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Abstract—Conventional sharpened cascaded-integrator-comb
(CIC) filters use generic sharpening polynomials to improve
the frequency response. In contrast to the existing literature,
an optimization framework is described for the selection of
CIC sharpening polynomial and an efficient implementation
through Saramäki-Ritoniemi decimation structure is suggested
for its realization. The optimized sharpening polynomials are
application specific and designed to meet given passband ripple
and stopband attenuation specifications. Numerical results show
that the optimized structure can be used without a secondary
droop compensation filter, which is typically required for the
conventional systems.

Index Terms—Cascaded-Integrator-Comb (CIC) filters, sam-
pling rate conversion, decimation, linear programming.

I. INTRODUCTION

Cascaded-integrator-comb (CIC) filters are utilized in many
applications that require efficient sampling rate conversion.
An important application area for CIC filters is the software
defined radio where the receiver can tune into a number of
different bands with possibly different bandwidths, [1]. The
conventional CIC filters, shown in the top part of Figure 1,
do not have any multipliers making this structure particularly
attractive for the FPGA implementations1. There are two major
drawbacks of the conventional filters which are the large pass-
band droop and limited stopband attenuation. These problems
can be corrected to a certain degree by either modifying the
conventional structure, [2], [3], [4], [5], [6] or implementing
a secondary filter, after the conventional one, to compensate
its undesired characteristics, [7], [8].

In certain applications, such as Σ/∆ converters, the filter
input data can be significantly oversampled. In these applica-
tions, the CIC based decimators are utilized in the front stages
of the processing chain to reduce the processing rate. For
example, a CIC based decimator (say for 8-fold sampling rate
reduction) is followed by a secondary decimator (say for 5-fold
sampling rate reduction) is utilized to achieve large decimation
ratios (which is 40-fold reduction). For such systems, the low
pass filter of the secondary decimation block can also act as a
compensation unit correcting the undesired characteristics of
the front-end CIC stage, [4], [8], [9].

1It is possible to move (1/M)L multiplication to the decimator output and
combine with the subsequent processing stages.

In this paper, we present an optimization framework for CIC
filter sharpening and suggest the Saramäki-Ritoniemi struc-
ture for its efficient implementation. The Saramäki-Ritoniemi
structure has been publicized in 1997, [2], [3]. In this paper,
different from the original work of Saramäki-Ritoniemi, we
approach the problem from the direction of filter sharpening.
It should be noted that the application of the sharpening
filters to the CIC decimation structure has been proposed
by Kwentus et al. also in 1997, [4]. The current paper has
been initiated with the goal of optimizing the ad-hoc filters
suggested by Kwentus et al. and later it has been understood
that the optimized structure is identical to the one suggested by
Saramäki-Ritoniemi. Hence the current paper also establishes
a connection between two lines of research for the CIC filter
design.

The Saramäki-Ritoniemi structure shown in Figure 1 has
a set of free parameters denoted with {αk, βk, γk}, k =
{0, . . . , L}. Here L is the number of cascaded CIC blocks, as
in the conventional scheme. The βk and γk parameters indicate
the delays appearing before and after the decimation-by-M
unit and αk parameters are the linear combination coefficients
of the delayed sections. It can be noted that when αk = 0
for all k values, the Saramäki-Ritoniemi structure reduces to
the conventional one given in the same figure. Furthermore
by setting all αk values to zero, except α2 = 3, α3 = −2
and adjusting the delays; the resultant filter is identical to the
sharpened CIC filters proposed by Kwentus et al. [4].

In this paper, we present a framework for the optimization
of the free parameters appearing in the Saramäki-Ritoniemi
structure. The optimization process, different from [2], is
not generic but specially designed for the optimization of
decimation filters. Some optional optimization features that
can be useful for high rate applications is suggested and ready-
to-use MATLAB code is provided. The numerical results show
that the frequency response of the optimized structure meets
the specifications well enough that the compensation filter
following the decimator can be eliminated with the optimized
structure.

