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Efficient Channel Shortening Equalizer Design
Richard K. Martin∗, Ming Ding, Brian L. Evans, and C. Richard Johnson, Jr.

Abstract—Time-domain equalization is crucial in reduc-
ing channel state dimension in maximum likelihood se-
quence estimation, and inter-carrier and inter-symbol in-
terference in multicarrier systems. A time-domain equal-
izer (TEQ) placed in cascade with the channel produces an
effective impulse response that is shorter than the channel
impulse response. This paper analyzes two TEQ design
methods amenable to cost-effective real-time implemen-
tation: minimum mean squared error (MMSE) and max-
imum shortening SNR (MSSNR) methods. We reduce
the complexity of computing the matrices in the MSSNR
and MMSE designs by a factor of 140 and a factor of 16
(respectively) relative to existing approaches, without de-
grading performance. We prove that an infinite length
MSSNR TEQ with unit norm TEQ constraint is symmet-
ric. A symmetric TEQ halves FIR implementation com-
plexity, enables parallel training of the frequency-domain
equalizer and TEQ, reduces TEQ training complexity by
a factor of 4 and doubles the length of the TEQ that can
be designed using fixed-point arithmetic, with only a small
loss in bit rate. Simulations are presented for designs with
a symmetric TEQ or target impulse response.

Keywords— Multicarrier Modulation, Channel Shorten-
ing, Time-domain Equalization, Efficient Computation,
Symmetry.

I. Introduction

Channel shortening, a generalization of equalization,
has recently become necessary in receivers employing
multicarrier modulation (MCM) [1]. MCM techniques
like orthogonal frequency division multiplexing (OFDM)
and discrete multi-tone (DMT) have been deployed in
applications such as the wireless LAN standards IEEE
802.11a and HIPERLAN/2, Digital Audio Broadcast
(DAB) and Digital Video Broadcast (DVB) in Europe,
and asymmetric and very-high-speed digital subscriber
loops (ADSL, VDSL). MCM is attractive due to the ease
with which it can combat channel dispersion, provided
the channel delay spread is not greater than the length of
the cyclic prefix (CP). However, if the cyclic prefix is not
long enough, the orthogonality of the sub-carriers is lost,
causing inter-carrier interference (ICI) and inter-symbol
interference (ISI).

A well-known technique to combat the ICI/ISI caused
by the inadequate CP length is the use of a time-domain
equalizer (TEQ) in the receiver front end. The TEQ is a
finite impulse response filter that shortens the channel so
that the delay spread of the combined channel-equalizer
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impulse response is not longer than the CP length. The
TEQ design problem has been extensively studied in
the literature [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12]. In [3], Falconer and Magee proposed a minimum-
mean-square-error (MMSE) method for channel short-
ening, which was designed to reduce the complexity in
maximum likelihood sequence estimation. More recently,
Melsa, Younce, and Rohrs [5] proposed the maximum
shortening SNR (MSSNR) method, which attempts to
minimize the energy outside the window of interest while
holding the energy inside fixed. This approach was gen-
eralized to the min-ISI method in [9], which allows the
residual ISI to be shaped in the frequency domain. A
blind, adaptive algorithm that searches for the TEQ max-
imizing the SSNR cost function was proposed in [10].

Channel shortening also has applications in maximum
likelihood sequence estimation (MLSE) [13] and mul-
tiuser detection [14]. For MLSE, for an alphabet of size
A and an effective channel length of Lc +1, the complex-
ity of MLSE grows as ALc . One method of reducing this
enormous complexity is to employ a prefilter to shorten
the channel to a manageable length [2], [3]. Similarly,
in a multiuser system with a flat fading channel for each
user, the optimum detector is the MLSE, yet complexity
grows exponentially with the number of users. “Channel
shortening” can be implemented to suppress a specified
number of the scalar channels, effectively reducing the
number of users to be detected by the MLSE [14]. In
this context, “channel shortening” means reducing the
number of scalar channels rather than reducing the num-
ber of channel taps. In this paper we focus on channel
shortening for ADSL systems, but the same designs can
be applied to channel shortening for the MLSE and for
multiuser detectors.

This paper examines the MSSNR and MMSE meth-
ods of channel shortening. The structure of each solu-
tion is exploited to dramatically reduce the complexity
of computing the TEQ. Previous work on reducing the
complexity of the MSSNR design was presented in [8].
This work exploited the fact that the matrices involved
are almost Toeplitz, so the (i + 1, j + 1) element can be
computed efficiently from the (i, j) element. Our pro-
posed method makes use of this, but focuses rather on
determining the matrices and eigenvector for a given de-
lay based on the matrices and eigenvector computed for
the previous delay.

In addition, we examine exploiting symmetry in the
TEQ and in the target impulse response (TIR). In [15],
it was shown that the MSSNR TEQ and the MMSE
TIR were approximately symmetric. In [16] and [17],
simulations were presented for algorithms that forced
the MSSNR TEQ to be perfectly symmetric or skew-
symmetric. This paper proves that the infinite-length
MSSNR TEQ with a unit norm constraint on the TEQ
is perfectly symmetric. We show how to exploit this sym-
metry in computing the MMSE TIR, adaptively comput-
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TABLE I

Channel shortening notation

Notation Meaning

x(k) transmitted signal (IFFT output)
n(k) channel noise
r(k) received signal
y(k) signal after TEQ
N , ν sizes of FFT and CP
∆ desired delay (design parameter)
N∆ number of possible values of ∆
h =

[
h0, · · · , hLh

]
channel impulse response

w = [w0, · · · , wLw
] TEQ impulse response

c = [c0, · · · , cLc
] effective channel (c = h ? w)

b = [b0, · · · , bν ] target impulse response

L̃h = Lh + 1 channel length

L̃w = Lw + 1 TEQ length

L̃c = Lc + 1 length of the effective channel

H L̃c × L̃w channel convolution matrix
Hwin (∆) rows ∆ through ∆ + ν of H
Hwall (∆) H with rows ∆ through ∆ + ν removed
IN N × N identity matrix
[A](i,j) Element i, j of matrix A

A∗, AT , AH conjugate, transpose, and Hermitian

ing the MSSNR TEQ, and in computing the frequency-
domain equalizer (FEQ) in parallel with the TEQ.

