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Abstract

For this mini-project, I studied computational models for unsupervised learn-
ing, starting from a classical one (K-Means), and then some models inspired by
neuroscience or biology: Neural Gas, Neural Fields, and Self-Organizing Maps
(SOM). I mainly focused on the later, and on a variation of the SOM algorithm
where the original time-dependent (learning rate and neighborhood) learning
function is replaced by a time-invariant one, giving the Dynamic SOM (DSOM).

This allows for on-line and continuous learning on both static and dynamic
data distributions. One of the property of the newly proposed algorithm is that
it does not �t the magni�cation law and the achieved vector density is not di-
rectly proportional to the density of the distribution as found in most vector
quantization algorithms. It also has the advantage of requiring only two param-
eters and not �ve, making it easier to automatically tune them with a manual
exploration or a grid search.

From a neuroscience point of view, this dynamic extension of the SOM algo-
rithm sheds light on cortical plasticity seen as a dynamic and tight coupling be-
tween the environment and the model. The difference between SOM and DSOM
can be seen as the natural difference between early years learning (in child) and
long-term learning (in adults).

*If needed, see on-line at http://lbo.k.vu/neuro2016 for an e-version of this report, as well as addi-
tional resources (slides, code, �gures, complete bibliography etc), open-sourced under the MIT License.
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Outline: In this report, we start by introducing the problem of unsupervised learning, and
the main approach we studied, in section 1. Then different classical models are presented
in section 3 (Neural Gas, Neural Fields and Self-Organizing Maps), and each comes with
a short discussion about its parameters; followed in section 4 by the presentation of a new
unsupervised clustering algorithm: Dynamic Self-Organizing Maps [RB11a]. This model is
a simple relaxation of the well-known SOM algorithm, where the learning rate and neigh-
borhood width both become time-invariant but local-dependent. We will also detail some
experiments, comparing NG, SOM and DSOM on several types of both static and dynamic
distributions; and exploring the effects of the 2 parameters of a DSOM model. The DSOM
is also applied to a highly-non-stationary distribution, proving it can be a satisfying model
of long-term learning as encountered in the cortex (�cortical plasticity�). At the end, we
conclude with a short sum-up in section 5, along with a list of references, and links to addi-
tional on-line resources in appendix A.
Note: This report comes along the slides used for the oral presentation, which covers a
similar work, but you might also be interested in reading them0.

1 Introduction

Quick overview of the goals of this project

In machine learning, and in the brain [Doy00], there is different kinds of learning: Super-
vised learning (as found in the cerebellum), Reinforcement learning (as found in the basal
ganglia and the thalamus), and Unsupervised learning (as found in the cortex).

A lot of unsupervised learning models exist, and we will �rst focus on K-Means, a very
classical one, and then on some models inspired from neuroscience: Neural Gas, Neural
Field & Dynamic NF are presented very quickly, and then Self-Organizing Maps & Dy-

namic SOM are studied more in details.
Unsupervised learning has many applications, including data/image compression (e.g. color

quantization, as used by the GIF image format), automatic clustering, visualization, etc; and
modeling self-organization and online learning (plasticity) in the cortex is only one of the
possible application of these algorithms.

2 Unsupervised Learning, starting with K-Means

2.1 Different types of learning

In Machine Learning: Each type of learning have been thoroughly studied from the 50�s:

� Supervised (or deep) learning means learning from labeled data; for a reference see
e.g. [Bis06]. A very successful application of deep learning from a tremendous
quantity of data is the Google Images application (images.google.com), which
showed in 2012 that images retrieval works in the real-world (almost any image, from
anywhere around the globe, from movies, from comic books etc, is recognized very
quickly).

0 You can �nd them online: https://goo.gl/GjrwkX or here.
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� Reinforcement learning means learning with feedback (also referred to as reward or
penalty); for a reference see e.g. [SB98]. Another example of a successful application
of reinforcement learning is the very recent success of Google DeepMind’s Alpha Go
project, which showed that reinforcement learning (and deep learning) can give very
powerful AIs (the �rst AI to ever beat a professional Go player).

� But unsupervised learning is still the harder, the �Holy Grail� of machine learning.