II. SARAMÄKI-RITONIEMI STRUCTURE

The single stage non-recursive CIC filter calculates the
average of M consecutive samples:

HCIC(z) =
1
M

(
1 + z−1 + . . . + z−(M−1)

)
=

1
M

1− z−M

1− z−1
(1)
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Fig. 1. Conventional CIC Structure and Saramäki-Ritoniemi Structure
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Fig. 2. CIC filters and passband/stopband definitions

Figure 2 shows the frequency response of the CIC decimation
filter for the downsampling rate of 5, (M = 5). On the same
figure, the desired pass/stop bands are also indicated. If the
input signal is known to be oversampled by a factor of M , the
rate after decimation becomes the Nyquist rate. For this case,
the desired passband is [−π/M, π/M ], as shown in Figure 2.

In many applications, a CIC based decimator is followed
by a secondary decimation stage. Hence the output of the
front-end CIC decimator is not at the Nyquist rate. For
such applications, the passband for the CIC filter extends
to π/(rM), where r is a scalar greater than 1 showing the
residual oversampling rate at the front-end decimation output.

It can be noted from Figure 2 that the stopband attenuation
of the CIC structure is only 12 dB. To increase the stopband
attenuation, the CIC filters are used in cascade. Each cascade
brings an additional 12 dB of attenuation. It should be remem-
bered that while each cascade brings an additional 12 dB of
attenuation to the stopband frequencies, the passband droop
also increases with the number of cascades. (The passband
drop increases by 3.5 dB per cascade for the given example.)
If the desired passband is narrower, that is the residual

oversampling rate at the output (r) is much larger than 1;
the passband droop may not pose a significant problem.

Kwentus et al. have suggested to use the filter sharpening
technique of Kaiser and Hamming [10], to partially alleviate
these problems, [4]. Filter sharpening method improves both
the passband and stopband characteristics of a prototype linear
phase filter, [10]. In our case, the prototype filter is the even
symmetric version of the CIC filter. This filter can be expressed
as follows:

HCIC(ejω) = e−jω M−1
2

sin(ωM/2)
M sin(ω/2)︸ ︷︷ ︸

P (ejω)

. (2)

The first term on the right hand side of (2) is due to the group-
delay of the filter. The second term, P (ejω), is the prototype
filter and it is a real valued function of ω that corresponds to
the discrete-time Fourier transform (DTFT) of the symmetric
version of the CIC filter.

Filter sharpening procedure constructs a new zero-phase
filter from the given prototype. This procedure can be ex-
plained as follows: Let g(x) be a polynomial in x defined
from [−1, 1] to [−1, 1]. The sharpened frequency response is
simply P̂ (ejw) = g(P (ejω)). In [10], a number of suitable
g(x) functions, for example g(x) = 3x2 − 2x3, have been
suggested. These polynomials attain the value of 0 at x = 0
and the value of 1 at x = 1. Furthermore, a number of
derivatives at x = {0, 1} is equal to zero. The number of
derivatives reducing to zero indicates the smoothness or the
flatness of the function around x = {0, 1}. It is expected that
a reasonably good prototype has an improved response both
in passband (P (ejω) ≈ 1) and stopband (P (ejω) ≈ 0) after
the application of sharpening.

It should be noted the sharpening polynomials in the litera-
ture are selected through the mentioned flatness considerations.
Hence, these polynomials are not optimized for a particular
problem. In this study, we suggest to optimize g(x) polynomial
to meet the passband and stopband specifications of the CIC
based decimation systems.

For illustration purposes, let’s assume that the sharpening
polynomial g(x) is a Lth order polynomial:

g(x) = α0 + α1x + α2x
2 + . . . + αLxL. (3)

Then the sharpened filter has the frequency response of

P̂ (ejw) =
L∑

k=0

αk

[
P (ejω)

]k
=

L∑

k=0

αk

[
sin(ωM/2)
M sin(ω/2)

]k

. (4)

It should be noted that the sharpened filter, P̂ (ejw), is also
a zero-phase filter and its frequency response is a linear
combination of the prototype filter frequency response and its
powers.

