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This paper investigates a new integrated diagnostic system for islanding detection by means of a neuro-
fuzzy approach for grid-connected inverter-based distributed generation. Islanding is one important con-
cern for grid connected distributed resources due to personnel and equipment safety. Several methods
based on passive and active detection scheme have been proposed. While passive schemes have a large
non-detection zone (NDZ), concern has been raised on active method due to its degrading power quality
effect. Reliably detecting this condition is regarded by many as an ongoing challenge as existing methods
are not entirely satisfactory. The main emphasis of the proposed scheme is to reduce the NDZ to as close
as possible and to keep the output power quality unchanged. In addition, this technique can also over-
come the problem of setting the detection thresholds inherent in the existing techniques. In this study,
we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system)
for islanding detection. The simulations results, carried out by MATLAB/Simulink, shows that the pro-
posed method has a small non-detection zone. Also, this method is capable of detecting islanding accu-
rately within the minimum standard time. Moreover, for those regions which are in need of a better
visualization, the proposed approach would serve as an efficient aid such that the mains power discon-
nection can be better distinguished.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

It is expected that inverter-based distributed generation tech-
nologies will be increasingly used in electrical power systems in
the near future. The increased expanding of distributed generation
(DG) in utility systems has been mainly caused by the liberalization
of the electricity markets. Recent advances in energy conversion
systems and the environmental drive to promote green energy.
These recent advances in energy conversion include the emergence
of cheaper and more efficient power generation systems using
renewable and hybrid power schemes. The attractions of ‘green en-
ergy’ have been and will continue to be a powerful force in the
expansion of distributed generation. Distributed generation (DG)
may be defined as generating resources, other than central gener-
ating stations, that is placed close to load being served, usually at
a customer site. In fact, many utilities around the world already
have significant penetration of DGs in their system. When the dis-
tributed generation systems are operated in parallel with utility
power systems, especially with reverse power flow, the power
quality problems become significant. Power quality problems
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include frequency deviation, voltage fluctuation, harmonics and
reliability of the power system. In addition, one of the technical
issues created by DG interconnection is inadvertent islanding
[1–6]. Islanding condition causes abnormal operation in the power
system and also causes negative impacts on protection, operation,
and management of distribution systems. Therefore, it is necessary
to effectively detect the islanding conditions and swiftly disconnect
DG from the network. Fig. 1 depicts a scenario of islanding, where
the load of interest is severed off from the grid but the system con-
tinues to operate because of connected distributed generators.

Under this situation, a so-called island is formed, resulting in
unexpected consequences that may include an increased complex-
ity of orderly restoration (out of phase switching of re-closers lead-
ing to damage of the DG, neighboring loads, and utility equipment),
a degraded stability of system voltage and worst of all, a raised risk
to related maintenance personnel. In other words, under the sce-
nario of islanding, line crew members may misjudge the load-side
of the line as inactive where distributed generations are indeed
feeding power to loads; hence jeopardizing the life of operators
and meanwhile illuminating the importance of a reliable forewarn-
ing mechanism to such events. Therefore, during the interruptions
of utility power, the connected DG must detect the loss of utility
power and disconnect itself from the power grid as soon as
possible [7].
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Fig. 1. Schematic diagram of a grid-interfaced DG unit.
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There are many proposed techniques for detection of an island
[8–18]. Before defining these methods for islanding detection, it is
important to highlight two key features in order to understand the
islanding phenomenon. The first one is associated with the so-
called ‘‘non-detection zone’’ (NDZ). The NDZ can be defined as
the range (in terms of the power difference between the DG inver-
ter and the load or load parameters) in which an islanding detec-
tion scheme under test fails to detect this condition [10]. The
second feature is associated with the type of loads (potential loads
inside island), which can be modeled as a parallel RLC circuit. This
circuit is primarily used because it raises more difficulties for islan-
ding detection techniques than others. Generally, nonlinear loads
that produce current harmonics, or constant power loads, do not
represent significant problems for islanding detection [11]. Most
islanding detection methods suffer from large NDZs [19] and/or
have a run-on time between half a second to two seconds [20],
and thus cannot be used for uninterruptible autonomous operation
of an island. These techniques can be broadly classified into remote
and local techniques. Local techniques can be further classified into
active and passive techniques. Remote techniques for detection of
islands are based on communication between the utility and the
DGs. Although these techniques may have better reliability than lo-
cal techniques, they are expensive to implement and hence uneco-
nomical. These schemes include power line signaling and transfer
trip [21,22]. Local techniques rely on the information and data at
the DG site. Passive methods depend on measuring certain system
parameters and do not interfere with the DG operation. Over/under
voltage and frequency is one of the simplest passive methods used
in islanding detection. Unfortunately, if the load and the genera-
tion on the island are closely matched, the change in voltage and
frequency might be very small and within the thresholds, thus
leading to an undetected islanding situation. Other passive tech-
niques have been proposed based on monitoring rate of change
of frequency (ROCOF), phase angle displacement, rate of change
of generator power output, impedance monitoring, the THD tech-
nique and the wavelet transform function [23]. These offer supe-
rior sensitivity as their settings allow detection to take place
within statutory limits, but their settings must be carefully se-
lected to avoid mal-operation during network faults. The trade-
off between the two performance criteria is especially difficult
for these methods. If the threshold for permissible disturbance in
these quantities is set to a low value, then nuisance tripping be-
comes an issue, and if the threshold is set too high, islanding
may not be detected. In active methods, the main theme exists in
the design of control circuits such that the required variations
can be produced at the outputs of distributed generators. Then,
once the loss of grid takes place, this designated bias will accord-
ingly enlarge sufficiently to trip the connected relays, notifying
the occurrence of the event. On the contrary, when the utility sup-
ply is normally operated, the amount of variations will be insuffi-
cient to trip the relays, ensuring that there is no event
misidentified. The main advantage of active techniques over pas-
sive techniques is their small NDZ. Some important active tech-
niques are impedance measurement, frequency shift and active
frequency drift, current injection, sandia frequency shift and sandia
voltage shift, and negative phase sequence current injection. Under
several circumstances, this active method has won the confirma-
tion. However, the complicated control circuit for the generation
of designated bias may offset its merits [24–26]. Generally, if there
are large changes in loading for DG after loss of the main power
supply, then islanding conditions are easily detected by monitoring
several parameters: voltage magnitude, phase displacement, and
frequency change. However, in case of small changes in loading
for DG, the conventional methods have some difficulty in detecting
such a particular islanding condition.