The remainder of this paper is organized as follows.
Section II presents the system model and notation. Sec-
tion III reviews the MSSNR and MMSE designs. Section
IV discusses methods of reducing the computation of each
design without a performance loss. Section V examines
symmetry in the impulse response, and Section VI shows
how to exploit this symmetry to further reduce the com-
plexity, though with a possible small performance loss.
Section VII provides simulation results, and Section VIII
concludes the paper.

II. System Model and Notation

The multicarrier system model is shown in Fig. 1, and
the notation is summarized in Table I. Each block of
bits is divided up into N bins, and each bin is viewed
as a QAM signal that will be modulated by a different
carrier. An efficient means of implementing the multicar-
rier modulation in discrete time is to use an inverse fast
Fourier transform (IFFT). The IFFT converts each bin
(which acts as one of the frequency components) into a
time-domain signal. After transmission, the receiver can
use an FFT to recover the data within a bit error rate
tolerance, provided that equalization has been performed
properly.

In order for the subcarriers to be independent, the con-
volution of the signal and the channel must be a circular
convolution. It is actually a linear convolution, so it is
made to appear circular by adding a cyclic prefix to the
start of each data block. The cyclic prefix is obtained by
prepending the last ν samples of each block to the be-
ginning of the block. If the CP is at least as long as the
channel, then the output of each subchannel is equal to
the input times a scalar complex gain factor. The signals
in the bins can then be equalized by a bank of complex
gains, referred to as a frequency domain equalizer (FEQ)
[18].

The above discussion assumes that CP length + 1 is
greater than or equal to the channel length. However,
transmitting the cyclic prefix wastes time slots that could

be used to transmit data. Thus, the CP is usually set
to a reasonably small value, and a TEQ is employed to
shorten the channel to this length. In ADSL and VDSL,
the CP length is 1

16 of the block (symbol) length. As
discussed in Section I, TEQ design methods have been
well explored [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12].

One of the TEQ’s main burdens, in terms of compu-
tational complexity, is due to the parameter ∆, which
is the desired delay of the effective channel. The perfor-
mance of most TEQ designs does not vary smoothly with
delay [19], hence a global search over delay is required in
order to compute an optimal design. Since the effective
channel has Lc +1 taps, there are Lc +1− ν locations in
which one can place length ν+1 window of non-zero taps,
hence 0 ≤ ∆ ≤ Lc − ν. For typical downstream ADSL
parameters, this means there are about 500 delay values
to examine, and an optimal solution must be computed
for each one. One of the goals of this paper is to show
how to reuse computations from one value of ∆ to the
next, greatly reducing this computational burden.

III. Review of the MSSNR and MMSE designs

This section reviews the MSSNR and MMSE designs
for channel shortening.

A. The MSSNR solution

Consider the maximum shortening SNR (MSSNR)
TEQ design [5]. This technique attempts to maximize
the ratio of the energy in a window of the effective chan-
nel over the energy in the remainder of the effective chan-
nel. Following [5], we define

Hwin

=






h(∆) h(∆ − 1) · · · h(∆ − L̃w + 1)
...

. . .
...

h(∆ + ν) h(∆ + ν − 1) · · · h(∆ + ν − L̃w + 1)






(1)

and

Hwall

=













h(0) 0 · · · 0
...

. . .

h(∆ − 1) h(∆ − 2) · · · h(∆ − L̃w)

h(∆ + ν + 1) h(∆ + ν) · · · h(∆ + ν − L̃w + 2)
...

. . .

0 · · · 0 h(Lh)













(2)

Thus, cwin = Hwinw yields a length ν +1 window of the
effective channel, and cwall = Hwallw yields the remain-
der of the effective channel. The MSSNR design problem
can be stated as “minimize ‖cwall‖ subject to the con-
straint ‖cwin‖ = 1,” as in [5]. This reduces to

min
w

(
wT Aw

)
subject to wT Bw = 1, (3)

where

A = HT
wallHwall, B = HT

winHwin. (4)
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Fig. 1. Traditional multicarrier system model. (I)FFT: (inverse) fast Fourier transform, P/S: parallel to serial, S/P: serial to parallel,
CP: add cyclic prefix, and xCP: remove cyclic prefix.
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Fig. 2. MMSE system model: h, w, and b are the impulse re-
sponses of the channel, TEQ, and target, respectively. Here, ∆
represents transmission delay. The dashed lines indicate a virtual
path, which is used only for analysis.

A and B are real, symmetric L̃w×L̃w matrices. However,
A is invertible, but B may not be [20]. An alternative
formulation that addresses this is to “maximize ‖cwin‖
subject to the constraint ‖cwall‖ = 1,” [20] which works
well even when B is not invertible. The alternative for-
mulation reduces to

max
w

(
wT Bw

)
subject to wT Aw = 1, (5)

where A and B are defined in (4). Solving (3) leads to a
TEQ that satisfies the generalized eigenvector problem,

Aw = λ̃Bw, (6)

and the alternative formulation in (5) leads to a related
generalized eigenvector problem,

Bw = λAw. (7)

The solution for w will be the generalized eigenvector
corresponding to the smallest (largest) generalized eigen-
value λ̃ (λ). Section IV shows how to obtain most of
B (∆ + 1) from B (∆), how to obtain A (∆) from B (∆),
and how to initialize the eigensolver for w (∆ + 1) based
on the solution for w (∆).