We would like to present a concrete example for the
impulse response construction of the sharpened filter. For
the decimation rate of M = 5, the inverse DTFT of the
prototype response, i.e. F−1{P (ejω)}, is a 5-point sequence
whose symmetry center is the 3rd sample. The second power
of the prototype response, i.e. F−1{P 2(ejω)}, is a 9 point
sequence whose symmetry center is the 5th sample. Similarly,
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Fig. 3. A direct implementation for the sharpened CIC filters

F−1{P 3(ejω)} is of length 13 and has the symmetry center at
the 7th sample. The sharpened filter is a linear combination of
these sequences. It is important to note that before the linear
combination of these sequences, a number of zeros should be
appended to the front of each sequence so that all sequences
have a common symmetry center. For the presented example,
the longest sequence in the combination is of length 13, then
4 zeros should be appended to the front of 5-point sequence
to align their symmetry centers. The delays appearing in the
vertical branches of proposed system shown in Figure 1 is to
align the symmetry centers of each section.

Figure 3 shows a direct implementation of the described
structure. This implementation is not efficient, but it is con-
ceptually straightforward. The direct implementation can be
transformed to the efficient structure, which is the Saramäki-
Ritoniemi structure, shown in Figure 1 in a few steps: First,
move the M-fold decimation block into the summations and
relocate it on the vertical branches. Then interchange the delay
operators and the decimation operators. Move the factor of
1− z−M (and its powers) to the vertically oriented branches,
interchange this block with decimator. (After the interchange,
1−z−M is converted to 1−z−1.) Finally, collect the common
1 − z−1 term (and its powers) lying on the summation
branches together and move the common term to the output
of the summation. Once these steps are completed, we get the
efficient implementation shown in Figure 1.

III. OPTIMAL SHARPENING POLYNOMIAL

In this section, we present a linear programming based
optimization framework for the selection of the sharpening
polynomial. The goal is to minimize the worst case passband
and stopband ripples. In the original work of Kaiser and Ham-
ming, the sharpening polynomials are designed to improve the
response of generic filters, [10]. Here, we would like to present
an optimization framework specific for the CIC filters.

The linear program can be written as follows:

minimize
x

fTx

subject to Ax ≤ b and Aeqx = beq.
(5)

Below, we present the inequality and equality constraints
appearing in the problem and also the vector f producing the
cost.

Constraint on Maximum Passband Ripple: Let ωpk

represent a frequency value in the desired passband. The

magnitude deviation of the sharpened filter from the desired
response can be written as |g(P (ejωpk )) − 1|. Our goal is
to minimize the deviation through a proper selection of αk

coefficients, which are given in (3).
We assume that |g(P (ejωpk )) − 1| ≤ εp or −εp ≤

g(P (ejωpk )) − 1 ≤ εp for some unknown εp. Here εp is
the passband ripple value that can be attained. The goal is
to reduce εp for a set of dense ωpk

values in the passband, i.e.
to minimize the worst case ripple.

The inequalities can be summarized as follows:

[ −1 P (ejωpk ) P (ejωpk )2 . . . P (ejωpk )L ] x ≤ 1
[ −1 −P (ejωpk ) −P (ejωpk )2 . . . −P (ejωpk )L ] x ≤ −1 (6)

Here x is the vector of unknowns:

x = [εp α0 α1 . . . αL ]T (7)

This concludes the derivation of the inequality constraints for
ωpk

, a single sample of passband frequencies. Similar in-
equalities should be reproduced for a dense set of frequencies
covering the passband.

Constraint on Maximum Stopband Ripple: Let ωsk

represent a frequency value lying in the desired stopband. The
stopband ripple for the frequency of ωsk

can be bounded as
|g(P (ejωsk ))| ≤ εs. The goal is to reduce the worst case εs for
the stopband frequencies. To that aim, we introduce a weight
W which is defined as the ratio of maximum passband ripple
to the maximum stop band ripple, εs = εp/W .

The filter designer sets W to trade-off between the amount
of passband and stopband ripples. It can be noted that a higher
W value decreases the stopband ripple at the expense of
increased passband ripple.

The inequalities can be summarized as follows:

[ −1/W P (ejωsk ) P (ejωsk )2 . . . P (ejωsk )L ] x ≤ 0
[ −1/W −P (ejωsk ) −P (ejωsk )2 . . . −P (ejωsk )L ] x ≤ 0 (8)

The inequalities should be reproduced for a dense set of
frequencies covering the desired stopband.

