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Abstract—In this paper a modified Heffron-Phillip’s (K-
constant) model is derived for the design of power system
stabilizers. A knowledge of external system parameters, such
as equivalent infinite bus voltage and external impedances or
their equivalent estimated values is required for designing a
conventional power system stabilizer. In the proposed method,
information available at the secondary bus of the step-up trans-
former is used to set up a modified Heffron-Phillip’s (ModHP)
model. The PSS design based on this model utilizes signals
available within the generating station. The efficacy of the pro-
posed design technique and the performance of the stabilizer has
been evaluated over a range of operating and system conditions.
The simulation results have shown that the performance of the
proposed stabilizer is comparable to that could be obtained by
conventional design but without the need for the estimation and
computation of external system parameters. The proposed design
is thus well suited for practical applications to power system
stabilization, including possibly the multi-machine applications
where accurate system information is not readily available.

Index Terms—Heffron-Phillip’s model, Power System Stabiliz-
ers(PSS),

I. INTRODUCTION

ONE of the major problems in power system operation is
related to the small-signal oscillatory instability caused

by insufficient natural damping in the system. The most cost-
effective way of countering this instability is to use auxiliary
controllers called power system stabilizers (PSS), to produce
additional damping in the system [1], [2]. Effective PSS design
for large electric power systems is extremely laborious because
of their highly nonlinear nature and constantly changing gen-
eration, transmission, and loading conditions. Over the years
a variety of design procedures and algorithms [3] have been
proposed for the design of power system stabilizers using both
linearized and nonlinear models of power system. However,
because of complex structures and real time computational re-
quirements, most of these stabilizers have found little practical
application.

The concept of classical PSS and their tuning procedures are
well explored in [1], [2]. The conventional fixed gain stabiliz-
ers perform reasonably well if they have been tuned properly
[4]. Though these stabilizers have simple robust structures,
tuning them not only requires considerable expertise but also
a knowledge of system parameters external to the generating
station. These parameters may vary during normal operation
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of the power system. Even in the case of single machine
infinite bus models, estimates of equivalent line impedance
and the voltage of the remote bus are required. The PSS
design also requires information of the rotor angle δ measured
with respect to the remote bus. These parameters cannot be
measured directly and need to be estimated based on reduced
order models of the rest of the system connected to the
generator. If the available information for the rest of the system
is inaccurate, the conventionally designed PSS may result in
poor system performance.

The method proposed for the PSS design in this paper is
also based on the classical design technique. However, as
opposed to a conventional stabilizer, the proposed PSS judges
system disturbances such as changes in system configuration
or variation in loads etc, based on the deviations in power flow,
voltage and voltage angle at the secondary bus of the step-up
transformer. The PSS tries to control the rotor angle measured
with respect to the local bus rather than the angle δ measured
with respect to the remote bus to damp the oscillations.
All PSS design parameters are thus calculated from local
measurements and there is no need to estimate or compute the
values of equivalent external impedances, bus voltage and rotor
angles at the remote bus. The performance of the proposed
stabilizer is comparable to that of a conventional stabilizer
that has been designed based on accurate system information.
This information is not always available in practical systems.
The paper consists of three parts: the first part describes the
modelling of the power system, the second part describes
the modified Heffron-Phillip’s model and the proposed PSS
design procedure and the third part describes the dynamic
performance of the PSS over a range of operating and system
conditions.

II. MODELING OF POWER SYSTEM

For small-signal stability analysis, dynamic modeling is
required for the major components of the power system. It
includes the synchronous generator, excitation system, auto-
matic voltage regulator (AVR) etc. Different types of models
have been reported in the literature depending upon their
specific application. A Single Machine Infinite Bus (SMIB)
power system model as shown in fig.1 is used to obtain
the linearized dynamic model [5] (Heffron Phillip’s or K-
constant model). Here, a single generator represents a single
machine equivalent of a power plant (consisting of several
generators). The generator is connected to a single or double
circuit line through a transformer. The line is connected to
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Fig. 1. A Single Machine Power System Model.

the rest of the power system which may be an infinite bus
or another machine. The infinite bus, by definition, represents
a bus with fixed voltage source. The magnitude, frequency
and phase of the voltage are unaltered by changes in load
(output of the generator). This is a simplified representation
of a remote generator connected to a load center through
a transmission line. IEEE Model 1.0 is used to model the
synchronous generator [6] with a high gain, low time constant
static exciter. The dynamic equations governing the system are
as follows.