B. The MMSE solution

The system model for the minimum mean-squared er-
ror (MMSE) solution [3] is shown in Fig. 2. It creates a
virtual target impulse response (TIR) b of length ν + 1
such that the MSE, which is measured between the out-
put of the effective channel and the output of the TIR,
is minimized. In the absence of noise, if the input signal
is white, then the optimal MMSE and MSSNR solutions
are identical [6]. A unified treatment of the MSSNR and
noisy MMSE solutions was given in [15].

The MMSE design uses a target impulse response
(TIR) b that must satisfy [2]

Rrxb = Rrw, (8)

where

Rrx = E











r(k)
...

r(k − Lw)






[
x(k − ∆) · · · x(k − ∆ − ν)

]






(9)
is the channel input-output cross-correlation matrix and

Rr = E











r(k)
...

r(k − Lw)






[
r(k) · · · r(k − Lw)

]




 (10)

is the channel output autocorrelation matrix. Typically,
b is computed first, and then (8) is used to determine
w. The goal is that h ? w approximates a delayed ver-
sion of b. The target impulse response is the eigenvector
corresponding to the minimum eigenvalue of [3], [4], [7]

R (∆) = Rx − RxrR
−1
r Rrx. (11)

Section IV addresses how to determine most of R (∆ + 1)
from R (∆), and how to use the solution for b (∆) to
initialize the eigensolver for b (∆ + 1).

IV. Efficient computation

There is a tremendous amount of redundancy involved
in the brute force calculation of the MSSNR design. This
has been addressed in [8]. This section discusses methods
of reusing even more of the computations to dramatically
decrease the required complexity. Specifically, for a given
delay ∆,

• A (∆) can be computed from B (∆) almost for free.
• B (∆ + 1) can be computed from B (∆) almost for free.
• A shifted version of the optimal MSSNR TEQ w (∆)
can be used to initialize the generalized eigenvector so-
lution for w (∆ + 1) to decrease the number of iterations
needed for the eigenvector computation.
• R (∆ + 1) can be computed from R (∆) almost for free.
• A shifted version of the optimal MMSE TIR b (∆) can
be used to initialize the generalized eigenvector solution
for b (∆ + 1) to decrease the number of iterations needed
for the eigenvector computation.

We now discuss each of these points in turn.

A. Computing A (∆) from B (∆)

Let C = HT H, and recall that A = HT
wallHwall and

B = HT
winHwin. Note that

H =





H1

Hwin

H2



 , Hwall =

[
H1

H2

]

. (12)
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Thus,

C = HT
1 H1 + HT

winHwin + HT
2 H2 (13)

=
(
HT

1 H1 + HT
2 H2

)

︸ ︷︷ ︸

A

+
(
HT

winHwin

)

︸ ︷︷ ︸

B

. (14)

To emphasize the dependence on the delay ∆, we write

C = A (∆) + B (∆) (15)

Since C is symmetric and Toeplitz, it is fully deter-
mined by its first row or column:

C(0:Lw,0) = HT
[
hT ,0(1×Lw)

]T
=

(
H(0:Lh,0:Lw)

)T
h.
(16)

C can be computed using less than L̃2
h multiply adds

and its first column can be stored using L̃w memory
words. Since C is independent of ∆, we only need to
compute it once. Then each time ∆ is incremented and
the new B (∆) is computed, A (∆) can be computed from
A (∆) = C − B (∆) using only L̃2

w additions and no
multiplications. In constrast, the “brute force” method
requires L̃2

w (Lh − ν) multiply-adds per delay, and the
method of [8] requires about L̃w (Lw + Lh − ν) multiply-
adds per delay.

B. Computing B (∆ + 1) from B (∆)

Recall that B (∆) = HT
win(∆)Hwin(∆), where

Hwin(∆) =





h(∆) h(∆ − 1) · · · h(∆ − L̃w + 1)
...

. . .
...

h(∆ + ν) h(∆ + ν − 1) · · · h(∆ + ν − L̃w + 1)






(17)

The key observation is that

[Hwin(∆ + 1)](0:ν,1:Lw) = [Hwin(∆)](0:ν,0:Lw−1) . (18)

This means that

[B (∆ + 1)](1:Lw,1:Lw) = [B (∆)](0:Lw−1,0:Lw−1) (19)

so most of B (∆ + 1) can be obtained without requiring
any computations. Now partition B (∆ + 1) as

B (∆ + 1) =

[
α gT

g B̂

]

, (20)

where B̂ is obtained from (19). Since B (∆ + 1) is almost
Toeplitz, α and all of the elements of g save the last
can be efficiently determined from the first column of B̂

[8]. Computing each of these Lw elements requires two
multiply-adds. Finally, to compute the last element of g,

g(ν−1) =
(

[Hwin](0:ν,Lw)

)T

[Hwin](0:ν,0) , (21)

requiring ν + 1 multiply-adds.

