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Abstract— The paper presents a new method for design of
power system stabilizer (PSS) based on relay-free sliding mode
control technique. The control objective is to enhance the
stability and to improve the dynamic response of the single
machine infinite bus (SMIB) system. We apply this relay-free
sliding mode controller to design power system stabilizer for
demonstrating the availability of the proposed approach.

Index Terms— Relay-free sliding mode control, power system
stabilizer, fast output sampling, robust control.

I. INTRODUCTION

In recent years, considerable efforts have been made to
enhance the dynamic stability (or small signal stability) [1]
of power systems. Modern voltage regulators and excitation
systems with fast response and high ceiling voltages can
be used to improve the transient stability by increasing the
synchronizing torque of a machine. However, they may have
a negative impact on the damping of rotor swings. In order
to reduce this undesirable effect and improve the system
dynamic performance, it is useful to introduce supplementary
signals to increase the damping.

Over the past four decades, various control methods have
been proposed for PSS design to improve overall system
performance. Among these, conventional PSS of the lead-
lag compensation type [2] have been adopted by most utility
companies because of their simple structure, flexibility and
ease of implementation. However, the performance of these
stabilizers can be considerably degraded with the changes in
the operating condition during normal operation. Since power
systems are highly nonlinear, conventional fixed-parameter
PSSs cannot cope with great changes in the operating
conditions. There are two main approaches to stabilizing a
power system over a wide range of operating conditions,
namely adaptive control and robust control [3]. Adaptive
control is based on the idea of continuously updating the
controller parameters according to recent measurements.
However, adaptive controllers have generally poor perfor-
mance during the learning phase, unless they are properly
initialized. Successful operating of adaptive controllers re-
quires the measurements to satisfy strict persistent excitation
conditions. Otherwise the adjustment of the controller’s pa-
rameters fails. Robust control provides an effective approach
to dealing with uncertainties introduced by variations of
operating conditions.
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Among many techniques available in the control literature,
H∞ and variable structure have received considerable atten-
tion in the design of PSSs. The H∞ approach is applied
by Chen [3] to PSS design for a single machine infinite
bus system. The basic idea is to carry out a search over
all possible operating points to obtain a frequency bound on
the system transfer function. Then a controller is designed
so that the worst-case frequency response of the closed loop
system lies within prespecified frequency bounds. It is to
be noted that the H∞ design requires an exhaustive search
and results in a high order controller. On the other hand the
variable structure control is designed to drive the system to a
sliding surface on which the error decays to zero [4]. Perfect
performance is achieved even if parameter uncertainties are
present. However, such performance is obtained at the cost
of high control activities (chattering)

One of the major disadvantages of a switching function
based discrete time sliding mode control is the chattering
problem. This is due to the presence of relay in the control.
The control effort cannot be made arbitrarily small even
when the system state is very close to the sliding surface.
A solution to this problem may be a control law that allows
reduction in the control signal strength as the system ap-
proaches the sliding surface while at the same time retaining
the finite time convergence property [5].

In this paper PSS design using relay-free discrete time
SMC technique is proposed. In this technique, the control
is so tuned that the sliding surface is exactly reached. Thus,
the chattering problem is eliminated. Simulations results for
single machine infinite bus (SMIB) system are presented to
show the effectiveness of the proposed control strategies in
damping the oscillation modes.

The paper is organized as follows. Section II presents
basics power system modeling. Section III presents the
review on power system stabilizer. Section IV Multirate
output feedback sliding mode control technique. Section
V presents the proposed relay-free sliding mode control
method; the same is used for PSS design of SMIB system as
discussed in section VI as case study. Conclusions are drawn
in Section VII. The controller is validated using non-linear
model simulation.

II. POWER SYSTEM MODELING

1) Small Signal Analysis of Single Machine Infinite Bus
System: Consider a single machine infinite bus system shown
in Fig. 1. For simplicity, we assume a synchronous machine
represented by model 1.0 (neglecting damper windings both
in d and q axes). Also, the armature resistance of the machine
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Fig. 1. Single line diagram of Single Machine Infinite Bus System
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Fig. 2. Block diagram of Excitation System

is neglected. AVR and exciter is represented by a first order
transfer function as shown in Fig. 2 [1]

The rotor mechanical equations are

dδ

dt
= ωB (Sm − Smo) , (1)

2H
dSm

dt
= −DSm + Tm − Te, (2)

Te =
[
E

′
qiq −

(
xq − x

′
d

)
idiq

]
. (3)

These equations are used to build up SIMULINK model for
analysis.