As a lot of studies have shown, the main three different types of learning can be found
in the brain [RB11a, Doy00]. We will not give more details here neither about the differ-
ent types learning nor the neuroscience background and experiments that permitted to the
neuro-biology community to agree on this representation (Fig. 1):

Figure 1: The 3 main types of learning are present in the brain [Doy00, Figure 1].

Why is unsupervised learning harder? In the unsupervised setting, the algorithm has ab-
solutely no idea what the data is: there is no labels, no time organization, and no feed-
back/reward/penalty: just raw data.

As many specialist accord to say, predictive learning is the future. A very recent quote
from Richard Sutton1 and Yann LeCun2 illustrates this:

�AlphaGo is missing one key thing: the ability to learn how the world works.� Richard has
long advocated that the ability to predict is an essential component of intelligence. Pre-
dictive (unsupervised) learning is one of the things some of us see as the next obstacle
to better AI.

Figure 2: Yann LeCun quoting Richard Sutton in February 2016.

2.2 Vectorial quantization: a simple unsupervised task

Let X � �x1; : : : ; xp� be samples in a space E. We want to cluster the data, and this directly
raises a few questions:

� How to cluster similar data together? Similar in what sense?

1 One of the father of reinforcement learning, cf. [SB98].
2 One of the father of deep learning.
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� How many groups there is? K clusters Cj : �nd K.

� What are the best representatives of each group? �Centroids� �j .

� Can we identify close groups (and merge them) ?

For instance, in Fig. 3 below is showed points in 2D (i.e. X ‘ R
2), and our human eyes

directly see they are organized in groups (�clusters�), about 16 of them. A �rst clustering,
easy to obtain, is shown in the middle, it consists in dividing the square in 16 small sub-
squares, all equal (their centers is shown as a big white circle). A second clustering, way
more visually satisfying, is shown on the right: this one consists of 16 Voronoï diagrams,
and is obtained with a Delaunay algorithm.

Figure 3: For 2D points, examples of a bad quantization and a good quantization

Let start by clarifying mathematically what a vectorial quantization algorithm can be.
Let E be the data space (containing the dataset X ‘ E), a compact manifold3 in R

d.

De�nition 2.1. A vectorial quantization of E is simply de�ned by a function �, and a set Q ‘ E,
so that ƒx > E; ��x� > Q (i.e. � � E � Q).

Q is usually �nite, or at least discrete, and is called the codebook: Q � �w1; : : : ; wn�.

Examples 2.2. Assume we have data lying in E � R (real line), and we want to quantize them.
First, for a discrete and �nite codebook, Q � ��1�: we can take ��x� � sign�x�, there is only 2

prototypes �wi�i�1::n.
Secondly, for a discrete but in�nite codebook, Q � Z: we can take ��x� � 
x� or �x�, here there is an
in�nite number of prototypes �wi�i�1::n.

So a natural question is: can we generalize to any data? We would like to automatically
�nd the target/compressed set Q (the codebook), and the clustering function �, for any
dataset X in a set E ?

We can sum up the notations used hereafter, and express mathematically the goal. For
a �nite codebook Q � �w1; : : : ; wn�, we de�ne the clusters by Ci

def� �x > E � ��x� � wi�. We
assume the data xj are drawn from a target probability density f on E.

First, de�ne the (continuous) distortion of the VQ as:

J��� def� Q
i�1::n

Ef;Ci
�Yx � wiY2� � Q

i�1::n
S

Ci

Yx � wiY2 f�x� dx: (1)

3 As no mathematical proofs of convergence, correctness or stability are done in the report, this hypothesis
is not used. But it is a classical assumption, usually required for the few theoretical work on the SOM and
DSOM algorithms, see for instance [CFP87, CFP98].
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But as always in machine learning and inference, the target distribution f is unknown.
We assume that only unbiased observations xj are available (j � 1::p), and so we de�ne the

empirical distortion as Ĵ��� def� 1

p

nP
i�1

P
xj>Ci

Yxj � wiY2. And the goal is to minimize the empirical

distortion Ĵ.