This paper introduces a new intelligent-based approach for
islanding detecting that reduce the NDZ to as close as possible
and to keep the output power quality unchanged. The proposed
technique uses the adaptive neuro fuzzy inference system (ANFIS)
as machine learning method to extract information from the data
sets of these parameters after they are obtained via massive event
analyses using network simulations. This approach measures the
rate of change of active power at the target distributed generation
location and feeds it to the ANFIS for intelligent islanding detection
without determining any threshold.

This paper is organized as follows. Section 2 introduces the
adaptive neuro-fuzzy inference system. Section 3 introduces the
mathematical model of islanded system. The effect of the interface
control on the NDZ of OVP/UVP and OFP/UFP is discussed in Sec-
tion 4. Section 5 presents the methodology of the proposed Tech-
nique. Section 6 covers the architecture of the proposed
algorithm. Section 7 explains the simulation results to verify the
effectiveness of the proposed technique and in the last section of
this paper the conclusion will be presented.

2. Adaptive neuro-fuzzy inference system (ANFIS)

Artificial intelligence, including neural network, fuzzy logic
inference, genetic algorithm and expert systems, has been used
to solve many nonlinear classification problems [27,28]. The main
advantages of a fuzzy logic system (FLS) are the capability to ex-
press nonlinear input–output relationships by a set of qualitative
if–then rules. The main advantage of an artificial neural network
(ANN), on the other hand, is the inherent learning capability, which
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enables the networks to adaptively improve their performance.
The key properties of neuro-fuzzy network are the accurate learn-
ing and adaptive capabilities of the neural networks, together with
the generalization and fast learning capabilities of fuzzy logic sys-
tems. A neuro-fuzzy (ANFIS) system is a combination of neural net-
work and fuzzy systems in such a way that neural network is used
to determine the parameters of fuzzy system. A neural network is
used to automatically tune the system parameters.

The ANFIS is a very powerful approach for modeling nonlinear
and complex systems with less input and output training data with
quicker learning and high precision. The neuro fuzzy system with
the learning capability of neural network and with the advantages
of the rule-base fuzzy system can improve the performance signif-
icantly and can provide a mechanism to incorporate past observa-
tions into the classification process. In neural network the training
essentially builds the system. However, using a neuro fuzzy
scheme, the system is built by fuzzy logic definitions and is then
refined using neural network training algorithms.

2.1. ANFIS architecture

The modeling approach used by ANFIS is similar to many sys-
tem identification techniques. First, a parameterized model struc-
ture (relating inputs to membership functions to rules to outputs
to membership functions, and so on) is hypothesized. Next, in-
put/output data is collected in a form that will be usable by ANFIS
for training. ANFIS can then be used to train the FIS model to emu-
late the training data presented to it by modifying the membership
function parameters according to a chosen error criterion. Opera-
tion of ANFIS looks like feed-forward backpropagation network.
Consequent parameters are calculated forward while premise
parameters are calculated backward. There are two learning meth-
ods in neural section of the system: Hybrid learning method and
back-propagation learning method. In fuzzy section, only zero or
first order Sugeno inference system or Tsukamoto inference system
can be used. This section introduces the basics of ANFIS network
architecture and its hybrid learning rule. The Sugeno fuzzy model
was proposed by Takagi, Sugeno, and Kang in an effort to formalize
a systematic approach to generating fuzzy rules from an input–
output dataset. To present the ANFIS architecture, with two inputs,
one output and two rules is given in Fig. 2. In this connected struc-
ture, the input and output nodes represent the training values and
the predicted values, respectively, and in the hidden layers, there
are nodes functioning as membership functions (MFs) and rules.
This architecture has the benefit that it eliminates the disadvan-
tage of a normal feed forward multilayer network, where it is dif-
ficult for an observer to understand or modify the network. Here x,
y are inputs, f is output, the circles represent fixed node functions
and squares represent adaptive node functions.