The block diagram excitation system is shown in Fig. 2.
2) System Representation: The state space representation

is concerned not only with input and output properties, but
also with its complete internal behavior. In contrast, the trans-
fer function representation specifies only the input/output
behavior. If state space representation of a system is known,
the transfer function is uniquely defined. In this sense, the
state space representation is a more complete description of
the system.

The overall block diagram of the system, consisting of the
representation of the rotor swing equations, flux decay and
excitation system is shown in Fig. 3. Here the damping term
(D) in the swing equations is neglected for convenience.
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Fig. 3. Overall block diagram of Single Machine Infinite Bus
System

A. State Space Model of Single Machine Infinite Bus System

From the block diagram shown in Fig. 3, the following
state space equations for the entire system can be derived
using Heffron-Phillip’s model: [1], [6]

ẋ = [A]x + [B] (ΔVref + ΔVs) (4)

y = Cx

where

x =
[

ΔSm Δδ ΔEfd ΔE
′
q

]T
(5)

[A] =

⎡
⎢⎢⎢⎣

0 ωB 0 0
−K1

2H − D
2H −K2

2H 0
− K4

T
′
do

0 − 1
T

′
do

K3

1
T

′
do

−KEK5
TE

0 −KEK6
TE

− 1
TE

⎤
⎥⎥⎥⎦ (6)

[B]T =
[

0 0 0 KE

TE

]
(7)

C =
[

1 0 0 0
]

(8)

Also, Sm is machine slip, δ is machine shaft angular
displacement in degrees, Efd is generator field voltage in
pu and E′

q is voltage proportional to field flux linkages of
machine in p.u. Similarly, y denotes the output equation of
the machine.

The mechanical damping term D, is included in the swing
equation. The eigenvalues of the matrix should lie in LHP
in the ’s’ plane for the system to be stable. The effect of
various parameters (for example KE & TE) can be examined
from eigenvalue analysis. The elements of matrix [A] are
dependent on the operating condition.

III. POWER SYSTEM STABILIZER

It is well established that fast acting exciters with high
gain AVR can contribute to oscillatory instability in power
systems. This type of instability is characterized by low
frequency (0.2 to 3.0 Hz) oscillations which can persist (or
even grow in magnitude) for no apparent reasons [1]. The
major factors that contribute the instability are

(a) loading of the generator or tie line
(b) power transfer capability of transmission lines
(c) power factor of the generator(leading power factor

operation is more problematic than lagging power
factor operation)

(d) AVR gain.
A cost efficient and satisfactory solution to the problem

of oscillatory instability is to provide damping for generator
rotor oscillations. This is conveniently done by providing
Power System Stabilizers (PSS) which are supplementary
controllers in the excitation systems. The signal Vs in Fig. 2
is the output from PSS which has input signal derived from
rotor speed, frequency, electrical power or a combination
of these variables. The objective of designing PSS is to
provide additional damping torque without affecting the
synchronizing torque at critical frequencies [6].
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A. Basic Concept

The basic function of a PSS is to extend the angular
stability of a power system. This is done by providing sup-
plemental damping to the oscillation of synchronous machine
rotors through the generator excitation. This damping is
provided by a electric torque applied to the rotor that is in
phase with the speed variations. The oscillations of concern
typically occur in the frequency range of 0.2 to 3.0 Hz, and
insufficient damping of these oscillations may limit ability
to transmit power.

In practical system, the various modes (of oscillation) can
be grouped into three broad categories [7].

A. Intra-plant modes (generator G1 swings against G2)
in which only the generators within a power plant
participate. The oscillation frequencies are generally
high in the range of 1.5 to 3.0 Hz.

B. Local modes in which several generators (G1 and G2

swing together against G3 ) in an area participate. The
frequencies of oscillations are in the range of 0.8 to
1.8 Hz.

C. Inter area modes in which generators (generators G1

to G3 swing against G4 ) over an extensive area
participate. The oscillation frequencies are low and in
the range of 0.2 to 0.5 Hz.

The above categorization can be illustrated with the help
of a system consisting of two areas connected by weak AC
tie as shown in Fig. 4. Area 2 is represented by a single
generator G4. The area 1 contains 3 generators G1, G2 and
G3.