C. Computing R (∆ + 1) from R (∆)

Recall that for the MMSE design, we must compute

R (∆) = Rx − RxrR
−1
r Rrx,

where

Rx = E
[
xk xT

k

]
, (22)

Rrx = E
[
rk xT

k

]
, (23)

xk =
[
x(k − ∆), · · · , x(k − ∆ − ν)

]T
, (24)

rk =
[
r(k), · · · , x(k − Lw)

]T
. (25)

Note that Rx does not depend on ∆, and that it is
Toeplitz. Thus,

[Rx(∆ + 1)](0:ν−1,0:ν−1) = [Rx(∆)](0:ν−1,0:ν−1)

= [Rx(∆)](1:ν,1:ν) .
(26)

Let P(∆) = RxrR
−1
r Rrx. Observing that

[Rrx(∆ + 1)](0:Lw,0:ν−1) = [Rrx(∆)](0:Lw,1:ν) , (27)

we see that

[P(∆ + 1)](0:ν−1,0:ν−1) = [P(∆)](1:ν,1:ν) . (28)

Combining (26) and (28),

[R (∆ + 1)](0:ν−1,0:ν−1) = [R (∆)](1:ν,1:ν) (29)

The matrix Rr is symmetric and Toeplitz. However, the
inverse of a Toeplitz matrix is, in general, not Toeplitz
[21]. This means that R (∆) has no further structure
that can be easily exploited, so the first row and col-
umn of R (∆ + 1) cannot be obtained from the rest of
R (∆ + 1) using the tricks in [8]. Even so, (29) allows
us to obtain most of the elements of each R (∆) for free,
so only ν + 1 elements must be computed rather than
(ν + 1) (ν + 2) /2 elements. In ADSL, ν = 32; in VDSL,
ν can range up to 512; and in DVB, ν can range up to
2048. Thus, the proposed method reduces the complex-
ity of calculating R (∆) by factors of 17, 257, and 1025
(respectively) for these standards.

D. Intelligent eigensolver initialization

Let w (∆) be the MSSNR solution for a given delay. If
we were to increase the allowable filter length by 1, then
it follows that

ŵ (∆ + 1) = z−1w (∆) =
[
0,wT (∆)

]T
(30)

should be a near-optimum solution, since it produces the
same value of the shortening SNR as for the previous
delay. Experience suggests that the TEQ coefficients are
small near the edges, so the last tap can be removed
without drastically affecting the performance. Therefore,

ŵ (∆ + 1) =
[

0,
[
wT (∆)

]

(0:Lw−1)

]T

(31)

is a fairly good solution for the delay ∆+1, so this should
be the initialization for the generalized eigenvector solver
for the next delay. Similarly, for the MMSE TIR,

b̂ (∆ + 1) =
[

0,
[
bT (∆)

]

(0:ν−1)

]T

(32)

should be the initialization for the eigenvector solver for
the next delay.
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TABLE II

Computational complexity of various MSSNR

implementations. MACs are real multiply-and-accumulates

and adds are real additions (or subtractions).

brute force Wu, et al. [8]
step MACs MACs

C 0 0

B (∆min) L̃2
w (ν + 1) L̃w (Lw + ν)

A (∆min) L̃2
w (Lh − ν) L̃w (Lc − ν)

Each B (∆) L̃2
w (ν + 1) L̃w (Lw + ν)

Each A (∆) L̃2
w (Lh − ν) L̃w (Lc − ν)

Total: L̃2
wL̃hN∆ L̃w (Lw + Lc) N∆

Example: 267,911,168 9,369,696

proposed
step MACs adds

C L̃hL̃w 0

B (∆min) L̃w (Lw + ν) 0

A (∆min) 0 L̃2
w

Each B (∆) 2Lw + ν + 1 0

Each A (∆) 0 L̃2
w

Total:
(

2L̃w + ν
)

(N∆ − 1) L̃2
wN∆

+L̃hL̃w

Example: 66,850 523,264

TABLE III

Computational complexity of various MMSE

implementations. MACs are real

multiply-and-accumulates.

brute force proposed
step MACs MACs

R (∆min) L̃3
w L̃3

w

Each R (∆) L̃3
w 2L̃2

w

Total: N∆L̃3
w L̃2

w

(

2 (N∆ − 1) + L̃w

)

Example: 16,744,448 1,077,248

E. Complexity comparison

Table II shows the (approximate) number of compu-
tations for each step of the MSSNR method, using the
“brute force” approach, the method in [8], and the pro-
posed approach. Note that N∆ refers to the number of
values of the delay that are possible (usually equal to
the length of the effective channel minus the CP length).
For a typical downstream ADSL system, the parame-
ters are L̃w = Lw + 1 = 32, L̃h = Lh + 1 = 512,
Lc = Lw + Lh = 542, ν = 32, and N∆ = L̃c − ν = 511.
The “example” lines in Table II show the required com-
plexity for computing all of the A’s and B′s for these
parameters using each approach. Observe that [8] beats
the brute force method by a factor of 29, the proposed
method beats [8] by a factor of 140, and the proposed
method beats the brute force method by a factor of 4008.

Table III shows the (approximate) computational re-
quirements of the “brute force” approach and the pro-
posed approach for computing the matrices R (∆) ,∆ ∈
{∆min, · · · ,∆max}. The “example” line shows the re-
quired complexity for computing the R (∆) matrices us-
ing each method for the same parameter values as the
example in Table II. The proposed method yields a de-
crease in complexity by a factor of the channel shortener
length over two, which in this case is a factor of 16.

It is also interesting to compare the complexity of the
MSSNR design to that of the MMSE design. There are
several steps that add to the complexity: the compu-
tation of the matrices A, B, and R (∆), as addressed in

Tables II and III; and the computation of the eigenvector
or generalized eigenvector corresponding to the minimum
eigenvalue of R (∆) or minimum generalized eigenvalue
of (A,B). If “brute force” designs are used, then the
computation of the MSSNR matrices cost Lh/L̃w times
more than the computation of the MMSE matrices, or 16
times more in the example; and if the proposed methods
are used, then the computation of the MSSNR matrices
cost roughly (2L̃w + ν)/2L̃2

w times as much as the com-
putation of the MMSE matrices, or 16 times less in the
example. However, both solutions also require the com-
putation of an eigenvector for each delay, and the cost
of this step depends heavily on both the type of eigen-
solver used and the values of the matrices involved, so an
explicit comparison cannot be made.