Consider a first order Sugeno fuzzy inference system which con-
tains two rules:

Rule 1 : If X is A1 and Y is B1; then f 1 ¼ p1xþ q1yþ r1

Rule 2 : If X is A2 and Y is B2; then f 2 ¼ p2xþ q2yþ r2
Fig. 2. ANFIS architecture.
where p1, p2, q1, q2, r1, r2 are linear parameters and A1, A2, B1, B2 are
nonlinear parameter. ANFIS is an implementation of a fuzzy logic
inference system with the architecture of a five-layer feed-forward
network. The system architecture consists of five layers, namely,
fuzzy layer, product layer, normalized layer, de-fuzzy layer and to-
tal output layer. With this way ANFIS uses the advantages of learn-
ing capability of neural networks and inference mechanism similar
to human brain provided by fuzzy logic. The operation of each layer
is as follows: Here the output node i in layer l is denoted as Ol

i.
Layer 1 is fuzzification layer. Every node i in this layer is an

adaptive node with node function

O1;i ¼ lAiðxÞ; for i ¼ 1;2
O1;i ¼ lBiðxÞ; for i ¼ 3;4

ð1Þ

where x is the input to ith node, Ol
i is the membership grade of x in

the fuzzy set Ai. Generalized bell membership function is popular
method for specifying fuzzy sets because of their smoothness and
concise notation, and defined as

lAi
ðxÞ ¼ 1

1þ x�ci
ai

��� ���2bi
ð2Þ

Here {ai, bi, ci} is the parameter set of the membership function. The
center and width of the membership function is varied by adjusting
ci and ai. The parameter bi is used to control the slopes at the cross-
over points. Fig. 3 shows the physical meaning of each parameter in
a generalized bell function. This layer forms the antecedents of the
fuzzy rules (IF part).

Layer 2 is the rules layer. Every node in this layer is a fixed node
and contains one fuzzy rule. The output is the product of all incom-
ing signals and represents the firing strength of each rule.

O2
i ¼ wi ¼ lAi

ðxÞlBi
ðyÞ; i ¼ 1;2 ð3Þ

Layer 3 is normalization layer. Every node in this layer is a fixed
node and the ith node calculates the ratio of the ith rule’s firing
strength to the sum of all rules’ firing strengths. Outputs of this
layer are called normalized firing strengths computed as:

O3
i ¼ �wi ¼

wi

w1 þw2
i ¼ 1;2 ð4Þ

Layer 4 is consequent layer. Every node in this layer is an adap-
tive node and computes the values of rule consequent (THEN part)
as:

O4
i ¼ wifi ¼ wiðpixþ qiyþ riÞ ð5Þ

Layer 5 is summation layer and consists of single fixed node
which calculates the overall output as the summation of all incom-
ing signals as:

O5
i ¼

X
i

wifi ¼
P

iwifiP
iwi

ð6Þ

It can be observed that there are two adaptive layers in this AN-
FIS architecture, namely the first layer and the fourth layer. In the
first layer, there are three modifiable parameters {ai, bi, ci}, which
are related to the input membership functions. These parameters
Fig. 3. Generalized bell function.
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are the so-called premise parameters. In the fourth layer, there are
also three modifiable parameters {pi, qi, ri}, pertaining to the first
order polynomial. These parameters are the so-called consequent
parameters [29,30].

2.2. Learning algorithm of ANFIS

The task of the learning algorithm for this architecture is to tune
all the modifiable parameters, namely {ai, bi, ci} and {pi, qi, ri}, to
make the ANFIS output match the training data. When the premise
parameters ai, bi and ci of the membership function are fixed, the
output of the ANFIS model can be written as:

f ¼ w1

w1 þw2
f1 þ

w2

w1 þw2
f2 ð7Þ

Substituting Eq. (4) into Eq. (7) yields:

f ¼ w1f1 þw2f2 ð8Þ

Substituting the fuzzy if–then rules into Eq. (8), it becomes:

f ¼ w1ðp1xþ q1yþ r1Þ þw2ðp2xþ q2yþ r2Þ ð9Þ

After rearrangement, the output can be expressed as:

f ¼ ðw1xÞp1 þ ðw1yÞq1 þ ðw1Þr1 þ ðw2xÞp2 þ ðw2yÞq2

þ ðw2Þr2 ð10Þ

Which is a linear combination of the modifiable consequent
parameters p1, q1, r1, p2, q2 and r2. The least squares method can be
used to identify the optimal values of these parameters easily. When
the premise parameters are not fixed, the search space becomes lar-
ger and the convergence of the training becomes slower. A hybrid
algorithm combining the least squares method and the gradient des-
cent method is adopted to solve this problem. The hybrid algorithm
is composed of a forward pass and a backward pass. The least squares
method (forward pass) is used to optimize the consequent
parameters with the premise parameters fixed. Once the optimal
consequent parameters are found, the backward pass starts immedi-
ately. The gradient descent method (backward pass) is used to adjust
optimally the premise parameters corresponding to the fuzzy sets in
the input domain. The output of the ANFIS is calculated by employ-
ing the consequent parameters found in the forward pass. The out-
put error is used to adapt the premise parameters by means of a
standard backpropagation algorithm. It has been proven that this
hybrid algorithm is highly efficient in training the ANFIS [28,31].

3. Mathematical model of islanded system

This section provides a state-space mathematical model for the
islanded system, Fig. 1. It is assumed that the DG unit and the local
load are balanced three-phase subsystems within the island. The
state-space model of the islanded system of Fig. 1 is presented in
[32]. The state space equations of the potential island of Fig. 1 in
the standard state space form are

_XðtÞ ¼ AXðtÞ þ BuðtÞ
yðtÞ ¼ CXðtÞ
uðtÞ ¼ v td

ð11Þ

where

A ¼

� Rt
Lt

x0 0 � 1
Lt

x0 � Rl
L �2x0

RlCx0
L � x0

R

� �
0 x0 � Rl

L
1
L �x2

0C
� �

1
C 0 � 1

C � 1
RC

2
666664

3
777775

BT ¼ 1
Lt

0 0 0
� �

C ¼ ½0 0 0 1�

D ¼ ½0�

XT ¼ ½itd itq iLd vd�

Fig. 4 shows the step response of system in the islanding mode.
The response time constant of the island system is selected as the
analyzing time of ANFIS system output.