Fig. 4. A sample power system

The distinction between local modes and inter area modes
applies mainly for those systems which can be divided
into distinct areas which are separated by long distances.
For systems in which the generating stations are distributed
uniformly over a geographic area, it would be difficult to
distinguish between local and inter area modes from physical
considerations. However, a common observation is that the
inter area modes have the lowest frequency and participation
from most of the generators in the system spread over a wide
geographic area [1].

The PSS are designed mainly to stabilize local and inter
area modes.

1) Performance objectives: The main objective of pro-
viding PSS is to increase the power transfer in the network,
which would otherwise be limited by oscillatory instability.
The PSS also must function properly when system is sub-
jected to large disturbances.

PSS can extend power transfer stability limits which are
characterized by lightly damped or spontaneously growing
oscillations in the 0.2 to 3.0 Hz frequency range. This is
accomplished via excitation control to contribute damping
to the system modes of oscillations. Consequently, it is the
stabilizer’s ability to enhance damping under the least stable
conditions is important. Additional damping is primarily re-
quired under the conditions of weak transmission and heavy
load which may occur, while attempting to transmit power
over long transmission lines from the remote generating
plants or relatively weak tie between systems. Contingencies,
such as line outage, often precipitate such conditions. Hence
system normally have adequate damping can often benefit
from stabilizers during such conditions.

B. Classical Stabilizer implementation procedure

1) Control and Tuning: The conflicting requirements of
local and inter-area mode damping and stability under both
small signal and transient conditions have led to many
different approaches for the control and tuning of PSSs.
Methods investigated for the control and tuning include
state-space/frequency domain techniques, residue compensa-
tion, phase compensation/root locus of a lead-lag controller,
desensitization of a robust controller, pole-placement for
a PID-type controller, sparsity techniques for a lead-lag
controller and a strict linearization technique for a linear
quadratic controller. The diversity of the approaches can be
accounted for by the difficulty of satisfying the conflicting
design goals, and each method having its own advantages
and disadvantages. This is the crux of the problem of low
frequency oscillation damping by the application of PSSs.

Implementation of a PSS implies adjustment of its fre-
quency characteristic and gain to produce the desired damp-
ing of the system oscillations in the frequency range of 0.2
to 3.0 Hz. The transfer function of a generic PSS having
washout circuit, dynamic compensator and torsional filter
may be expressed as

Gp(s) = Ks
Tws (1 + sT1) (1 + sT3)

(1 + Tws) (1 + sT2) (1 + sT4)
Gf (s),(9)

where Ks represents stabilizer gain and Gf (s) represents
combined transfer function of torsional filter and input signal
transducer.

Gf (s) =
ω2

n

s2 + 2ζωns + ω2
n

. (10)

The stabilizer frequency characteristic is adjusted by varying
the time constant Tw, T1, T2, T3 and T4. It will be noted that
the stabilizer transfer function includes the effect of both the
input signal transducer and filtering required to attenuate the
stabilizer gain at turbine-generator shaft torsional frequen-
cies. These effects, dictated by other considerations, must
be considered in addition to the “plant”. The torsional filter
in the PSS is essentially a band rejection filter to attenuate
the first torsional modes frequency. The maximum possible
change in damping (ζ) of any torsional mode is less than
some fraction of the inherent torsional damping. The phase
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lag of the filter in the frequency (ωn) range of 1 to 3 Hz is
minimized. This filter may not be needed in case torsional
modes are well damped or if other signals are used. The
output of PSS must be limited to prevent the PSS acting to
counter the action of AVR.

The block diagram of the PSS used in industry is shown in
Fig. 5. It consists of a washout circuit, dynamic compensator,
torsional filter and limiter.

  sTw

1+sTw

1+sT 1
1+sT 2

1+sT 3
1+sT 4

Gain                     Washout                         Lead/Lag                                         Limiter

VsInput Ks

Fig. 5. Structure of PSS

Since the PSS must produce a component of electrical
torque in phase with the speed deviation, phase lead blocks
circuits are used to compensate for the lag (hence, lead-lag)
between the PSS output and the control action, the electrical
torque. The number of lead-lag blocks needed depends on
the particular system and the tuning of the PSS. The PSS
gain KS is an important factor as the damping provided by
the PSS increases in proportion to an increase in the gain
up to a certain critical gain value, after which the damping
begins to decrease. All of the variables of the PSS must be
determined for each type of generator separately because of
the dependence on the machine parameters.

To determine the time constants of a lead-lag block, we
need to find out the plant transfer function GEP (s) for each
generator. The plant transfer function can be obtained from
the relation,

GEP (s) =
ΔTe

ΔVs

∣∣∣∣
Δω=0.

