Texture Enhanced Image Denoising via Gradient Histogram Peservation
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Abstract tionary, the sparsity prior has proved to beeetive in im-
age denoising vid-norm orli;-norm minimization [[8[9].
Image denoising is a classical yet fundamental problem Another popular prior is the nonlocal self-similarity (NSS

in low level vision, as well as an ideal test bed to eval- prior [2,[1€]; that is, in natural images there are often many
uate various statistical image modeling methods. One of similar patches (i.e., nonlocal neighbors) to a given patch
the most challenging problems in image denoising is how which may be spatially far from it. The joint use of sparsity
to preserve the ne scale texture structures while remov- prior and NSS prior has led to state-of-the-artimage denois
ing noise. Various natural image priors, such as gradi- ing results[[7] 2ll]. However, the many denoising algorithms
ent based prior, nonlocal self-similarity prior, and spays based on the above priors can still fail to preserve the im-
prior, have been extensively exploited for noise removal. age ne scale texture structures, which have certain operla
The denoising algorithms based on these priors, however,with noise in the frequency domain. The over-smoothing of
tend to smooth the detailed image textures, degrading thethose detailed texture structures makes the denoised image
image visual quality. To address this problem, in this pa- look less natural, degrading much the visual quality (eas
per we propose a texture enhanced image denoising (TEID)refer to Fig[1 for example).

method by enforcing the gradient distribution of the de-  \yith the rapid development of digital imaging technol-

noised image to be close to the estimated gradient distri- 54 the resolution of imaging sensor is getting higher and
bution of the original image. A novel gradient histogram higher. On one hand, more ne texture features of the ob-

preservation (GHP) algorithm is developed to enhance thejeCt and scene will be captured; on the other hand, the cap-

texture structures while removing noise. Our experimental ;.o high resolution image is more prone to noise because
results demonstrate that the proposed GHP based TEID cany, g gmajier size of each pixel makes the exposure less su
well preserve the texture features of the denoised images ant. However, suppressing noise while preserving testur
making them look more natural. is di cultto achieve simultaneously, and this has been one
of the most challenging problems in natural image denois-
) ing. Unlike large scale edges, the ne scale textures have
1. Introduction much higher randomness in local structure and they are hard
t to characterize by using a local model. Considering the fact
that texture regions in an image are homogeneous and are
usually composed of similar patterns, statistical desorp
such as histogram are moreegtive to represent them. Ac-

The goal of image denoising is to estimate the laten
clean image from its noisy observatiop. One commonly
used observation model ys= x + v, wherev is additive
white Gaussian noise. Image denoising is a classical et sti 0 . :
active topic in image processing and low level vision, while 1ally, in literature of texture representation and classi
it is an ideal test bed to evaluate various statistical image 10N [13,27/28], global histogram of some local features is

modeling methods. In general, we hope that the denoiseodominantly u_sed_as the naI_feature descriptor for match_—
image should look like maturalimage, and therefore the N9- Meanwhile, image gradients convey most of semantic

statistical modeling of natural image priors is crucialie t ~ information in an image and are crucial to the human per-
success of image denoising. ception of image visual quality. All these motivate us to

Based on the fact that natural image gradients exhibit YS€ the histogram of image gradient to design new image

heavy-tailed distributions, gradient-based priors amelyi denoising models.

used in image denoising [10,117,]18]. The well-known to-  With the above consideration, in this paper we propose a
tal variation minimization methods actually assume Lapla- novel method for texture enhanced image denoising (TEID)
cian distribution of image gradienfs [25]. By observingttha via gradient histogram preservation (GHP). From the given
natural images can be sparsely coded over a redundant dicroisy imagey, we will estimate the gradient histogram of



methods. Most denoising methods reconstruct the clean im-
age by exploiting some image and noise prior models, and
they belong to the rst category. Learning-based methods
attempt to learn a mapping function from the noisy image

to the clean image [26], and have been receiving consid-
erable research interesfd [3]. Numerous image denoising
algorithms have been proposed, and here we only review
those model-based denoising methods related to our work
from a viewpoint of natural image priors.