V. Symmetry in the Impulse Response

This section discusses symmetry in the TEQ impulse
response. It is shown that the MSSNR TEQ with a unit-
norm constraint on the TEQ will become symmetric as
the TEQ length goes to infinity, and that in the finite
length case, the asymptotic result is approached quite
rapidly.

A. Finite length symmetry trends

Consider the MSSNR problem of (3), in which the
all-zero solution was avoided by using the constraint
‖cwin‖ = 1. However, some MSSNR designs use the al-
ternative constraint ‖w‖ = 1. For example, in [22], an
iterative algorithm is proposed which performs a gradi-
ent descent of ‖cwall‖2. Although it is not mentioned in
[22], this algorithm needs a constraint to prevent the triv-
ial solution w = 0. A natural constraint is to maintain
‖w‖ = 1, which can be implemented by renormalizing
w after each iteration. Similarly, a blind, adaptive algo-
rithm was proposed in [10], which is a stochastic gradient
descent on ‖cwall‖2, although it leads to a window size of
ν instead of ν +1. (A still has the same size in this case,
but the elements may be slightly different.) For these
two algorithms, the solution must satisfy

min
w

(
wT Aw

)
subject to wT w = 1. (33)

This leads to a TEQ that must satisfy a traditional eigen-
vector problem,

Aw = λw. (34)

In this case, the solution is the eigenvector correspond-
ing to the smallest eigenvalue. Henceforth, we will refer
to the solution of (34) as the MSSNR Unit Norm TEQ
(MSSNR-UNT) solution.

A centrosymmetric matrix has the property that when
rotated 180o (i.e. flip each element over the center of the
matrix), it is unchanged. If a matrix is symmetric and
Toeplitz (constant along each diagonal), then it is also
centrosymmetric [21]. By inspecting the structure of A,
it is easy to see that it is symmetric, and nearly Toeplitz.
(In fact, the near-Toeplitz structure is the idea behind the
fast algorithms in [8], in which Ai+1,j+1 is computed from
Ai,j with a small tweak.) Hence, A is approximately a
symmetric centrosymmetric matrix. The eigenvectors of
such matrices are either symmetric or skew-symmetric,
and in special cases the eigenvector corresponding to the
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Fig. 3. Energy in the skew-symmetric part of the TEQ over the
energy in the symmetric part of the TEQ, for ν = 32. The data
was delay-optimized and averaged over CSA test loops 1 - 8.

smallest eigenvalue is symmetric [23], [24], [25]. Thus, we
expect the MSSNR-UNT TEQ to be approximately sym-
metric or skew-symmetric, since it is the eigenvector of
the symmetric (nearly) centrosymmetric matrix A, cor-
responding to the smallest eigenvalue. Oddly, it appears
that the MSSNR-UNT TEQ is always symmetric as op-
posed to skew-symmetric, and the point of symmetry is
not necessarily in the center of the impulse response.

To quantify the symmetry of the finite-length MSSNR-
UNT TEQ design for various parameter values, we com-
puted the TEQ for Carrier Serving Area (CSA) test loops
[26] 1 through 8, using TEQ lengths 3 ≤ L̃w ≤ 40. For
each TEQ, we decomposed w into wsym and wskew, then
computed ‖wskew‖2/‖wsym‖2. A plot of this ratio (aver-
aged over the eight channels) for the MSSNR-UNT TEQ
is shown in Fig. 3. The symmetric part of each TEQ was
obtained by considering all possible points of symmetry,
and choosing the one for which the norm of the symmetric
part divided by the norm of the perturbation was max-
imized. For example, if the TEQ were w = [1, 2, 4, 2.2],
then wsym = [0, 2.1, 4, 2.1] and wskew = [1,−0.1, 0, 0.1].
The value of ∆ was the delay which maximized the short-
ening SNR. The point of Fig. 3 is not to prove that
the infinite-length MSSNR-UNT TEQ is symmetric (that
will be addressed in Section V-B), but rather to give an
idea of how quickly the finite-length design becomes sym-
metric.

Observe that the MSSNR-UNT TEQ (Fig. 3) becomes
increasingly symmetric for large CP and TEQ lengths.
For parameter values that lead to highly symmetric
TEQs, the TEQ can be initialized by only computing
half of the TEQ coefficients. For MSSNR, MSSNR-UNT,
and MMSE solutions, this effectively reduces the problem
from finding an eigenvector (or generalized eigenvector)

of an N̂ ×N̂ matrix to finding an eigenvector (or general-

ized eigenvector) of a dN̂/2e×dN̂/2e matrix, as shown in

[23], where we use N̂ to mean L̃w for the MSSNR TEQ
computation and to mean ν for the MMSE TIR compu-
tation. This leads to a significant reduction in complex-
ity, at the expense of throwing away the skew-symmetric
portion of the filter. Reduced complexity algorithms are

discussed in Section VI.

