RESEARCH ARTICLE

A STUDY OF CARRIER BASED PULSE WIDTH MODULATION (CBPWM) BASED THREE PHASE INVERTER

Lalit Vidyarthi* and K.P. Singh
1Research Scholar, 2Associate Professor, 1,2Department of Electrical Engineering, MMM Engineering College, Gorakhpur, Uttar Pradesh, INDIA.
*Corresponding Author : l.vidyarthi@gmail.com

ABSTRACT

This paper presents the performance study and analysis of a new carrier based PWM inverter suitable for use with power MOSFETs. The proposed PWM inverter output waveforms are investigated both theoretically and experimentally. The fundamental component of the three-phase line-to-line voltage is increased by about 15 percent above that of the conventional sine-wave inverter. The carrier based PWM switching scheme allows control of the magnitude and the frequency of the output voltage. Therefore, the input to the PWM inverters is an uncontrolled, essentially constant dc voltage source. This switching scheme results in harmonic voltage in the range of the switching frequency and higher, which can be easily filtered out. This paper proposes a carrier based modulation technique for full bridge inverters. In this paper, sinusoidal pulse width modulation technique is implemented, which can minimize the total harmonic distortion and enhance the output voltages. The method is adopting the constant switching frequency pulse width modulation concept which is being implemented in this paper. The above method is divided in to two techniques, triangular carrier and saw-tooth carrier for gate signal generation. In this paper, simulation of three phase inverter using asymmetrical modulation technique with triangular waveform as a carrier signal has been done. Further new control strategy for the three phase inverters based on various techniques has been developed.

Keywords : PWM Inverter, Triangular Waveform, Matlab, Simulink.

1. INTRODUCTION

At the present time, controlled A.C. for controlling speed of machines like Induction Motor, Brushless D.C. Motor etc is desirable in so many applications. Nowadays inverters are used for getting controlled A.C. They are used for converting uncontrolled D.C. into controlled A.C. There are so many types of inverter like 2 level, 3 level and 5 level etc. The multilevel inverter (MLI) is a capable inverter topology for high voltage and high power applications [3]. This inverter synthesizes several different levels of DC voltages to produce a staircase (stepped) that approaches the pure sine waveform [4-12]. This have high power quality waveforms, lower voltage ratings of devices, lower harmonic distortion, lower switching frequency and losses, higher efficiency, reduction of dv/dt stresses and gives the possibility of working with low speed semiconductors if its comparison with the two-levels inverters. Numerous of MLI topologies and modulation techniques have been introduced and studied extensively, but most popular MLI topology is Diode Clamp, Flying Capacitor and Cascaded Multilevel Inverter (CMLI). In this paper we use a CMLI that consist of some H-Bridge inverters and with un-equal DC. It is also namely Asymmetric Cascaded Multilevel Inverter (ACMLI). It is most implemented because it is more modular and simple in construction and has other advantages than Diode clamp and flying capacitor [10].

There are many modulation techniques to control this inverter, such as Selected Harmonics Elimination or Optimized Harmonic Stepped-Waveform (OHSW), Space Vector PWM (SVPWM) and Carrier-Based PWM (CBPWM) also known as Sinusoidal PWM. Among these modulations CBPWM is the most used for multilevel inverter, because it is simple, logical and easy to be implemented. The sinusoidal PWM switching scheme allows control of the magnitude and the frequency of the output voltage. Therefore, the input to the PWM inverters is an uncontrolled, essentially constant dc voltage source.

2. REALIZATION OF CBPWM

Concept of sine-modulated PWM inverter : In a Sine-modulated PWM inverter the widths of the pole-voltage pulses, over the output cycle, vary in a sinusoidal manner. The scheme, in its simplified form, involves comparison of a high frequency triangular carrier voltage with a sinusoidal modulating signal that represents the desired fundamental component of the voltage waveform. The peak magnitude of the modulating signal should remain limited to the peak magnitude of the carrier signal. The comparator output is then used to control the high side and low side switches. Figure 1 shows an op-amp based comparator output along with representative sinusoidal and triangular signals as inputs. In the comparator shown in Figure 1, the triangular and sinusoidal signals are fed to the inverting and the non-inverting input terminals respectively and the comparator output magnitudes for high and low levels that are assumed to be +Vcc and –Vcc.
Two-Level Inverter: The pulse-width-modulation (PWM) technique is the most common and popular technique of digital pure-sine wave generation. This technique involves generation of a digital waveform, for which the duty-cycle is modulated such that the average voltage of the waveform corresponds to a pure sine wave. The simplest way of producing the PWM signal is through comparison of a low-power reference sine wave with a triangle wave. Using these two signals as input to a comparator, the output will be a 2-level PWM signal (Figure 2). This PWM signal can then be used to control switches connected to a high-voltage bus, which will replicate this signal at the appropriate voltage (Figure 3). Put through a Low Pass Filter, this PWM signal will clean up into a close approximation of a sine wave (Figure 4). Though this technique produces a much cleaner source of AC power than either the square or modified sine waves, the frequency analysis shows that the primary harmonic is still reduced, and there is a relatively high amount of higher level harmonics in the signal. This can be removed using second order Low Pass Filter.