(b) Studies on natural image priors aim to nd suitable mod-
) els to describe the characteristics or statistics (e.gtribli-
tion) of images in some transformed domain. One represen-
tative class of image priors is the gradient priors based on
the observation that natural images generally have a heavy-
tailed distribution of gradients. The use of gradient prior
can be traced back to 1990s, when Rudin et [al] [25] pro-

4 Reference R
° T Sheenemen ) posed a total variation (TV) model for image denoising,
W v where the gradients are actually modeled by Laplacian dis-
Gradient Magnitude tribution. Another well-known prior model, the mixture of
(c) (d) Gaussians (GMM), can also be used to approximate the

Figure 1. Denoised images and their gradient histogram3. (a distribution of gradient magnitudé [110.119]. In addition,
A cropped image with hair textures; (b) denoised image by the the hyper-Laplacian model can more accurately model the
SAPCA-BM3D method[[16]; (c) denoised image by the proposed heavy-tailed distribution of gradients, and has been widel
texture enhanced image denoising via gradient histograsepr applied to various image restoration tagks [4, 5[ 15[ 117, 18]

vation (GHP); (d) the gradient histograms of the denoiseabies. . . _— . . .
We can see that the proposed GHP method leads to bettereextur _Thg Image grad_lent p_rlor_ IS paS|_CaIIy a kind of sparsity
prior, i.e., the gradient distribution is sparse. More gene

preservation and visual perception, and the gradientdniato of v, th X ior has b I lied |
the denoised image by GHP is also closer to the referencésgtad ally, the sparsity prior has been we app led to lter re-
histogram estimated from the noisy image. sponses, wavel&trvelet transform coecients, or the cod-

ing coe cients over a redundant dictionary. [n 23] 29],

Gaussian scale mixtures are used to characterize the margin
original imagex. Take this estimated histogram, denoted by and joint distributions of wavelet transform coeients. In
h:, as a reference, we search for an estimatewith GHP, [24,[31], the Studerttdistributions are used for both learn-
i.e., the gradient histogram of the denoised image shoulding basis Iters and modeling lter responses. By assuming
be close toh;. As shown in Fig.[L, the proposed TEID that an image patch can be represented as a sparse linear
method can well enhance the image texture regions, whichcombination of the atoms in an over-complete dictionary, a
are often over-smoothed by other denoising methods. Thenumber of dictionary learning (DL) methods (e.g., K-SVD
major contributions of this paper are as follows: [9], task driven DL[20], and ASD$ [8]) have been proposed
(1) A novel image denoising framework, i.e., TEID, is and applied to image denoising and other restoration tasks.

proposed, which preserves the gradient distribution of  Based on the fact that a similar patch to the given patch
the original image. The existing image priors can be may not be spatially close to it, another line of research is t
easily incorporated into the proposed framework to im- model the similarity between image patches, i.e., the image
prove the quality of denoised image. nonlocal self-similarity (NSS) priors. The seminal work of
(2) A histogram speci cation operator is developed to en- 1y incal means denoising ifi [2] has motivated a wide range
sure the gradient histogram of denoised image being ¢ <t,dies on NSS, and has led to a urry of NSS based

close to the reference histogram, resulting in a simple giata_of-the-art denoising methods, e.g., BMBD [16], LSSC
yet e ective GHP based TEID algorithm. [21], and EPLL [32], etc.

(3) A simple but theoretically solid algorithm is presented
to estimate the gradient histogram from the given noisy
image, making TEID practical to implement.

Di erent image priors characterize drent and com-
plementary aspects of natural image statistics, and thus it
is possible to combine multiple priors to improve the de-
2. Related work noising performance. For example, Dong et @l. [7] uni ed

both image local sparsity and nonlocal similarity priora vi

Generally, image denoising methods can be grouped inclustering-based sparse representation. Recently, algncs

two categories: model-based methods and learning-baseeét al. [14] proposed a method called regression tree elds



(RTF) to integrate dierent priors.
However, many existing image denoising algorithms, in-

method will be discussed in Sectidh 4). In order to make the
gradient histogram of denoised imag@early the same as

cluding those sparsity and NSS priors based ones, tend tdhe reference histogram, we propose the following GHP

wipe out the image detailed textures while removing noise.
As we discussed in the Introduction section, considering

the randomness and homogeneousness of image texture re-

gions, we propose to use the histogram of gradient to de-

scribe the image texture and design new image denoising

based image denoising model:
n 0
R =argming s5ky XK+ RX)+ KF(rx) r xk
st:hg = h, '
)

algorithm with gradient histogram preservation. [Ih[[4, 5], whereF denotes an odd function which is monotonically

Cho et al. used hyper-Laplacian to model gradient, and pro-
posed a content-aware prior for image deblurring by setting
di erent shape parameters of gradient distribution iredi

ent image regions. By matching the gradient distribution
prior, Cho et al. found that the deblurred images can have
more detailed textures as well as better visual quality. How
ever, in [4]5] the estimation of desired gradient distridvit

is rather heuristic, and the gradient histogram matching al
gorithm is very complex.