B. Infinite length MSSNR designs: asymptotic results

This section examines the limiting behavior of A and
B, and the resulting limiting behavior of the eigenvectors
of A (i.e. the MSSNR-UNT solution). We will show that

lim
Lw→∞

‖HT H − A‖F

‖A‖F
= 0 (35)

where ‖·‖F denotes the Frobenius norm [27]. Since HT H

is symmetric and Toeplitz (and thus centrosymmetric),
its eigenvectors are symmetric or skew-symmetric. Thus,
as Lw → ∞, we can expect the eigenvectors of A to
become symmetric or skew-symmetric. Although this is
a heuristic argument, the more rigorous sin(θ) theorem1

[28] is difficult to apply.
First, consider a TEQ that is finite, but very long.

Specifically, we make the following assumptions:

A1: ∆ > Lh > ν,
A2: Lw > ∆ + ν.

Such a large ∆ in A1 is reasonable when the TEQ length
is large. Now we can partition H as

H =





H1 HL2 HL1 0 0

0 HU3 HM HL3 0

0 0 HU1 HU2 H2



 (36)

The row blocks have heights ∆, (ν + 1), and (Lh + Lw −
ν − ∆); and the column blocks have widths (∆ − Lh),
(ν + 1), (Lh−ν−1), (ν + 1), and (Lw −ν−∆). The sec-
tions [HL2,HL1] and HL3 are both lower triangular and
contain the “head” of the channel, [HU1,HU2] and HU3

are both upper triangular and contain the “tail” of the
channel, H1 and H2 are tall channel convolution matri-
ces, and HM is Toeplitz. Then Hwin is simply the middle
row (of blocks) of H, and Hwall is the concatenation of
the top and bottom rows.

Under the two assumptions above, HU3, HM , and HL3

will be constant for all values of ∆ and Lw. As such, the
limiting behavior of B = HT

winHwin is

B = [0,HU3,HM ,HL3,0]
T

[0,HU3,HM ,HL3,0]

4
=

[

0,H
T

3 ,0
]T [

0,H
T

3 ,0
]

, (37)

where H3 is a size (ν + L̃h)× (ν +1) channel convolution
matrix formed from Jh, the time-reversed channel. Since

B is a zero-padded version of H3H
T

3 , it has the same
Frobenius norm. Also, the values of Lw and ∆ affect the
size of the zero matrices in (37) but not H3 (assuming
that our assumptions hold), so Lw and ∆ do not affect
the Frobenius norm of B. Therefore,

‖B‖2
F = constant

4
= BF (38)

whenever our two initial assumptions A1 and A2 are met.

1The sin(θ) theorem is a commonly used bound on the angle
between the eigenvector of a matrix and the corresponding eigen-
vector of the perturbed matrix. This bound is a function of the
eigenvalue separation of the matrix, which is not explicitly known
in our problem; hence, the theorem cannot be directly applied.
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The limiting behavior for A is determined by noting
that

A =









HT
1 H1 · · · · · · · · · 0

HT
L2H1 · · · · · · · · · 0

HT
L1H1 · · · · · · · · · HT

U1H2

0 · · · · · · · · · HT
U2H2

0 · · · · · · · · · HT
2 H2









(39)

(Only the top-left and bottom-right blocks are of interest
for the proof.) Thus, a lower bound on the Frobenius
norm of A can be found as follows:

‖A‖2
F ≥ ‖HT

1 H1‖2
F + ‖HT

2 H2‖2
F

≥ ‖h‖4
2 · ((∆ − Lh) + (Lw − ν − ∆))

= ‖h‖4
2 · (Lw − Lh − ν) , (40)

which goes to infinity as Lw → ∞. In the second inequal-
ity, we have dropped all of the terms in the Frobenius
norms except for those due to the diagonal elements of
HT

1 H1 and HT
2 H2.

Now let C
4
= HT H, and recall from (15) that C =

A + B. Thus,

‖C − A‖2
F

‖A‖2
F

=
‖B‖2

F

‖A‖2
F

≤ BF

‖h‖4
2 · (Lw − (Lh + ν))

, (41)

which goes to zero as Lw → ∞. Thus, in the limit,
A approaches C, which is a symmetric centrosymmetric
matrix. Heuristically, this suggests that in the limit, the
eigenvectors of A (including the MSSNR-UNT solution)
will be symmetric or skew-symmetric. However, for spe-
cial cases (such as tridiagonal matrices), the eigenvector
corresponding to the smallest eigenvalue is always sym-
metric as opposed to skew-symmetric [23]. Every single
MSSNR TEQ that we have observed for ADSL channels
has been nearly symmetric rather than skew-symmetric,
suggesting (not proving) that the infinite length TEQ
will be exactly symmetric. Thus, constraining the finite-
length solution to be symmetric is expected to entail no
significant performance loss, which is supported by sim-
ulation results. Essentially, if v is an eigenvector in the
eigenspace of the smallest eigenvalue, then Jv is as well,
so 1

2 (v + Jv) (which is symmetric) is as well, even if the
smallest eigenvalue has multiplicity larger than 1.

Note that in the limit, B does not become centrosym-
metric (refer to (37)), although it is approximately cen-
trosymmetric about a point off of its center. Thus, we
cannot make as strong of a limiting argument for the
MSSNR solution as for the MSSNR-UNT solution. Sym-
metry in the finite-length MSSNR solution is discussed
in [15].

VI. Exploiting Symmetry in TEQ Design

In [15], it was shown that the MMSE target impulse
response becomes symmetric as the TEQ length goes
to infinity, and in Section V-B it was shown that the
infinite-length MSSNR-UNT TEQ is an eigenvalue of a
symmetric centrosymmetric matrix, and is expected to be
symmetric. In [16] and [17], simulations were presented
for forcing the MSSNR TEQ to be perfectly symmetric
or skew-symmetric. This section present algorithms for
forcing the MMSE TIR to be exactly symmetric in the

case of a finite length TEQ, and for forcing the MSSNR-
UNT TEQ to be symmetric when it is computed in a
blind, adaptive manner via the MERRY algorithm [10].
It is also shown that when the TEQ is symmetric, the
TEQ and FEQ designs can be done independently (and
thus in parallel).