DG systems are connected to the distribution system through
an inverter as shown in Fig. 1. The system under study consists
of one 80 kW inverter based DG connected to an RLC load having
a quality factor of 1.8 and a grid as illustrated in Fig. 1. The system,
controller, and load parameters are given in [6]. The performance
of the DG under normal and islanded operating conditions was
studied and simulated on MATLAB/Simulink. The inverter performs
two main functions:

(A) Controlling the active power output of the DG and, in some
cases, injecting a suitable amount of reactive power to mit-
igate a power quality problem.

(B) According to the IEEE Standard 1547, the DG should be
equipped with an anti-islanding detection algorithm, which
could be performed using the inverter interface control.

The DG interface control is designed to supply constant current
output as shown in [6]. For this interface control, both Id and Iq

components of the DG output current are controlled to be equal
to a preset value (Idref and Iqref). The DG was operated at unity
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power factor by setting Iqref to zero. In particular, parallel RLC loads
with a high Q factor often present problems for island detection.
The quality factor Q is defined by

Q f ¼ R

ffiffiffi
C
L

r
ð12Þ

And is the ratio of the amount of energy stored in the load’s
reactive elements to the amount of energy dissipated in the load’s
resistance (for example, for Q = 2, there is twice as much energy
stored in the L and C of the load as is being dissipated in R). Loads
that are near resonance at x0 and have a high Q-factor are the ones
that cause difficulty in islanding detection. Unfortunately, the level
of real or reactive power mismatch is not uniquely determined by
load parameters. Specifically, the reactive power consumption of
the load is given by

Q Load ¼ V2
rms½ðxLÞ�1 � ðxCÞ� ¼ DQ ð13Þ

Eq. (3) clearly shows that there are infinitely many combina-
tions of L and C that will yield the same DQ.

4. Non-detection zone (NDZ)

One of the important characteristics to determine the effective-
ness of an islanding detection method is the non-detection zone
(NDZ). NDZ is the operating region where islanding conditions can-
not be detected in a timely manner. It can either be represented in
terms of power mismatch or in terms of the R, L, and C of the load.
In [6,33], an approximate representation of the NDZ for OVP/UVP
was derived. An exact and accurate representation of the NDZ is
presented in this part of paper. The paper examines the NDZ of
an OVP/UVP and OFP/UVP islanding scheme when implemented
for constant current controlled inverters. In order to determine
the amount of mismatch for which the OVP/UVP and OFP/UFP will
fail to detect islanding, the amount of active power mismatch in
terms of load resistance can be expressed as follows:

DP ¼ 3V � I � 3ðV þ DVÞ � I ¼ �3V � DV � I ð14Þ

Which V and I indicate the rated current and voltage, respec-
tively. In distribution network, voltage values between 0.88 pu
and 1.1 pu are in acceptable range for voltage relays. These voltage
levels are equivalent to DV = �0.12 and DV = 0.1, respectively. The
calculated imbalance amount by Eq. (14) for our test network (the
inverter rated output power is 80 kW), are 9.6 kW and �8 kW,
respectively. Frequency and voltage of an RLC load has the active
and reactive power as follows:

PL ¼
V2

L

RL
ð15Þ

Q L ¼ V2
L

1
xL
�xC


 �
ð16Þ

where V, x, P and Q are the load voltage, frequency, active power
and reactive power, respectively. In normal operating conditions,
a common coupling point voltage is determined by the power grid,
and distributed generation system has no control over voltage and
until it is connected to the network the voltage is fixed at nominal
value of 1 pu. Once the island is occurred, distribution system can-
not control the voltage and the amount of active power imbalance
determines the voltage deviation from the nominal values. Since
the output power of the inverter is in unity power factor, before
islanding reactive power of load is supplied just by network and
after islanding the amount of reactive power imbalance is equal
to the consumed load before islanding, hence we have:

DQ ¼ 3
V2

xnL
ð1�x2LCÞ ¼ 3

V2

xnL
1�x2

n

x2
r


 �
ð17Þ
where xn and xr are system frequency and resonance frequency of
load, respectively. Reactive power imbalance leads to the resonance
frequency, then the frequency changes after the islanding occur-
rence is equal to the difference between network frequency and
load resonance frequency.

xr ¼ xn � Dx;xr ¼
1ffiffiffiffiffiffi
LC
p ð18Þ

Thus, the reactive power imbalance needed for certain changes
in frequency can be obtained by,

DQ ¼ 3
V2

xnL
1� f 2

n

ðfn � Df Þ2

 !
ð19Þ

In distribution network of Iran, the acceptable frequency range
is between 49.7 and 50.3 Hz which are equal to Df = �0.3 and
Df = 0.3 Hz. In this paper test system, the amounts of reactive
power imbalances are 5.137 and 5.132 kV A, respectively. Fig. 5
shows the NDZ for the constant current interface controls for the
inverter rated output power that study in this paper.
5. Methodology of the proposed technique