(11)

where,
Te = Electrical torque
Vs = Output voltage of PSS
ω = Speed of the generator.
Δω = 0 can be achieved by selecting very high value of
inertia of the generator for which one wants to design PSS.
Using this transfer function, the frequency response can be
obtained over a range of frequencies. The time constants of
the lead/lag block can be selected such that they provide a
phase lead for the input signal in the range of frequencies
that are of interest (0.2 Hz to 3 Hz). Based on the above
procedure, PSSs are designed for the power system [1].

The design of conventional PSS based on a trial an
error procedure condition is inadequate, inefficient and time
consuming. Since power systems are nonlinear and their
dynamic characteristics change with time and operating con-
ditions, it is important to take into consideration the changes
in the dynamic characteristics of the system when designing
the PSS. One way of achieving this is to consider multiple
operating conditions of the power system when designing
the PSS.

IV. MULTIRATE OUTPUT FEEDBACK SLIDING MODE

CONTROL TECHNIQUE

In the following, multirate output feedback technique and
multirate output to state relationship are briefly reviewed.

A. Multirate output feedback technique

In this technique an output feedback gain is obtained to
realize a discrete state feedback gain by multi-rate observa-
tions of the output signal. The control signal is held constant
during each sampling interval τ [8].

Consider the m-input, p-output, nth order continuous time
LTI system

ẋ = Ax + Bu, (12)

y = Cx.

Where x ∈ Rn, u ∈ R, y ∈ R and the matrices A, B and
C are of appropriate dimensions.

Let the system given by Eqn. (12) be sampled at a
sampling interval of τ sec be represented as,

x(k + 1) = Φτx(k) + Γτu(k), (13)

y(k) = Cx(k). (14)

Let the control input u be applied with a sampling interval
of τ sec and the system output is sampled with a faster sam-
pling period of Δ = τ/N sec., where N is an integer greater
than or equal to the observability index ν of the system. Let
the system sampled at the Δ interval be represented using
the triplet (Φ, Γ, C). It is assumed, without loss of generality
that the pair (Φτ , Γτ ) is controllable and the pair (Φ, C) is
observable.

u(k) u(k−1)

τ/Ν

Controller

Unit Delay

τ
System []

State

Computation

Output Stack

y(t) y
k

Fig. 6. Illustration of Multirate Output Feedback based Control Philosophy

Using the fact that u is unchanged in the interval τ ≤ t <
(k + 1)τ , the τ system state dynamics may be constructed
from the Δ system dynamics. Further, if the past N multirate-
sampled system outputs are represented as

yk =

⎡
⎢⎢⎣

y(kτ − τ)
y(kτ − τ + Δ)
.
y(kτ − Δ)

⎤
⎥⎥⎦ ,
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and the notation k is used to represent kτ , for brevity,
then the multirate output sampled system dynamics can be
represented as in the following manner.

x(k + 1) = Φτx(k) + Γτu(k) (15)

yk+1 = C0x(k) + D0u(k) (16)

where,

C0 =

⎡
⎢⎢⎢⎢⎣

C
CΦ
.
.
CΦN−1

⎤
⎥⎥⎥⎥⎦ , D0 =

⎡
⎢⎢⎢⎢⎣

0
CΓ
.
.

C
∑N−2

j=0 ΦjΓ

⎤
⎥⎥⎥⎥⎦ .

B. Multirate Output to State Relationship

The state x(k) can be expressed in terms of system outputs
yk+1 and control input u(k) using Eqn. (16) as [9]

x(k) = (CT
0 C0)−1CT

0 (yk+1 − D0u(k)) (17)

Remark 1: Since the value of N is chosen to be greater
than the observability index of the system, C0 would be a
pN × n matrix of rank n. Hence,

(
CT

0 C0

)
would also be a

matrix of rank n. Moreover, it would be a n×n matrix, and
hence would be invertible.

Substituting the value of x(k) from Eqn. (17) in Eqn. (15),
expression for x(k + 1) can be derived as

x(k + 1) = Lyyk+1 + Luu(k),

where

Ly = Φτ (CT
0 C0)−1CT

0 ,

Lu = Γτ − Φτ (CT
0 C0)−1CT

0 D0,

or equivalently, the state x(k) can be expressed using the past
multirate output samples yk and the immediate past control
input u(k − 1) as

x(k) = Lyyk + Luu(k − 1). (18)

Thus, using the relation given by Eqn. (18), any control of
the form u(k) = fu(x(k)) can be realized using past input
and output samples as u(k) = fu(Lyyk + Luu(k − 1)).