δ̇ = wBSm (1)

Ṡm =
1

2H
{Tmech − Telec − DSm} (2)

Ė′
q =

1
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The variables have standard meaning and are listed in the
Appendix. The above equations are based on rotor angle δ
measured with respect to the remote bus Eb. To get the
dynamic equations with respect to the secondary bus voltage
Vs∠θs of the step up transformer, all the expressions involving
the rotor angle δ have to be expressed in terms of δs, where
δs = δ − θs. The expressions for δs and E′

q are as under
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(5)
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III. MODIFIED HEFFRON-PHILLIPS MODEL AND PSS
DESIGN

The standard Heffron Phillips model can be obtained by lin-
earizing the system equations around an operating condition.
The development of the model is detailed in [6]. Here only the

necessary steps to arrive at the modified HP model are given.
From model 1.0 the following equations can be obtained

E′
q + X ′

did − Raiq = Vq

−X ′
qiq − Raid = Vd

(7)

The subscripts q and d refers to the q and d-axis respectively
in Park’s reference frame. The machine network interface is
achieved by converting machine quantities in Park’s frame to
synchronously rotating Kron’s reference frame. The machine
terminal voltage in terms of the transformer secondary is given
by

VQ + jVD = (Vq + jVd)ejδ

= (iq + jid)(Rt + jXt)ejδ + Vs∠θs

∴ (Vq + jVd) = (iq + jid)(Rt + jXt) + Vs∠θs e−jδ

Replacing δ by δs + θs in the above equations gives

(Vq + jVd) = (iq + jid)(Rt + jXt) + Vs∠ − δs

Equating the real and imaginary parts of the above equation
gives

Vq = Rtiq − Xtid + Vs cos δs

Vd = Rtid + Xtiq − Vs sin δs

(8)

substituting (8) in (7) and rearranging gives[
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−Rt Xq + Xt

] [
id
iq

]
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q
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]
(9)

The system mechanical equations, electrical equations and
eqn.(9) are linearized as in [6] to obtain the following modified
K-constants.
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Fig. 2. Modified Heffron-Phillips model, the rotor angle is Δδs

The modified Heffron-Phillip’s model comprises six con-
stants K1 to K6 whose definitions remain unchanged. How-
ever, they are no longer referenced to δ and Eb. It can be
observed that the modified K-constants are also no longer the
functions of the equivalent reactance Xe. They are functions
of Vs, δs, Vt and machine currents. Therefore the modified K-
constants can be now computed based on local measurements
only. In this model, as Vs is not a constant, during linearization,
three additional constants Kv1 to Kv3 are introduced at the
torque, field voltage and terminal voltage junction points as
shown in fig.2. The action of the PSS is effective through the
transfer function block GEP (s) as shown in fig.2 between the
electric torque and the reference voltage input with variation
in the machine speed assumed to be zero.

The expression for the transfer function GEP (s) is given
by

GEP (s) =
K2K3EXC (s)

(1 + sT ′
doK3) + K3K6EXC (s)

(10)

where EXC(s) is the transfer function of the excitation
system. It can be of any exciter, but in this paper a high
gain, low time constant static exciter is assumed. As
system operating conditions change, the gain and phase
characteristics of the transfer function GEP (s) change.
Ideally, the PSS transfer function should be reciprocal of
GEP (s) for providing a prescribed amount of damping with
speed input. This would be purely a lead function that is
not physically realizable. A practical approach is to have a
lead-lag circuit that provides adequate compensation over
the desired range of frequencies. Using the modified K-
constants, stabilizers are designed using the tuning guidelines
given by [2]. The stabilizer considered is a simple lead-lag
compensator as shown in fig.3, with a washout filter. The
time constants are selected such that the compensated phase
lag of GEP (s) × PSS(s) around local mode frequency
(about 7 rad/s i.e. 1.12 Hz is assumed) lies below 450 and

Fig. 3. Structure of PSS.

crossover of 900 point occurs beyond 22 rad/sec (3.5Hz) [2],
[6]. The gain of the PSS is selected from the root-locus plot
to give maximum damping to the concerned mode of the
generator and any other (e.g. exciter mode) modes. The form
of the compensator is assumed as given below

H(s) = Kpss
(1 + sT1)
(1 + sT2)

m

where m is the number of lead-lag stages. The constants T1

and T2 can be obtained from the following equations.