The concept of the proposed technique is based on recognizing
the patterns of the sensitivities of some indices at a target location
to prescribed credible events since every event could have a signa-
ture on the patterns of these indices. The following independent
variables are defined with respect to this target location. The cur-
rent and voltage signals are acquired at this location. The behav-
ioral model of the proposed islanding detection technique can be
represented within the fuzzy inference system as follows:

Datain ¼

dP
dt

1

dP
dt

2

� � �
� � �
� � �
dP
dt

M

2
6666666664

3
7777777775

M�1

Dataout ¼

Output dP
dt

1
� �

Output dP
dt

2
� �
� � �
� � �
� � �

Output dP
dt

M
� �

2
666666666664

3
777777777775

M�1
½yi� ¼ ½Dataout� i ¼ 1;2; . . . ;M

S ¼ ½DatainDataout�

ð20Þ

That:

Xi = DPi/Dt rate of change of the power (MW/s) under the ith
event.
M: the number of performed tests.
Fig. 5. NDZ for the constant current interface controls for distributed generation.
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The possible values of any class variables (yi) can be given by
the binary set {0,1} such that: yi = 0 for non-islanding condition,
and yi = 1 for islanding condition. In this study, we propose to
use a hybrid intelligent system called ANFIS for islanding detec-
tion. We combine the ability of a neural network (NN) to learn with
fuzzy logic (FL) to reason in order to form a hybrid intelligent sys-
tem called ANFIS. The goal of ANFIS is to find a model or mapping
that will correctly associate the inputs with the target. The fuzzy
inference system (FIS) is a knowledge representation where each
fuzzy rule describes a local behavior of the system. The network
structure that implements FIS and employs hybrid-learning rules
to train is called ANFIS. The proposed methodology involves: (a)
working methods which engage various tasks associated with
any selected distributed generation (DG) and (b) definition of pre-
scribed events for training the ANFIS. The methodology starts with
a target location in which an islanding detection is to be installed.
5.1. Tasks of the methodology

These tasks can be summarized as follows:

(a) Selecting a target distributed generation (DG) location in
which an islanding is to be installed for a given distributed
generation.

(b) Simulating the prescribed events associated with the
selected distributed generation (one event at a time) in the
network simulator. These events are prescribed in an event
database.

(c) Analyzing the current and voltage signals of the distributed
generation that are generated from the simulation in order
to determine the values of the independent variables (sys-
tem parameter indices) of the pattern vector Xi.

(d) Storing the determined pattern vector Xi along with the cor-
responding class variable yi in the same pattern distributed
generation database.

(e) Repeating steps 2–4 for all N prescribed events.
(f) Compiling the pattern vector Xi and the corresponding class

variable yi to generate the ANFIS [S] for the islanding detec-
tion relay at the distributed generation (DG) location.

The output of this methodology is ANFIS for the islanding detec-
tion relay at the distributed generation location.
Fig. 6. Architecture of the proposed intelligent-based islanding detection relay.
5.2. Prescribed events

In this proposed methodology, extensive prescribed events are
simulated off-line in order to capture the essential features of the
system behavior that produce the ANFIS. These prescribed events
are defined in the event database from which the network simula-
tor executes the required events. The definition of these events are
based on three main sources, namely: (a) the operational require-
ments in the IEEE1547 standards, (b) the testing practices that are
recommended by most of the manufacturers of islanding relays
and (c) possible operating network topologies. The prescribed
events can be categorized into faults and switching actions under
different network operating states. The following is a list of some
possible events: (a) all possible tripping of circuit breakers that
are liable to assume the conditions of islanding formation (under
different conditions with various load conditions); (b) opening of
any breakers between the power system and DG; (c) abrupt change
in the load of distributed generation; (d) loss of any distribution
lines of the distribution network; (e) motor starting with various
capacity; (f) capacitor bank switching with various capacity; (g)
non-linear load switching to network; and (h) three-phase fault
on the Gen-Bus.
6. Architecture of the proposed algorithm

The architecture of the proposed Intelligent-based islanding re-
lay is shown in Fig. 6. It is consists of three main modules, namely
the input module, fuzzy inference system, and the output module.
These modules are described as follows.

6.1. Input module

The input to this module is the rate of change of active power at
the target distributed generation.

6.2. Fuzzy inference system (FIS)

This module is the fuzzy inference system software model of
the islanding detection relay. This module has already been dis-
cussed in Section 2.

6.3. Output module

This is an output unit which is connected to the tripping unit of
the circuit breaker of the DG. If the islanding is detected, the output
of this unit is 1. Conversely, if the islanding is not detected, the out-
put of this unit is 0.

The proposed approach is based on the passive method of islan-
ding detection considering the data clustering approach. In addi-
tion this method includes building a simplified and robust fuzzy
classifier initialized by the subtractive clustering and makes a fuz-
zy interface system (FIS) for islanding detection. As a result of the
increasing complexity and dimensionality of classification prob-
lems, it becomes necessary to deal with structural issues of the
identification of classifier systems. Important aspects are the selec-
tion of the relevant features and determination of effective initial
partition of the input domain. In this study we want to reach a zero
non-detection zone, our dataset are very large thus we used form
fuzzy clustering. Clustering of numerical data forms the basis of
many classification and system modeling algorithms. The purpose
of clustering is to identify natural groupings of data from a large
data set to produce a concise representation of a system’s behavior.
Subtractive clustering is a fast, one-pass algorithm for estimating
the number of clusters and the cluster centers in a set of data. This
approach measure rate of change of power, at the target distrib-
uted generation location and fed to the ANFIS for training and ob-
tained the fuzzy membership function (MF) without need to
determine of type and number of membership function. Thus, with
this technique can also overcome the problem of setting the detec-
tion thresholds inherent in the existing techniques. In this paper an
ANFIS models which takes rate of change of power as inputs and
islanding condition as output. If the islanding is detected, the out-
put ANFIS is 1 and if the islanding is not detected, the output ANFIS
is 0. The result obtained to indicate that ANFIS is effective method
for islanding detection. Firstly, rate of change of active power mea-
surements taken from the distributed generation for provide a
dataset of target distributed generation in the all possible condi-
tion and selected relevant features from the dataset that this se-
lected data must be contain islanding and non-islanding (normal
operation) information. The next step, subtractive clustering
dataset and construct a fuzzy inference system (FIS) that could