Equality Constraint for DC frequency: It is desirable
to attain the frequency response of 1 at the DC frequency.
This condition is satisfied if g(P (ejω)) ↓ω=0= 1. Since
P (ejw)↓ω=0= 1 for the prototype filter, the constraint reduces
to g(1) = 1 and can be expressed as follows:

[0 1 1 . . . 1 ]x = 1 (9)

Equality Constraint for Image Nulling: In some sampling
rate conversion systems, the input contains the images of the



4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0
M

ag
ni

tu
de

 (
dB

)

Frequency/π (rad/sample)

StopbandPassband

Frequency Response

 

 

4th Order

6th Order
8th Order

Prototype

4th order 
(quantized)

(a) Frequency Response

0 0.1 0.2

-10

-8

-6

-4

-2

0

2

M
ag

ni
tu

de
 (

dB
)

Frequency/π (rad/sample)

Frequency Response of Passband

 

 

4th Order

6th Order
8th Order

Prototype

4th order 
(quantized)

(b) Frequency Response of Passband

Fig. 4. Frequency Response of 5-fold Decimation Filter whose target output rate is the Nyquist Rate.

desired spectrum centered around the multiples of 2π/M ,
where M is the upsampling ratio. For such systems, it is
desirable to have nulls centered at the integer multiples of
2π/M . This can be achieved with g(P (ejω)) ↓ω=2πk/M= 0
for k 6= 0. Since that P (ejw) ↓ω=2πk/M= 0 (k 6= 0) for the
prototype filter, the constraint reduces to g(0) = 0 (or α0 = 0)
and can be expressed as follows:

[0 1 0 . . . 0 ]x = 0 (10)

The Cost Function: The goal is to minimize εp via a proper
selection of the sharpening polynomial coefficients. The cost
function, fTx, can be written as fT = [1 0 0 . . . 0] where x
is defined in (7).

The inequality constraints of the linear program can be
written by concatenating the set of inequalities given in (6)
and (8) for dense sets of passband and stopband frequencies.
The equality constraints are optional for the lowpass filter
design problem. If desired, they can be easily accommodated
by concatenating the equations given in (9) and (10).

Once the problem is expressed in the standard form of linear
programming, the solution can be found efficiently through a
general purpose solver. Readers can retrieve a ready-to-use
MATLAB function from [11].

IV. NUMERICAL RESULTS

To illustrate the described structure, we present two
examples. In both examples, the cascade of two CIC
filters is used as the prototype filter, i.e. P (ejω) =
[sin(ωM/2)/(M sin(ω/2))]2. This choice is due to insuffi-
cient stopband attenuation of the single stage CIC structure.

Example 1: 5-fold Decimation to the Nyquist Rate
Figure 5 shows the suggested CIC based low-pass filtering
structure for 5-fold decimation. The sharpening polynomial
specific for this problem is g(x) = 10x4 − 23x3 + 15x2 − x.
It should be noted that the coefficients of the sharpening
polynomial are all integers making the system especially
attractive for the FPGA implementations.

The pink line with the label ‘4th order (quantized)’ in
Figure 4 shows the frequency response of the suggested

x[n]

55

10

++ ++y[n]

55

2−− z

2−z

55

115 −z

3−z

55

23−

4−z

++

Fig. 5. Proposed 5-fold Decimation Filter. (Decimation output is at Nyquist
rate)

system. The other curves show the response of the prototype
system and the response of the filters having 4th, 6th, 8th
order optimal sharpening polynomials similarly found through
the described linear programming procedure. The sharpening
polynomial with integer coefficients (quantized coefficients) is
formed by rounding the coefficients of the optimal 4th order
polynomial to the nearest integers.

As shown in Figure 4, the desired passband is the interval
of [−π/5, π/5]. For this system, the target rate after the
decimation is the Nyquist rate. For the desired bandwidth, the
passband droop of the prototype filter is around 8 dB. The
described 4th order implementation with integer valued linear
combination coefficients has a maximum passband ripple of
1 dB and has a stopband attenuation of at least 34 dB. These
values can be acceptable in many applications.