α = T2
T1

=
1−sin( β

m )
1+sin( β

m )

β = Required phase compensation

T1 = 1
Ωi

√
α

T2 = αT1

where Ωi is the frequency of the mode of interest.

IV. SIMULATION RESULTS AND OBSERVATIONS

The performance of the stabilizers designed by using mod-
ified K-constants is evaluated on a SMIB test system over a
range of operating conditions as shown in table I. The system
data is given in the Appendix. Conventional PSS is designed
following the tuning guidelines [2] for Xe = 0.4p.u. The PSS
data for both the conventional design and the proposed method
are also given in the Appendix. The transformer reactance Xt

is 0.1p.u. The total impedance between the generator bus and
the infinite bus, denoted by Xe varies with system conditions.
Fig.4 shows the phase plots of GEP (s) with modified HP
and conventional HP models. For the test system the center
frequency is chosen as 3.5 Hz. Fig.5 shows the phase plots of
conventional (CPSS) and proposed PSS and the compensated
GEP (s) of the plant in both cases. It is evident that the
proposed PSS achieves exact compensation for the desired
range of frequencies (0.1Hz to 2.5Hz).

Fig.6 shows the root locus plot of the plant by varying
PSS gain with the proposed and conventional PSS. The gain
Kpss is chosen as 13 for proposed PSS and 16 for CPSS.
It can be observed from the figure that the chosen weights
provide adequate damping for both the rotor and the exciter
modes. The performance of the proposed PSS was tested at



TABLE I
RANGE OF OPERATING CONDITIONS FOR SMIB

Xe Pt Qt power factor
0.4-Nominal 1, 0.8, 0.8 0.2, 0.2, -0.2 lag, lag, lead

0.3-strong all 0.8 0.41,0.23,-0.37 lag, lag, lead
0.8-weak 1, 0.8 0.5, 0.2 lag, lag

Fig. 4. GEP(s) plots for modHP −, original HP −−

varying operating and system conditions. A few representative
examples have been included in this paper.

Fig.7 shows the system response in terms of variation in
slip speed Sm following a 10% step change at Vref input of
the generator. At this operating condition (S = P + jQ =
1 + j0.2p.u.,Xe = 0.4p.u) the system is unstable without a
PSS. Fig.8 shows the system response for the same system
condition, following a 3φ fault of 4 cycles duration at the
transformer bus. Fault is cleared by tripping one of the parallel
lines. In both the cases, the conventional and the proposed PSS
have damped the system oscillations effectively.

Fig.9 relates to leading power factor operation with S =
0.8 − j0.2p.u. and Xe = 0.4p.u. System behavior is highly
oscillatory in this case for a 10% step change at Tm input of
the generator. The performance of the proposed PSS is much
better than the conventional stabilizer under this condition.

Fig.10 shows system response in terms of Sm under rel-
atively strong system ( Xe = 0.3p.u., S = 0.8 − j0.37 )
and leading power factor conditions. The proposed PSS has
shown comparable performance under lagging power factor
conditions and better performance under leading power factor
conditions when compared to the performance of the CPSS.

Fig.11 depicts very weak system (Xe = 0.8p.u., S = 1 +
j0.5 p.u. ) conditions. Leading power factor operations are
not possible under these conditions. The performance of both
stabilizers are again comparable and the system oscillations
have been effectively damped.

V. CONCLUSIONS

A modified Heffron Phillip’s model has been derived for the
design of power system stabilizers. The stabilizer is synthe-
sized using information available at the local buses and makes

Fig. 5. compensated GEP(s) plots with Proposed PSS - and CPSS –

Fig. 6. root-locus plot of the plant with proposed PSS and CPSS.

Fig. 7. System response for 10% step change in Vref ,Nominal system.