-2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

Input

D
eg

re
e 

of
 m

em
be

rs
hi

p

Fig. 7. The fuzzy membership function.

Table 1
System, DG, and load parameters.

DG output power 80 kW
PWM carrier frequency 2000 Hz
Input DC voltage 800 V
Voltagerms(phase–phase) 380 V

Rt 1.5 mX
Lt 300 lH

Nominal grid frequency 50 Hz
Load quality factor 1.8

R 1.805 X
L 3.192 mH
C 3.174 mF

Proportional gain (Kp) 0.4
Integral gain (Ki) 500

Table 2
Various loads for islanding mode test.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Power (kW) 72 75 78 82 85 88
R (X) 2.0056 1.925 1.851 1.761 1.698 1.641
L (mH) 3.192 3.192 3.192 3.192 3.192 3.192
C (mF) 3.174 3.174 3.174 3.174 3.174 3.174
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best predict the islanding condition or normal condition. ANFIS
training can use alternative algorithms to reduce the error of the
training. Fig. 7 shows the fuzzy membership function obtained
only from dataset for all conditional (islanding and normal opera-
tion) without any setting threshold for islanding detection param-
eters for case study. In this paper we can overcome the problem of
setting thresholds for islanding detection parameters. The result
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Fig. 8. Effective voltage waveform of the com
obtained to indicate that ANFIS is effective method for islanding
detection.
7. Simulation results

In this section, the test system shown in Fig. 1 has been simu-
lated by MATLAB/Simulink. The system, DG, and load parameters
are listed in Table 1. The proposed islanding detection method
has been also tested for various conditions.

7.1. Islanding mode test

Performance of the proposed method is analyzed in islanding
mode for the various loads which are given in Table 2. Design
and selection of loads should be such that the imbalance of reactive
power is equal to zero resulting in the situation which is more dif-
ficult to identify the island mood. Further, the load quality factor is
equal to 1.8 which is the maximum recommended amount in
standards.

For all examined cases in Table 2 at the time t = 1.5 s circuit
breaker (CB) opens and distributed generation along with local
loads isolated from power grid and islanding mode is occurred.
Effective voltage waveform of the common coupling point for each
cases reviewed in Table 2 are shown in Fig. 8. Also, the frequency of
common coupling point voltage, and rate of change of active power
for all cases studied in Table 2 are shown in Figs. 9 and 10 respec-
tively. Immediately following these loss of utility at the time
t = 1.5 s, rate of change of active power for each condition are in-
creased or decreased. Finally, in Fig. 11 the output of detection
method for all studied cases are shown. It is obvious from Fig. 11
that after islanding value of the proposed algorithm has been
increased and the output of ANFIS is reach 1. So the ANFIS based
1.6 1.7 1.8 1.9 2
me (s)

Case1 Case2 Case3 Case4 Case5 Case6

mon coupling point for islanding mode.
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Fig. 9. The frequency of common coupling point voltage for islanding mode.
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Fig. 10. Rate of change of active power for islanding mode.
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protection algorithm produced the trip signal and sends to distrib-
uted generation (DG).

7.2. Normal operation

Performance of the proposed method is analyzed in this opera-
tion mode for the various loads which are given in Table 3.

For all examined cases in Table 3 at the time t = 1.5 s is applied
to the system. Effective voltage waveform of the common coupling
point for each cases reviewed in Table 3 are shown in Fig. 12. Also,
the frequency of common coupling point voltage, and rate of
change of active power for all cases studied in Table 3 are shown
in Figs. 13 and 14 respectively. Immediately following these
change at the time t = 1.5 s, rate of change of active power for each
condition are increased or decreased. Finally, in Fig. 15 the output
of detection method for all studied cases are shown. It is obvious
from Fig. 15 that after all studied cases value of the proposed algo-
rithm has not changed and the output of ANFIS is remained 0.
Therefore, the proposed method does not send a trip signal to dis-
tributed generation and works in a reliable mode.

7.3. Voltage deviation (Voltage Swell, Voltage Sag) in islanding
detection method

Voltage deviation in the distribution network, depending on the
time period can be divided into three categories: (a) Transient per-
iod: the time period for this voltage deviation is in milliseconds. (b)
Short-term period: the time period of this state is up to one min-
ute. Voltage Swell and Voltage Sag are of this deviation type. (c)
Long term: for this the voltage deviation may be continued more
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Fig. 11. The output of detection method for islanding mode.