A �classical� problem The vector quantization problem, as de�ned above, is nothing but
a clustering problem, and this has been studied a lot in the last 30 years.
As a consequence, plenty of algorithms have been proposed, including K-Means �1�, Elas-
tic Net (a L1-L2 penalized least-squares regression), (Dynamic) Self-Organizing Map �2�
[RB11a], and (Growing/Dynamic) Neural Gas �3�, (Dynamic) Neural Field �4� [RD11].
And vector quantization counts many applications, like compression of data (images etc),
automatic classi�cation/categorization4 etc.

Additionally to these applications, an interesting consequence of the NG, SOM and
DSOM models will be there connexions with the learning processes as found in human
or primates (see later).

2.3 K-Means: a �rst unsupervised algorithm

Before studying clustering models inspired from biology, let start by quickly reviewing a
well-known one: the K-Means algorithm.

It clusters data by trying to separate the p samples xi in K groups of equal variance, min-
imizing a criterion known as the �distortion� J���. This algorithm requires K, the number
of clusters, to be speci�ed before-hand, as most unsupervised models. There is strategies
to try to �nd a good value for K automatically (based on a grid-search), but the question of
the �best possible K� is mathematically unfunded.

K-Means also has the advantage of scaling well to large number of samples, and as a
consequence it has been used across a large range of application areas in many different
�elds. For example, Fig. 4 below shows 10 clusters, obtained by K-Means from the well
known MNIST hand-written digits dataset5, after a dimension reduction of the digit dataset
to 2 dimensions.

Figure 4: Example: K-Means clustering on the digits dataset (PCA-reduced data).

4 E.g. in 2013 Net�ix �automatically� discovered the main movie genres from its database of movies ratings.
5 In scikit-learn [PVG�11], it is obtained with datasets.load_digits.
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Description of the K-Means algorithm K-Means aims at dividing a set of p samples X ��x1; : : : ; xp�, into K disjoint clusters Cj , each described by the mean �j of the samples in
the cluster. The means are called the cluster �centroids�6. Aims to choose centroids that
minimize the distortion:

J��� � 1

p

pQ
i�1

min
�j>C

�SSxi � �j SS2� : (2)

Convergence & implementation K-Means is equivalent to the Expectation-Maximization
algorithm with a small, all-equal, diagonal covariance matrix. And the E-M algorithm con-
verges, as it strictly minimizes the distortion at each step. So K-Means converges indeed,
but it can fall down to a local minimum: and that is one of the reason why a dynamic unsu-
pervised learning algorithm can be useful.

K-Means is quick and ef�cient (with K-Means++ initialization), usually converges well,
and is easy to implement. It is available in scikit-learn [PVG�11], as clustering.KMeans,
and for this project I also reimplemented it myself, see kmeans.py (on-line).

2.4 Application: color quantization

A nice application of any clustering algorithm can be color quantization for pictures or
movies [Blo08].

Let start with a simple example, on a picture of a �ower, with only two color channels
(green and red), in order to visualize easily the color space as a 2D space (red/green). In this
color-space, we can cluster all its colors (being the data xj), into only 16 Voronoï diagrams

(16 is an arbitrary choice), as shown in Fig. 5b below.

(a) Flower �Rosa gold glow� (from Wikipedia).

(b) In the red/green color space.

Figure 5: Color quantization on a two-color �ower picture (red/green).

An important observation to make from this �rst experiment is the well-known fact,
that K-Means �ts what is often referred as the �magni�cation law�:

High density regions tend to have more associated prototypes than low-density regions.
6 Note that they are not, in general, points from X (although they live in the same space).
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Color quantization for a real-world photo Let apply7 a color quantization compression
on a larger photo8, of 3648 � 2736 pixels, and 75986 colors.

(a) With a random codebook. (b) With a K-Means codebook (optimal).

Figure 6: Color quantization, from 75986 to 32 colors.

We clearly see that the compressed picture on the right (compressed with a codebook
obtained by K-Means clustering) is visually better (and it is clearer on the HD pictures).
They offer a (theoretical) compression factor of 75986~32 � 2374 � 2300: that’s huge!