It should be noted that the sharpening filters of higher orders
have further improved droop and stopband characteristics. For
the 6th and 8th order sharpening polynomials, the maximum
ripple reduces to 0.5 dB and 0.2 dB respectively and the
worst case stopband attenuation increases to 44 dB and 50
dB respectively.

As a last note, we would like to remind that the designs
shown in Figure 4 are specific for the given passband and
stopband pair. Furthermore, the weighting factor W , trading
the passband ripple with the stopband attenuation, is chosen
as 7 in this example. By changing W , sharpening polynomials
having reduced droop at the expense of worse stopband atten-
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Fig. 6. Frequency Response of 5-fold Decimation Filter whose target output rate is two times the Nyquist Rate.

uation (or vice versa) can be found. We believe that the weight
W can be instrumental to achieve difficult specifications.

Example 2: 5-fold Decimation to Double Nyquist Rate
In many applications, there is a sequence of decimation blocks
progressively reducing the sampling rate. The CIC based
decimators appear in the front end of the chain due to their
low implementation complexity.

In this example, we examine a system with a target deci-
mation rate of 10. 10-fold decimation is achieved through a
cascade of 5-fold and 2-fold decimations. We assume that the
first stage of the system is a CIC based structure, that is the
target output rate of the CIC structure is the double Nyquist
rate. It should be noted that in many practical systems, the
decimations at the subsequent stages can be much higher, [4].

Figure 6 shows the frequency response of 5-fold decimation
system whose target rate is the double Nyquist rate. Different
from the earlier example, the passband of this system is
[−π/10, π/10].

As in the first example, the results for the sharpening
polynomials having the orders of 4, 6 and 8 (designed for
the given passband and stopband pair and W = 7) and
the quantized version of 4th order polynomial are presented.
The quantized 4th order polynomial for this case is g(x) =
−2.5x4 +2.25x3 +1.25x2. Figure 6 shows that the quantized
design has the passband ripple of 0.25 dB and the stopband
attenuation of 45 dB. These values are very much welcomed
in many applications.

V. CONCLUSION

The main goal of this paper is to underline the utilization of
the application specific sharpening filters in CIC decimation
filter design in contrast to generic sharpening polynomials.
It has been observed that the optimally sharpened filters can
produce high performance decimators virtually eliminating the
need of a secondary compensation filter in certain cases, [12],
[9].

The suggested optimally sharpened CIC filters can be ef-
ficiently implemented through the Saramäki-Ritoniemi struc-
ture, [2], [3]. As noted before, the present paper has been

initiated to provide an optimization framework for the sharp-
ening of the CIC filters. The connection between the Saramäki-
Ritoniemi structure has been understood during the initial
review cycle of this paper. Hence the current paper can also
serve as a link between two respectable lines of research for
the CIC filter design.
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MATLAB CODES:
The following is the MATLAB function prepared for the optimal sharpening of CIC filters. The usage of this function is

illustrated in the script provided. The script generates Figure 4 of this document.
MATLAB codes can also be downloaded from the author’s webpage, http://www.eee.metu.edu.tr/∼ccandan/pub.htm

1 function [coef,delays,hdes] = CICsharpen(downby,order,weight,passb,stopb)
2 %function [coef,delays,hdes] = CICsharpen(downby,order,weight,passb,stopb)
3 %
4 % Generates optimal sharpening coefficients for CIC decimation filters
5 % (See explanations)
6 %
7 %
8 % INPUTS:
9 % -------

10 % downby : decimation ratio
11 % order : order of the sharpening polynomial (order = #coef + 1)
12 % weight : stopband / passband ripple weighting factor
13 % passb : passband definition, [0 1/4] -> DC to pi/4
14 % stopb : stopband definition, [1/2 1] -> pi/2 to pi
15 %
16 % if passb or stopb is not provided
17 % passb=[0 1/downby]; stopb=[1/downby*1.5 1]
18 %
19 % OUTPUTS:
20 % --------
21 % coef : coefficients of sharpening polynomial
22 % delays : delays required for the implementation (see explanations)
23 % hdes : filter
24 %
25 % Note : You can run fvtool(hdes) at the workplace to examine the design.
26 %
27 % Cagatay Candan
28 % METU, Ankara, TURKEY
29 % Oct. 2011,
30 %
31