Table 3
Various loads for normal operational test.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Power (kW) 50% N.l. (Out) 20% N.l. (Out) 20% N.l. (In) 40% N.l. (In) 50% N.l. (In) 80% N.l. (In)
R (X) 3.61 9.025 7.22 4.5125 3.61 2.226
L (mH) 6.383 20.5 14.37 7.98 6.383 4.488
C (mF) 1.587 0.4937 0.7054 1.27 1.587 2.257
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Fig. 12. Effective voltage waveform of the common coupling point for normal operation mode.
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than one minute. Islanding detection method should be kept safe
from voltage changes. By adding an adaptive system with a delay
system, one can keep safe the detection method from the voltage
changes. Thus, the inverter output current is monitored continu-
ously and once the difference between this current and the rated
current is observed the comparator detects automatically these
abnormal conditions. These abnormal conditions can be sign of
either: (a) an electrical island, and (b) voltage deviation. Table 4
shows Voltage relay responses when an abnormal condition is
observed in the standard distribution network IEEEStd.1547.
Simple voltage relays should detect the voltage changes at the
appropriate time and then eliminates the distributed generation
from the grid.

Performance of the proposed method is analyzed in this mode
for the various conditions which are given in Table 5. Three phase
voltage waveform of the common coupling point for each cases re-
viewed in Table 5 are shown in Fig. 16. Also rate of change of active
power for all cases studied in Table 5 are shown in Fig. 17. Imme-
diately following these change at the time t = 1 s, rate of change of
active power for each condition are increased or decreased. Finally,
in Fig. 18 the output of detection method for all studied cases are
shown. It is obvious from Fig. 18 that after all studied cases value
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Fig. 13. The frequency of common coupling point voltage for normal operation mode.
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Fig. 14. Rate of change of active power for normal operation mode.
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of the proposed algorithm has not changed and the output of ANFIS
is remained 0. Therefore, the proposed method does not send a trip
signal to distributed generation and works in a reliable mode.

8. Conclusion

A new technique for islanding detection of distributed genera-
tion is proposed based on adaptive neuro fuzzy inference system.
Following the increased number and enlarged size of distributed
generating units installed in a modern power system, the
protection against islanding has become extremely challenging
nowadays. Islanding detection is also important as islanding oper-
ation of distributed system is seen a viable option in the future to
improve the reliability and quality of the supply. The islanding sit-
uation needs to be prevented with distributed generation due to
safety reasons and to maintain quality of power supplied to the
customers. The main emphasis of the proposed scheme is to reduce
the NDZ to as close as possible and this technique can also over-
come the problem of setting the detection thresholds inherent in
the existing techniques. In this paper, we propose to use a hybrid
intelligent system called ANFIS for islanding detection. By case
studies with numerical simulations, the proposed approach was
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Fig. 15. The output of detection method for normal operation mode.

Table 4
Voltage relay responses.

Voltage range (% of base voltage) Clearing time (s)

V < 50 0.16
50 < V < 88 2
110 < V < 120 1
V > 120 0.16

Table 5
Various condition for voltage deviation test.

Case 1 Case 2 Case 3
One-phase fault Two-phase fault Two-phas

Fault resistance (X) 1 0.1 1
Ground resistance (X) 0.1 0.1 0.1
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Fig. 16. Three phase voltage waveform of the comm
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verified with feasibility, flexibility and robustness. The comparison
of ANFIS method with other islanding detection methods at differ-
ent DG locations during islanding event with power imbalance of
nearly 0% shows that the proposed method works effectively for
islanding detection while other methods fails to detect islanding.
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on coupling point for voltage deviation mode.
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Fig. 17. Rate of change of active power for voltage deviation mode.
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Fig. 18. The output of detection method for voltage deviation mod.

454 F. Hashemi et al. / Electrical Power and Energy Systems 45 (2013) 443–455
References

[1] Zeineldin HH, EL-Saadany EF, Salama MMA. Islanding detection of inverter
based distributed generation. IEE Proc Generat Trans Distrib 2006;153(6):
644–52.

[2] Chiang Wen-Jung, Jou Hurng-Liahng, Wu Jinn-Chang. Active islanding
detection method for inverter-based distribution generation power. Int J
Electr Power Energy Syst 2012;42(1):158–66.

[3] Vahedi Hesan, Jalilvand Abolfazl, Noroozian Reza, Gharehpetian Gevorg B.
Islanding detection for inverter-based distributed generation using a hybrid
SFS and Q–f method. Int Rev Electr Eng 2010;5(5) [Papers Part B].

[4] Aghamohammadi MR, Shahmohammadi A. Intentional islanding using a new
algorithm based on ant search mechanism. Int J Electr Power Energy Syst
2012;35(1):138–47.

[5] Dash PK, Padhee Malhar, Barik SK. Estimation of power quality indices in
distributed generation systems during power islanding conditions. Int J Electr
Power Energy Syst 2012;36(1):18–30.
[6] Zeineldin HH, El-Saadany Ehab F, Salama MMA. Impact of DG interface control
on islanding detection and non-detection zones. IEEE Trans Power Delivery
2006;21(3):1515–23.

[7] IEEE Standard for Interconnecting Distributed Resources into Electric Power
Systems. IEEE Standard 1547TM; June 2003.

[8] Hernandez-Gonzalez G, Iravani R. Current injection for active islanding
detection of electronically-interfaced distributed resources. IEEE Trans Power
Delivery 2006;21(3):1698–705.

[9] Karimi H, Yazdani A, Iravani R. Negative-sequence current injection for fast
islanding detection of a distributed resource unit. IEEE Trans Power Electr
2008;23(1):298–307.

[10] Ropp ME, Begovic M, Rohatgi A. Analysis and performance assessment of the
active frequency drift method of islanding prevention. IEEE Trans Energy
Convers 1999;14(3):810–6.