Consider forcing the MSSNR-UNT TEQ to be sym-
metric as a means of reducing the computational com-
plexity. The MSSNR-UNT TEQ arises, for example, in
the MERRY algorithm [10], which is a blind, adaptive
algorithm for computing the TEQ; or in the algorithm in
[22] (if the constraint used is a unit norm TEQ), which
is a trained, iterative algorithm for computing the TEQ.
We focus here on extending the MERRY algorithm to the
symmetric case. Briefly, the idea behind the MERRY
algorithm is that the transmitted signal inherently has
redundancy due to the CP, so that redundancy should
be evident at the receiver if the channel is short enough.
The measure of redundancy is the MERRY cost,

JMERRY = E
[

|y(Mk + ν + ∆) − y(Mk + ν + N + ∆)|2
]

(42)
where M = N + ν is the symbol length, k is the sym-
bol index, and ∆ is a user-defined synchronization delay.
This cost function measures the similarity between a data
sample and its copy in the CP (N samples earlier). The
MERRY algorithm is a gradient descent of (42).

In practical applications, the TEQ length is even, due
to a desired efficient use of memory. Thus, a symmetric

TEQ has the form wT =
[

vT , (Jv)
T
]

, where J is the

matrix with ones on the cross-diagonal and zeros else-
where. (An even TEQ length is not necessary; a similar
partition can be made in the odd-length case, as will be
done for the MMSE target impulse response later in this
section.) The TEQ output is

y(Mk + i) =

Lw∑

j=0

w(j) · r(Mk + i − j), (43)

which can be rewritten for a symmetric TEQ as

y(Mk + i) =

L̃w/2−1
∑

j=0

v(j) · (r(Mk + i − j)+

r(Mk + i − Lw + j)).

(44)

The Sym-MERRY update is a stochastic gradient descent
of (42) with respect to the half-TEQ coefficients v, with a
renormalization to avoid the trivial solution v = 0. The
algorithm is

For symbol k = 0, 1, 2, . . . ,

ũ(k) = u(Mk + ν + ∆) − u(Mk + ν + N + ∆)

e(k) = vT (k) ũ(k)

v̂(k + 1) = v(k) − µ e(k) ũ∗(k)

v(k + 1) =
v̂(k + 1)

‖v̂(k + 1)‖2

(45)
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where

u(i) =
[

r(i) + r(i − Lw), · · · , r(i − L̃w

2
+ 1) + r(i − L̃w

2
)

]T

(46)

Compared to the regular MERRY algorithm in [10], the
number of multiplications has been cut in half for Sym-
MERRY, though some additional additions are needed to
compute ũ. Simulations of Sym-MERRY are presented
in Section VII.

Now consider exploiting symmetry in the MMSE tar-
get impulse response in order to reduce computational
complexity. Recall that in the MMSE design, first the
TIR b is computed as the eigenvector of R (∆) [as de-
fined in (11)], and then the TEQ w is computed from
(8). The MSE (which we wish to minimize) is given by

E
[
e2

]
= bT R (∆) b. (47)

Typically, the CP length ν is a power of 2, so the TIR
length (ν + 1) is odd. This is the case, e.g., in ADSL
[29], IEEE 802.11a [30] and HIPERLAN/2 [31] wireless
LANs, and digital video broadcast (DVB) [32]. To force
a symmetric TIR, partition the TIR as

bT =
[

vT , γ, (Jv)
T
]

, (48)

where γ is a scalar and v is a real ν
2 × 1 vector. Now

rewrite the MSE as

[
vT , γ,vT J

]





R11 R12 R13

R21 R22 R23

R31 R32 R33









v

γ
Jv





=
[√

2vT , γ
]

R̂

[√
2v
γ

]
(49)

where

R̂ =
[

1
2 (R11 + R13J + JR31 + JR33J) 1√

2
(R12 + JR32)

1√
2

(R21 + R23J) R22

]

(50)

For simplicity, let v̂T =
[√

2vT , γ
]
. In order to prevent

the all-zero solution, the non-symmetric TIR design uses
the constraint ‖b‖ = 1. This is equivalent to the con-
straint ‖v̂‖ = 1. Under this constraint, the TIR the
minimizes the MSE must satisfy

R̂ v̂ = λ v̂, (51)

where λ is the smallest eigenvalue of R̂. Since both R and
R̂ are symmetric, solving (51) requires 1

4 as many compu-
tations as solving the initial eigenvector problem. How-
ever, the forced symmetry could, in principle, degrade
the performance of the associated TEQ. Simulations of
the Sym-MMSE algorithm are presented in Section VII.

Another advantage of a symmetric TEQ is that it has
a linear phase with known slope, allowing the FEQ to
be designed in parallel with the TEQ. A symmetric TEQ

can be classified as either a Type I or Type II FIR Linear
Phase System ([33], pp. 298–299). Thus, for a TEQ with
Lw + 1 taps, the transfer function has the form

W
(
ejω

)
= M (ω) exp

(

−j
Lw

2
ω + jβ

)

, (52)

where M (ω) = M (−ω) is the magnitude response. The
DC response is

M(0) ejβ =

Lw∑

k=0

w(k). (53)

Since the TEQ is real, ejβ must be real, so

β =

{
0,

∑

k w(k) > 0,
π,

∑

k w(k) < 0.
(54)

If
∑

k w(k) = 0, the DC response does not reveal the
value of β. In this case, one must determine the phase
response at another frequency, which is more complicated
to compute. The response at ω = π is fairly easy to
compute, and will also reveal the value of β.