3. MODULATION INDEX

Modulation index is the ratio of peak magnitudes of the modulating waveform and the carrier waveform. It relates the inverter’s dc-link voltage and the magnitude of pole voltage (fundamental component) output by the inverter. Now let \(V_m \) \(\sin (\omega t) \) be the modulating signal and let the magnitude of triangular carrier signal vary between the peak magnitudes of \(+V_c \) and \(-V_c \). The ratio of the peak magnitudes of modulating wave \(V_m \) and the carrier wave \(V_c \) is defined as modulation index (m).

\[
m = \frac{V_m}{V_c} \quad \ldots (1)
\]

Normally the magnitude of modulation index is limited below one (i.e., \(0 < m < 1 \)). From the discussion in the previous section it can be concluded that for \(0 < m < 1 \), the instantaneous magnitude of fundamental pole voltage \(V_{A0.1} \) will be given by:

\[
V_{A0.1} = 0.5 E_{dc} (m \sin \omega t) \quad \ldots (2)
\]

Where ‘\(\omega \)’ is the angular frequency of the modulating waveform. For \(m = 1 \) the pole output voltage (fundamental component) will have a rms magnitude of

\[
0.35E_{dc} = \left(\frac{1}{2\sqrt{2}} \right) E_{dc} \quad \ldots (3)
\]

4. SIMULATION AND ANALYSIS

The simulation and analysis for Carrier Based width modulation on Voltage source inverter (VSI) has been done on MATLAB 7.10 (R2010a) using Simulation modeling and MATLAB (M-File) coding. The Simulink model for CBPWM based VSI is given by figure 6.
Analysis of Voltage Source Inverter (VSI) with sinusoidal pulse width modulated output: In this part, four standards are considered for analysis of VSI i.e., frequency of output voltage, modulation index, phase angle of the load in degrees and frequency of carrier signal. This is done by using MATLAB Coding (M-File).

The result were found for RMS value of output voltage, Fundamental Component, RMS value of load current, RMS value of supply current, Average value of supply current and performance parameters i.e., THD for output voltages and THD for output current.

SPWM based Three Phase Inverter using triangular wave carrier signal: The block diagram of SPWM based three phase inverter using triggering circuit and low pass filter is shown in figure 8.

![Block Diagram of Three Phase Inverter](image)

Fig. 8: Block Diagram of Three Phase Inverter

5. RESULT

The output waveforms from Simulation modeling are shown below:

SPWM based Three Phase Inverter using Triangular wave Carrier signal: The MATLAB Simulation modeling using block diagram (Figure 8) has been done and results were found for three phase output Voltages, shown by figure 9 and 10.

![Simulink Model for CBPWM based Three Phase Voltage Source Inverter (VSI)](image)

Fig. 6: Simulink Model for CBPWM based Three Phase Voltage Source Inverter (VSI)
Fig. 7: Subsystem of Outage Block

Fig. 9: Three Phase Output Voltage waveforms with Triangular wave carrier signal (without filter)

Fig. 10: Three Phase Output Voltage waveform with Triangular wave carrier signal (with filter)
6. CONCLUSION
The CBPWM based Voltage source de-to-ac inverter described above accepts dc voltage source as input and produces three phase sinusoidal output voltages at a lower frequency as compared to the switching frequency. The correlation between the control input and full-bridge inverter output magnitude is summarized and shown in result, assuming sinusoidal PWM in the linear range of \(m \leq 1.0 \). The second order low pass filter has been used to filter out the harmonic content of ac signal. Calculation for RMS value of output voltage, Fundamental Component, RMS value of load current, RMS value of supply current, Average value of supply current and performance parameters i.e., THD for output voltages and THD for output current has been done using M-file coding. Using MATLAB Simulation model, it was found that Triangular waveform carrier model gives a suitable three phase voltage waveform.

7. ACKNOWLEDGMENT
I would like to thank the department of Electrical Engineering, M.M.M.E.C. for extending all the facilities for caring out this work.

8. REFERENCES