[11] Hung GK, Chang CC, Chen CL. Automatic phase-shift method for islanding
detection of grid-connected photovoltaic inverters. IEEE Trans Energy Convers
2003;18(1):169–73.

[12] Kim Song. Islanding detection technique using grid-harmonic parameters in
the photovoltaic system. Energy Proc 2012;14:137–41.



F. Hashemi et al. / Electrical Power and Energy Systems 45 (2013) 443–455 455
[13] Chiang Wen-Jung, Jou Hurng-Liahng, Wu Jinn-Chang, Wu Kuen-Der, Feng Ya-
Tsung. Active islanding detection method for the grid-connected photovoltaic
generation system. Electr Power Syst Res 2010;80(4):372–9.

[14] Hashemi F, Kazemi A, Soleymani S. A new algorithm to detection of anti-
islanding based on dqo transform. Energy Proc 2012;14:81–6.

[15] Choudhry Mohammad A, Khan Hasham. Power loss reduction in radial
distribution system with multiple distributed energy resources through
efficient islanding detection. Energy 2010;35(12):4843–61.

[16] Jang S, Kim K. An islanding detection method for distributed generation
algorithm using voltage unbalance and total harmonic distortion of current.
IEEE Trans Power Delivery 2004;19(2):745–52.

[17] Lopes LAC, Zhang Y. Islanding detection assessment of multi-inverter systems
with active frequency drifting methods. IEEE Trans Power Delivery
2008;23(1):480–6.

[18] Ropp ME, Begovic M, Rohatgi A, Kern GA, Bonn RH, Gonzalez S. Determining
the relative effectiveness of islanding methods using phase criteria and
nondetection zones. IEEE Trans Energy Convers 2000;15(3):290–6.

[19] Zeineldin HH, Abdel-Galil T, El-Saadany EF, Salama MMA. Islanding detection
of grid connected distributed generators using TLS-esprit. Electr Power Syst
Res 2007;77(2):155–62 [Elsevier].

[20] Huang S-J, Pai F-S. A new approach to islanding detection of dispersed
generators with self-commutated static power converters. IEEE Trans Power
Delivery 2000;15(2):500–7.

[21] Mak ST. A new method of generating TWACS type outbound signals for
communication on power distribution networks. IEEE Trans Power App Syst
1984;PAS-103(8):2134–40.

[22] Xu W, Zhang G, Li C, Wang W, Wang G, Kliber J. A power line signaling based
technique for anti-islanding protection of distributed generators—Part I:
scheme and analysis [a companion paper submitted for review].
[23] Hsieh Cheng-Tao, Lin Jeu-Min, Huang Shyh-Jier. Enhancement of islanding-
detection of distributed generation systems via wavelet transform-based
approaches. Int J Electr Power Energy Syst 2008;30(10):575–80.

[24] Hernández-González G, Iravani R. Current injection for active islanding
detection of electronically-interfaced distributed resources. IEEE Trans Power
Delivery 2006;21(3):1698e705.

[25] John V, Ye Z, Kolwalkar A. Investigation of anti islanding protection of power
converter based distributed generators using frequency domain analysis.
Trans Power Electron 2004;19(5):1177e83.

[26] Samui Ankita, Samantaray SR. Assessment of ROCPAD relay for islanding
detection in distributed generation. IEEE Trans Smart Grid 2011;2(2).

[27] Gupta MM, Rao DH. Neuro-control systems: theory and applications.
Piscataway, NJ: IEEE press; 1994.

[28] Yen J, Langari R, Zadeh LA. Industrial applications of fuzzy logic and intelligent
systems. New York, NY: IEEE Press; 1995.

[29] Jang J-SR. ANFIS adaptive-network-based fuzzy inference system. IEEE Trans
Syst Man Cyber 1993;23(3):665–85.

[30] Gupta MM, Rao DH. Newo-control systems: theory and applications.
Piscataway, NJ: IEEE Press; 1994.

[31] El-Arroudi K, Joos G, McGillis D, Brearley R. Generic protection analyzer for
post-processing of EMTP simulations. In: Proc int conf power systems
transients, New Orleans, LA; September 28–October 2, 2003.

[32] Karimi H, Nikkhajoei H, Iravani Reza. Control of an electronically-coupled
distributed resource unit subsequent to an islanding event. IEEE Trans Power
Delivery 2008;23(1):493–501.

[33] Ye Z, Kolwalkar A, Zhang Y, Du P, Walling R. Evaluation of anti-islanding
schemes based on nondetection zone concept. IEEE Trans Power Electron
2004;19(5):1171–6.


	Islanding detection for inverter-based DG coupled with using an adaptive neuro-fuzzy inference system
	1 Introduction
	2 Adaptive neuro-fuzzy inference system (ANFIS)
	2.1 ANFIS architecture
	2.2 Learning algorithm of ANFIS

	3 Mathematical model of islanded system
	4 Non-detection zone (NDZ)
	5 Methodology of the proposed technique
	5.1 Tasks of the methodology
	5.2 Prescribed events

	6 Architecture of the proposed algorithm
	6.1 Input module
	6.2 Fuzzy inference system (FIS)
	6.3 Output module

	7 Simulation results
	7.1 Islanding mode test
	7.2 Normal operation
	7.3 Voltage deviation (Voltage Swell, Voltage Sag) in islanding detection method

	8 Conclusion
	References