From (52) – (54), given the TEQ length, the phase re-
sponse of a symmetric TEQ is known up to the factor
ejβ , even before the TEQ is designed. The phases of the
FEQs are then determined entirely by the channel phase
response. Thus, if a channel estimate is available, the
two possible FEQ phase responses could be determined
in parallel with the TEQ design. Similarly, if the TIR is
symmetric and the TEQ is long enough that the TIR and
effective channel are almost identical, then the phase re-
sponse of the effective channel is known, except for β. If
differential encoding is used, then the value of β can arbi-
trarily be set to either 0 or π, since a rotation of exactly
180 degrees does not affect the output of a differential
detector. Furthermore, if 2-PAM or 4-QAM signaling is
used on a subcarrier, the magnitude of the FEQ does not
matter, and the entire FEQ for that tone can be designed
without knowledge of the TEQ.

For an ADSL system, 4-QAM signaling is used on all
of the subcarriers during training. Thus, the FEQ can
be designed for the training phase by only setting its
phase response. The magnitude response can be set after
the TEQ is designed. The benefit here is that if the
FEQ is designed all at once (both magnitude and phase),
then a division of complex numbers is required for each
tone. However, if the phase response is already known,
determining the FEQ magnitude only requires a division
of real numbers for each tone. This can allow for a more
efficient implementation.

VII. Simulations

This section presents simulations of the Sym-MERRY
and Sym-MMSE algorithms. The parameters used for
the Sym-MERRY algorithm were an FFT size of N =
512, a CP length of ν = 32, a TEQ length of L̃w =
16 (8 taps get updated, then mirrored), and an SNR of
σ2

x‖h‖2/σ2
n = 40 dB, with white noise. The channel was

CSA loop 4 (available at [34]). The DSL performance
metric is the achievable bit rate for a fixed probability of
error,

B =
∑

i

log2

(

1 +
SNRi

Γ

)

,
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Fig. 4. Performance of Sym-MERRY vs. time for CSA loop 4.
Top: MERRY cost. Bottom: achievable bit rate.

where SNRi is the signal to interference and noise ratio
in frequency bin i. (We assume a 6 dB margin and 4.2 dB
coding gain; for more details, refer to [9].) Fig. 4 shows
performance vs. time as the TEQ adapts. The dashed
line represents the solution obtained by a non-adaptive
solution to the MERRY cost (42), without imposing sym-
metry, and the dotted line represents the performance
of the MSSNR solution [5]. Observe that Sym-MERRY
rapidly obtains a near-optimal performance. The jitter-
ing around the asymptotic portion of the curve is due to
the choice of a large stepsize.

The simulations for the Sym-MMSE algorithm are
shown in Fig. 5 and in Table IV. In Fig. 5, TEQs were
designed for CSA loops 1–8, then the bit rates were av-
eraged. The TEQ lengths that were considered were
3 ≤ L̃w ≤ 128. For TEQs with fewer than 20 taps, the
bit rate performance of the symmetric MMSE method is
not as good as that of the unconstrained MMSE method.
However, asymptotically, the results of the two methods
agree; and for some parameters, the symmetric method
achieves a higher bit rate. Table IV shows the individ-
ual bit rates achieved on the 8 channels using 20 tap
TEQs, which is roughly the boundary between good and
bad performance of the Sym-MMSE design in Fig. 5.
On average, for a 20-tap TEQ, the Sym-MMSE method
achieves 89.5% of the bit rate of the MMSE method, with
a significantly lower computational cost, but the perfor-
mance (at this filter length) varies significantly depending
on the channel. Thus, it is suggested that the symmetric
MMSE design only be used for TEQs with at least 20
taps, and preferably more.

VIII. Conclusions

The computational complexity of two popular channel
shortening algorithms, the MSSNR and MMSE meth-
ods, has been addressed. A method was proposed which
reduces the complexity of computing the A and B matri-
ces in the MSSNR design by a factor of 140 (for typical
ADSL parameters) relative to the methods of Wu, Ar-
slan, and Evans [8], for a total reduction of a factor of
4000 relative to the brute force approach, without de-
grading performance. A similar technique was proposed
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Fig. 5. Achievable bit rate in Mbps of MMSE (solid) and Sym-
MMSE (dashed) designs vs. TEQ length, averaged over eight CSA
test loops.

TABLE IV

Achievable bit rate (Mbps) for MMSE and Sym-MMSE,

using 20-tap TEQs and 33-tap TIRs. The last column is the

performance of the Sym-MMSE method in terms of the

percentage of the bit rate of the MMSE method. The

channel has AWGN but no crosstalk.

Loop # MMSE Sym-MMSE Relative
CSA1 8.6323 7.9343 91.91%
CSA2 9.1396 9.1721 100.36%
CSA3 8.5877 8.3360 97.07%
CSA4 8.3157 5.6940 68.47%
CSA5 8.4821 6.3433 74.78%
CSA6 8.8515 9.0016 101.70%
CSA7 7.5244 5.8360 77.56%
CSA8 7.2037 7.4878 103.94%

to reduce the complexity of computing the R (∆) matrix
used in the MMSE design by a factor of 16 (for typical
ADSL parameters). It was also shown that the infinite
length MSSNR TEQ with a unit norm TEQ constraint
has a symmetric impulse response. Algorithms for reduc-
ing complexity by exploiting symmetry in the TEQ and
target impulse response were derived, and simulations
were used to show that the symmetric algorithms incur
only a minor performance penalty. The Matlab code to
reproduce the figures in this paper is available online [35].
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