32 if exist('passb')==0, passb=[0 1/downby]; end;
33 if exist('stopb')==0, stopb=[1/downby*1.5 1]; end;
34

35 NFFT=128;
36 hp=conv(ones(1,downby),ones(1,downby))/downbyˆ2;
37 h=[hp(downby:end) zeros(1,NFFT-2*downby+1) hp(1:downby-1)];
38 hf=real(fft(h)); hf=hf(:);
39

40 if passb(2)>1/downby, disp('Caution: Passband exceeds 1/downby'); end;
41 passband=(floor(passb(1)*NFFT/2):floor(passb(2)*NFFT/2)) + 1;
42 stopband=(floor(stopb(1)*NFFT/2):floor(stopb(2)*NFFT/2)) + 1;
43

44 % CONSTRUCT PASSBAND CONSTRAINTS
45 thisone=hf(passband);
46 dum1=[ones(size(thisone)) repmat(thisone,[1 order])];
47 dum2=ones(size(thisone))*[0:order];
48 Amat=dum1.ˆdum2;
49 Amatp1=-[ones(size(thisone)) Amat];
50 bp1=-1*ones(size(thisone));
51

52 Amatp2=[-ones(size(thisone)) Amat];
53 bp2=ones(size(thisone));
54

55 Amatp=[Amatp1; Amatp2];
56 bp=[bp1; bp2];
57

58 %CONSTRUCT STOPBAND CONSTRAINTS
59 thisone=hf(stopband);
60 dum1=[ones(size(thisone)) repmat(thisone,[1 order])];
61 dum2=ones(size(thisone))*[0:order];
62 Amat=dum1.ˆdum2;
63 Amats1=-[ones(size(thisone)) Amat];
64 bs1=zeros(size(thisone));
65

66 Amats2=[-ones(size(thisone)) Amat];
67 bs2=zeros(size(thisone));
68

69 Amats=[Amats1; Amats2];
70 Amats(:,1)=Amats(:,1)/weight;
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71 bs=[bs1; bs2];
72

73 %CONSTRUCT EQUALITY CONSTRAINT AT DC FREQ.
74 Aeq=[0 ones(1,order+1)];beq=1;
75

76 %CONSTRUCT EQUALITY CONSTRAINT FOR IMAGE NULLING
77 AeqImg=[0 1 zeros(1,order)];beqImg=0; %OPTIONAL
78 Aeq=[Aeq; AeqImg]; beq=[beq; beqImg]; %OPTIONAL
79

80 %SOLVE FOR OPTIMAL COEF.
81 f=[1 zeros(1,order+1)];
82 dum=linprog(f,[Amatp; Amats],[bp;bs],Aeq,beq);
83 coef=dum(2:end);
84

85 %GENERATE THE FILTER
86 fillength=(order-1)*(length(hp)-1)+length(hp);
87 center=(fillength-1)/2+1;
88 hdes=zeros(1,fillength);
89 hdes(center) = hdes(center) + coef(1);
90

91 hdum=1;
92 delays=zeros(order+1,1);delays(1)=center;
93 for dum=1:order,
94 hdum = conv(hdum,hp);
95 q=length(hdum); qhalf=(q-1)/2;
96 index = center-qhalf:center+qhalf;
97 hdes(index)=hdes(index) + coef(dum+1)*hdum;
98 delays(dum+1)=center-qhalf-1;
99 end;

100

101 %fvtool(hdes)
102 if nargout==0,
103 figure,
104 plotfft(hdes,'db',12); grid on; hold on;
105 plot(passb,[0 0],'-r');
106 plot(stopb,[-10 -10],'-r');
107

108

109 disp('-Power-/-Coef-/-Delay-/')
110 disp([(0:order)' coef delays])
111

112 hdesf=fft(hdes,NFFT);
113 hfnew=polyval(flipud(coef),hf);dumind=linspace(0,2,NFFT);
114 figure,
115 plot(dumind,max(-100,20*log10(abs([hf hfnew hdesf(:)]))));
116 end;
117

118 %fvtool(hdes)
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1 %
2 %THIS SCRIPT GENERATES FIGURE 4
3 %
4 downby=5;
5