An illustration of this multirate control philosophy is given
in Fig. 6

V. RELAY-FREE SLIDING MODE CONTROL

In this technique, the control structure is changed so as
to deactivate the relay when system is close to the sliding
surface [5].

Consider the m-input, p-output, n-th order discrete-time
system representation, sampled at a sampling interval of
τ sec.

x(k + 1) = Φτx(k) + Γτu(k), (19)

y(k) = Cx(k).

The adaptive sliding mode control as given by Utkin et.
al., [10] is

u(k) =

{
ueq(k) when‖ueq(k)‖ ≤ u0

u0
ueq(k)

‖ueq(k)‖ when‖ueq(k)‖ > u0
(20)

where,

ueq(k) = − (
cT Γτ

)−1 (
s(k) +

(
cT Φτ − cT

)
x(k)

)
(21)

and the bound on the control signal, u0 satisfies the inequality

u0 >
∥∥∥(

cT Γτ

)−1
∥∥∥ ‖ (

cT Φτ − cT
)
x(k)‖ (22)

The equivalent control given by Eqn. 21 is based on states
of the system. But all states of the power system may not
be available for measurement. Hence, the control law can
be computed using output information by representing the
system state in terms of output as discussed in Section IV-B
and given by Eqn. 18.

ueq(k) = Fyyk + Fuu(k − 1) (23)

where

Fy = − (
cT Γτ

)−1 (
cT Φτ

)
Ly,

Fu = − (
cT Γτ

)−1 (
cT Φτ

)
Lu.

This control law given by Eqn. (23) is used to design relay-
free sliding mode control technique based PSS as discussed
below.

VI. CASE STUDY: PSS DESIGN FOR SINGLE MACHINE

INFINITE BUS (SMIB) SYSTEM

A. Linearization of power system

The nonlinear differential equations governing the be-
havior power system can be linearized about a particular
operating point to obtain a linear model which represents
the small signal oscillatory response of a power system. A
SIMULINK based block diagram including all the nonlinear
blocks can also be used to generate the linear state space
model of the system is obtained. This linear model is then
discretized with the sampling time τ = 0.05 sec.

The following parameters are used for simulation of the
single machine infinite bus system model [1]:

H = 5, T
′
do = 6 sec., D = 0.0, KE = 100, TE = 0.02 sec.,

xe = 0.6 p.u.

B. Classical power system stabilizer design for a power
system

The classical power system stabilizer (PSS) is designed as
discussed in section III-B.

The transfer function for classical PSS used in this analysis
is

CPSS = 9
(

10s

1 + 10s

) (
1 + 0.0643s

1 + 0.0321s

)
(24)
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1) Design of PSS using Relay-free sliding mode control
technique for Single Machine Infinite Bus (SMIB) system:
The single machine infinite bus power system data is consid-
ered for designing relay-free sliding mode control technique
based power system stabilizer. The single line diagram of the
system is shown in Fig. 1.

As discussed in the section II, the SISO linearized model
of SMIB system at nominal operating condition is obtained,
which is represented by Eqn. (4) and the discrete time
representation of the same is given by Eqn. (19).

The relay-free sliding mode control given by Eqn. (23) is
used for PSS design for SMIB and is given as,

ueq(k) = Fyyk + Fuu(k − 1).

where the numerical values of Fy and Fu are as given below.

Fy = 103 × [
1.5144 −5.4028 6.1664 −2.2604

]
,

Fu = −1.8974,

Also, bound on the control is given as

u0 = 0.1

2) Simulation with Non-linear model: The slip of the
machine is taken as output. Using this output signal a
relay-free sliding mode control as discussed in section V
is designed.

Simulation results for SMIB system for nominal operating
condition, with relay-free (adaptive sliding) mode controller
and classical controller are shown in Fig. 7.

As shown in plots, the proposed controller is able to damp
out the oscillations in 2 to 3 seconds after clearing the
fault for the active power of Pg0 = 1.0 with external line
inductance of xe = 0.6pu. Here fault considered is change
in the generator output.

VII. CONCLUSION

This paper proposes, the design of PSS for SMIB power
system based on relay-free sliding mode control technique.
The slip signal is taken as output and relay-free sliding
mode control is applied at an appropriate sampling rate.
It is found that designed controller provides good damping
enhancement. The simulations clearly show the elimination
of chattering in control by the proposed technique.
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