Fig. 8. System response for a 3φ fault at transformer,Nominal system.

Fig. 9. System response for 10% step change in Tm,Nominal system, leading
p.f.

no assumptions about the rest of the system connected beyond
the secondary bus of the step up transformer. As system
information is generally not accurately known or measurable
in practice, the proposed method of PSS design is well suited
for designing effective stabilizers at varied system conditions.

The performance of the proposed stabilizer is comparable
to that of a conventional stabilizer which has been designed
assuming that all system parameters are known accurately. As
the proposed design is based on local measurements alone it
may be possible to extend the proposed PSS design philosophy

Fig. 10. System response for 10% step change in Vref , Strong system,
leading p.f.

Fig. 11. System Response for 10% step change in Vref , Weak System.

to multi-machine systems.

APPENDIX

Machine Data:
Xd = 1.6;Xq = 1.55;X ′

d = 0.32;T ′
do = 6;H = 5;D =

0; fB = 60Hz;EB = 1p.u.;Xt = 0.1; Model 1.0 is
considered for the synchronous machine.
Exciter data:
Ke = 200; Te = 0.05s; Efdmax = 6p.u.; Efdmin =
−6p.u.;
CPSS data:
T1 = 0.078; T2 = 0.026; Kpss = 16; Tw =
2; PSS output limits ± 0.05
ModHP-PSS data:
T1 = 0.0952; T2 = 0.0217; Kpss = 13; Tw =
2; PSS output limits ± 0.05
variables definitions:
δ : Rotor angle.
δs : Rotor angle with respect to the secondary voltage of
transformer.
Sm : Slip speed.
Tmech and Telec : Mechanical and Electrical torques
respectively.
D : Damping coefficient.
E′

q : Transient emf due to field flux-linkage.
id : d-axis component of stator current.
id : q-axis component of stator current.
T ′

do : d-axis open circuit time constant.
Xd, X

′
d : d-axis reactances.

Xq, X
′
q : q-axis reactances.

Efd : Field voltage.
Ke, Te : Exciter gain and time constant.
Vt : Voltage measured at the generator terminal.
Vs : Voltage measured at the secondary of the transformer.
Vref : Reference voltage.
Vpss : PSS input.
Xt, XL : Transformer and transmission line reactances.

REFERENCES

[1] F.P.Demello and C.Concordia, “Concepts of synchronous machine stabil-
ity as affected by excitation control,” IEE Trans. Power Apparatus and
Systems, vol. PAS-88, No.4, pp. 316–329, 1969.



[2] E. Larsen and D. Swan, “Applying power system stabilizers,parts I,II
and III,” IEEE Trans.Power Apparatus and Systems, vol. PAS-100, pp.
3017–3046, June 1981.

[3] B. Pal and B. Chaudhuri, Robust Control in Power Systems. Springer,
2005.

[4] G. Rogers, Power System Oscillations. Kluwer Academic Publishers,
2000.

[5] W. G. Heffron and R. A. Phillips, “Effect of modern amplidyne voltage
regulators on underexcited operation of large turbine generators.” Amer-
ican Institutions of Electrical Engineers, vol. 71, pp. 692–697, 1952.

[6] K.R.Padiyar, POWER SYSTEM DYNAMICS Stability and Control. John
Wiley; Interline Publishing, 1996.

Gurunath Gurrala received his B.Tech degree in Electrical and Electron-
ics Engineering from S.V.H.College of Engineering, Nagarjuna University,
Andhrapradesh, in 2001. M.Tech degree in Electrical Power Systems from
J.N.T.U. college of Engineering, Anantapur, A.P., in 2003. He is currently
a research student working towards his Ph.D in Indian Institute of Science,
Bangalore. He worked as an Assistant Professor in Anil Neerukonda Institute
of Technology and Sciences, Visakhapatnam, A.P., during 2003-2005. His
research interests include Power system stability, Flexible AC Transmission
Systems, Non Linear and Adaptive Control of Power systems.

Indraneel Sen received his Ph.D degree from IISc, Bangalore, in 1981. He is
currently an Associate professor in the Department of Electrical Engineering
at the Indian Institute of Science. His research interests include power system
stability, adaptive control and energy management systems.


