.247±0.514 3.992±0.656 4.918±0.836 
EKF 2.399±0.315 2.655±0.356 3.261±0.457 4.013±0.584 3.057±0.473 3.393±0.534 4.188±0.681 5.179±0.866 

 that the proposed filter has outperformed the EKF method. 
However because of back tracking algorithm utilized by EKS, its 
output provides the smoothest but not best result. By comparing 
filtered outputs carefully at Fig. 3 around time 0.6-0.75 sec 
(marked by red color), a baseline elevation can be noticed from 
EKF output that disfigures the ECG’s natural morphology.  
Although this elevation is reduced in EKS output, it’s still 
noticeable. This is because EKS uses only EKF estimates and if 
it is not provided with good estimates it cannot contribute a good 
result. For further illustration, an example of denoising in the 
presence of MA noise at input SNR of 6 dB for record “19090” 
is demonstrated in Fig. 4. In this figure, in addition to change in 
the R-peaks amplitudes, in some ECG cycles, the T-wave and P-
wave segments are corrupted. It is shown in this figure that the 
EKF and EKS outputs have baseline drifts which are reduced 
significantly in the MP-EKF due to its weighting strategy. In 
baseline drift situation, this strategy automatically stabilizes the 
particles’ behaviors by involving the characteristics of synthetic 
ECG (which has no baseline drifts), consequently reducing the 
baseline drift. In addition, the R-peak amplitudes in MP-EKF are 
nearer to their original amplitudes in comparison to the EKF and 
EKS outputs. Furthermore, around time interval  17-17.5 sec 
(marked by red color), the P-wave and T-wave segments are 
completely removed in the EKF and EKS outputs, respectively, 
while both are successfully recovered using MP-EKF owing to 
its nonlinear structure. 

Because ECG is a clinically important physiological signal 
and the morphology of this signal contains vital information 
about cardiac activity, a very significant aspect of ECG signal 
processing method is make sure that the diagnostic signal 
information is well-preserved after filtering. Use of SNR 
improvement as a quantitative measure does not guarantee that 
the proposed filtering method outperforms EKF/EKS 
frameworks in preserving the diagnostic signal information. 
Therefore, we evaluated the  performances of these frameworks 
in terms of an ECG diagnostic distortion measure called the 
“Multi-Scale Entropy Based Weighted Distortion Measure” or 
MSEWPRD [25]. This metric is a weighted percentage root-
mean-square difference (WPRD) between the sub-band wavelet 

coefficients of the original and filtered signals with weights 
equal to the multi-scale entropies of the corresponding sub-
bands. With this measure, a correct representation of filtered 
signal distortion at all sub-bands can be achieved [25]. To 
calculate this metric, both signals must be decomposed using 
wavelet filters up to L levels. The number of levels depends on 
the nature of the signal and the sampling frequency. In ECG, in 
addition to sharp segments (QRS complexes), there are slow 
waves like P and T waves. A good ECG decomposition includes 
decent representation of QRS complexes in detail coefficients 
and P&T waves in approximation coefficients. Therefore, we 
implemented Daubechies 9/7 bi-orthogonal wavelet filters [26] 
for ECG decomposition and found L = 4 to be a good choice for 
sampling frequency of 128 Hz [27].   

 Tables I and II represent the MP-EKF and EKF/EKS 
performance evaluations (from MSEWPRD viewpoint) for 4 
different noise types and at 4 different input SNRs. We chose 
low input SNRs: 0, -1, -3, -5 dB to investigate the 
aforementioned diagnostic distortion metric in the case of highly 
noise contaminated ECG signals. The results in Tables I and II 
were calculated by computing the MSEWPRDs of 200 filtered 
ECG segments chosen from MIT-BIH normal sinus rhythm 
database. By looking at these results, we can see that the 
MSEPWRD for each method is higher in lower input SNRs. In 
addition, as the additive noise becomes more non-stationary, this 
metric increases significantly for EKF/EKS frameworks but with 
much lower rate for MP-EKF. For example, by moving from 
white Gaussian noise toward muscle artifact, the mean 
MSEWPRD at SNR of -5 dB increases from 2.158 to 5.179 for 
EKF framework. However, this increment is from 1.552 to 1.987 
for the proposed MP-EKF. It is also noticeable that although the 
EKS structure outperformed the EKF framework, our proposed 
algorithm had the lowest MSEPWRD in all noise types and at all 
selected input SNRs. This indicates that the MP-EKF preserves 
the morphology and diagnostic information of the ECG signals 
much better than EKF/EKS frameworks, especially in non-
Gaussian non-stationary situations.  
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V. CONCLUSION 
The EKF/EKS frameworks consider EDM as a nonlinear state 

space model and try to recursively estimate the states by 
linearizing the EDM. This approach has shortcomings in 
denoising ECG signals in low input SNRs and in non-Gaussian 
and non-stationary situations. To resolve this problem, in this 
paper a nonlinear Bayesian filtering framework is presented. 
Unlike EKF or particle filter, our framework treats EDM as a 
mixed linear/nonlinear state space model and uses the properties 
of both particle filter and extended Kalman filter to efficiently 
approximate the posterior density of ECG and the linear states. 
Moreover, the proposed scheme has less computational 
complexity (in comparison to particle filter approach) and attains 
better estimations of the linear states in EDM. The experiments 
showed that in the presence of Gaussian white noise, our 
proposed framework outperforms the EKF and EKS algorithms 
in lower input SNRs. They also indicated that it exhibits better 
results in non-Gaussian non-stationary situations such as 
presence of pink noise, brown noise and real muscle artifacts in 
all input SNRs. In addition, the impact of the proposed filtering 
method on the distortion of diagnostic features of the ECG was 
investigated and compared with  EKF/EKS methods for 4 
different noise types at 4 low input SNRs using MSEWPRD 
metric. The results revealed that our proposed algorithm has the 
lowest MSEPWRD in all noise types and at low input SNRs and 
it can conserve the morphology and diagnostic information of 
the ECG signals much better than EKF/EKS frameworks, 
especially in non-Gaussian non-stationary situations.  
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