6 NFFT=128*4;
7 hp=conv(ones(1,downby),ones(1,downby))/downbyˆ2;
8 h=[hp(downby:end) zeros(1,NFFT-2*downby+1) hp(1:downby-1)];
9 hf=real(fft(h)); hf=hf(:);

10

11 hclas=polyval([-2 3 0 0],hf);
12 [a,b,hdes2]=CICsharpen(downby,4,7);hdes2f=fft(hdes2(:),NFFT);
13 [a,b,hdes3]=CICsharpen(downby,6,7);hdes3f=fft(hdes3(:),NFFT);
14 [a,b,hdes4]=CICsharpen(downby,8,7);hdes4f=fft(hdes4(:),NFFT);
15 close all;
16

17 plotfft(hdes2,'dB',12,'linewidth',2); grid on; hold all;
18 plotfft(hdes3,'dB',12,'linewidth',2);
19 plotfft(hdes4,'dB',12,'linewidth',2);
20

21 %prototype
22 hpf=polyval([1 0],hf);
23 plot(linspace(-1,1,NFFT),max(-70,fftshift(20*log10(abs(hpf)))),'--','linewidth',2);
24

25 %quantized 4th order
26 hq4f=polyval([10 -23 15 -1 0],hf);
27 plot(linspace(-1,1,NFFT),fftshift(20*log10(abs(hq4f))),'--','linewidth',2);
28

29

30 dum = axis;
31 axis([0 1 dum(3) 5])
32 xtickstr=[0:0.1:1];
33 set(gca,'xtick',xtickstr);set(gca,'XtickLabelMode','auto');
34

35 plot([0 1/downby],[0 0],'--k','linewidth',2);
36 plot([1/downby 1/downby],[dum(3) 0],'--k','linewidth',2);
37 plot([1/downby*1.5 1/downby*1.5],[dum(3) -10],'--k','linewidth',2);
38 plot([1/downby*1.5 1],[-10 -10],'--k','linewidth',2);
39 plot([1 1],[dum(3) -10],'--k','linewidth',2);
40

41 text(0.55, -14, 'Stopband','fontsize',11,'fontweight','bold');
42 text(0.02, -14, 'Passband','fontsize',11,'fontweight','bold');
43 legend('4th Order','6th Order','8th Order','Location','SouthWest');
44

45 h=xlabel('Frequency/\pi (rad/sample)');set(h,'fontsize',11);
46 h=ylabel('Magnitude (dB)');set(h,'fontsize',11);
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1 function out=plotfft(input,format,times_p,varargin)
2 %plotfft(input,format,times_p,plotstring)
3 %
4 %Plots magnitude spectrum of input
5 %input: vector, output=fft(input,N);
6 %times: scalar, (default value = 1)
7 %
8 %Number of fft points taken: length(input)*times
9 %

10 %Oct.2005
11 %CC
12 %
13

14 warning off;
15

16 if exist('times_p')==0, times_p=1; end;
17 if length(times_p)==0, times_p=1; end;
18

19 N = length(input)*times_p;
20

21 out = fft(input,N);
22 if nargin≥2 & length(format)==2 & all(lower(format)=='db')==1
23 out = max(-120,db(abs(out),'voltage'));
24 plot(linspace(-pi,pi,N)/pi,fftshift(out),varargin{:});
25 ylabel('Magnitude Spectrum (dB)');
26 else
27 plot(linspace(-pi,pi,N)/pi,fftshift(abs(out)),varargin{:});
28 ylabel('Magnitude Spectrum (linear)');
29 end;
30

31 xlabel('Discrete frequency (rad/sample)');
32

33 q=axis; q(1:2)=[-pi pi]/pi;
34 axis(q);
35 set(gca,'Xtick',[-pi -pi*3/4 -pi/2 -pi/4 0 pi/4 pi/2 3/4*pi pi]/pi)
36 set(gca,'Xticklabel',{'-pi';'-3/4pi';'-pi/2';'-pi/4'; '0'; 'pi/4'; 'pi/2'; '3/4pi'; 'pi'})
37

38 if nargout==0, out=[]; end;