In practice, photos from digital camera are already compressed (in JPEG), and this man-
ual compression with color quantization does not really work. But this technique is used
for the standard image format GIF, which uses a color palette of only 256 colors. It is clear
that such a compression technique can be useful if the same color palette can be used for
several images [Blo08], a for a short movie (showing only one scene) or small animated
images, and this is exactly the main purpose of the GIF format.

Note that the SOM, NG, and DSOM algorithm can also be applied to color quantization,
and they give the same results, but we only included an illustration for K-Means to keep
this report as concise as possible.

3 Models of unsupervised learning inspired from neuroscience

After having recalled what is unsupervised learning and the clustering or vectorial quan-
tization problem in the previous section, we present here three clustering algorithms, in-
spired by neuro-biology or neuroscience: the Self-Organizing Map (SOM, 3.1), the Neural
Gas (NG, 3.2), and the (Dynamic) Neural Fields (DNF, 3.3).

3.1 Self-Organizing Maps (SOM)

The �rst biologically inspired model will take his inspiration from the visual cortex organi-
zation. Visual areas in the brain appear to be spatially organized (thanks to unsupervised
training), in such a way that physically close neurones in the cortex visual handle input
signal physically close in the retina [Koh82].

7 The script reproducing this experiment is plot_color_quantization.py.
8 See online for the full quality picture and its two compressed versions. The photo is from Heimaey in

Iceland.
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Figure 7: This is referred as �Retinotropic� Organization.

In 1982, from these observations (Fig. 7), T. Kohonen tried to model the spatial organiza-
tion of the visual cortex [Koh82, Koh98], and by doing so he developed the Self-Organizing
Map (SOM) model. A good reference is [Fau94, Part 4.2].

3.1.1 The SOM model

Let start by considering a map of n neurons, fully inter-connected. We add a topology on the
map, in R

q, and each neuron i is linked with all the input signal (the weight vector wi is
called the �prototype� of a neuron). Each time a new input data x is presented, the neuron
with the closest prototype wins, and the prototypes of the winner (and his neighbors) are
updated, to become closer to the input data. We iterate this step as long as we have training
data (or we can cycle back in some cases).

3.1.2 Illustrations for the SOM model

A few �gures9 will help visualizing these assumptions made on the model.

Figure 8: 5 � 5 fully inter-connected neuronal map.

Each neuron i has a �xed position pi in R
q (q � 2; 3 usually), but an evolving prototype

wi (lying in the data space E). As soon as we add a topology on the map, with natural
coordinates in R

q, an inter-neuron Euclidean distance Y � Y appears:

9 They are borrowed from [Rou13].
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(a) Natural coordinates. (b) Euclidean distances.

Figure 9: Natural topology on a 5 � 5 map.

Each neuron is linked with all input signals x , as shown below with two inputs x0; x1:

Figure 10: Two inputs x0; x1 for this 5 � 5 dense neuronal map.

3.1.3 The SOM algorithm

With these notations, the SOM learning algorithm is simply two repeated steps:
1. Choosing the winning neuron : Simply take the index of the neuron minimizing the

distances betweenx (new input) and the prototypes w i : i win >arg min
i � 1::n

dˆx ; w i • .

Remark 3.1. Issue with this arg min: This computation of anarg min requires a centralized
entity, so it is not adistributed model. And this is not a very realistic model of cortex organization,
as there is no “super-neuron” in the brain in charge of centralized computations. Any realistic model
of the cortex has to take into account the highly non-centralized architecture of the brain [Doy00].

2. Learning step : At each step, a new input x is given to the neural map, and the
winning unit and all its neighbors will update their prototypes to become closer to x, with
this vectorial update rule:

w i ˆ t � 1• � w i ˆ t• � " ˆ t• � hˆw i ˆ t• � x • � ˆw i ˆ t• � x • (3)

Where "ˆ t• A 0 refers to a (decreasing10) learning rateand hˆ �• is a neighborhood function.
The neighborhood function is used in the update rule only with the distance between the

sample x and the winning neuron, so this is a fully isotropic model, and this is a satisfactory
property if we want to model the cortex, as it is (almost) isotropic [Doy00].

Fig. 11 shows different functions h that can be used as a neighborhood function:

10 Note that it does not need to go to zero when t � ª , and in fact t is usually bounded by tend.
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