3. Denoising with gradient histogram preser-
vation (GHP)

In this section, we rst present the image denoising
model by gradient histogram preservation with sparse non-
local regularization, and then present ameetive histogram
speci cation algorithm to solve the proposed model for tex-
ture enhanced image denoising.

3.1. The denoising model

Given a clean imagg, the noisy observatiog of x is
usually modeled as

y=X+v, ()

where v is the additive white Gaussian noise (AWGN)
with zero mean and standard deviation The goal of
image denoising is to estimate the desired imageom
y. One popular approach to image denoising is the varia-
tional methog, in which the denoiged image is obtained by
X = argmir 2—1zky xik+ R(X), whereR(x) denotes
some regularization term andis a positive constant. The
speci ¢ form of R(x) depends on the used image priors.
One common problem of image denoising methods is

non-descending i(D; +1 ), hg denotes the histogram of the
transformed gradient imagi€ (r x)j, andr denotes the gra-
dient operator. By introducing the transfofwe can use
the alternating method for image denoising. Gignwe

can X r Xo = F(r x), and use the conventional denoising
methods to updatg. Givenx, we can updatd- simply

by the histogram operator introduced in Secfion 3.2. Thus,
with the introduction of, we can easily incorporate gradi-
ent histogram prior with any existing image prié&).

The sparsity and NSS priors have shown promising per-
formance in denoising, and thus we integrate them into the
proposed GHP model. Speci cally, we adopt the sparse
nonlocal regularization term proposed in the centralized
sparse representation (CSR) modél [7], resulting in the fol
lowing denoising model:

( . )
o — in ﬁky Xk2+ i i i1
XZaAMFE L ey roxi@ E)
sttx=D ; hg=h

where is the regularization paramet&,is the dictionary
and is the coding coe cients ofx overD.

Let's explain more about the model in E@] (3). bet=
Rix be a patch extracted at positign = 1;2;:::;N, where
R; is the patch extraction operator aNdis the number of
pixels in the image. Eack is coded over the dictionary,
and the coding coecientsis ;. Let be the concatenation
of all ;, and thernx can be reconstructed by

X N
x=D _, RIRi (4)
The physical meaning of Eq[](4) is that we use= D |
to reconstruct each patedy, and then put all reconstructed

patches together as the denoised imiadéhe overlapped

X N
_,RD &

that the image ne scale details such as texture structurespixels between neighboring patches are averaged).

will be over-smoothed. An over-smoothed image will have
much weaker gradients than the original image. Intuitively
a good estimation of without smoothing too much the tex-

tures should have a similar gradient distribution to that of
X. With this motivation, we propose a gradient histogram

preservation (GHP) model for texture enhanced image de-

noising (TEID).
Our intuitive idea is to integrate the gradient histogram
prior with the other image priors to further improve the de-

noising performance. Suppose that we have an estimation

of the gradient histogram of denoted by, (the estimation

In Eq. (3), ; is the nonlocal means of; in the sparse
coding domain. With the current estimate we use the
blocking matching method as inl[7] to nd the non-local
neighbors of%;, denoted byk!. Denote by {! the coding
coe cients 0f>“<iq. Then ; is computed as the weighted av-
erage of

X
(= quq & (5)
where the weight/! is de ned as
wWi=dexp g 07 6)



whereh is a parameter to controlthe decay rate &vids

a normalization fa&tor to guaranteg, vvl.q = 1. Clearly, the
regularizationterm ; ; ; , enforce the coding coe-
cients ; to approach to its nonlocal meansso that noise
can be removed, while tHe-norm comes from the fact that

i i , follows Laplacian distributiori[7].

From the GHP model with sparse nonlocal regularization
in Eq. (3), one can see that if the histogram regularization
parameter is high, the functior (r x) will be close tor x.
Since the histograing of jF (r x)jis required to be the same
ash,, the histogram of x will be similar toh,, leading to

monotonic non-parametric mapping functibrso that the
histogram ofF (r x)j is the same ak;.

Finally, we summarize our proposed iterative histogram
speci cation based GHP algorithm iAlgorithm 1. It
should be noted that, for any gradient based image denois-
ing model, we can easily incorporate the proposed GHP in it
by simply modifying the gradient term and adding an extra
histogram speci cation operation.

In [I], Attouch et al. showed that: for a nonconvex
functionL(x;y) = f(x) + Q(x;y) + g(y), if L satis es the
Kurdyka-Lojasiewicz inequality, proximal alternating mni

the desired gradient histogram preserved image denoisingimization would converge to a critical point &f Note that

Next, we will see thatthere is an €ient iterative histogram
speci cation algorithm to solve the model in E] (3).

3.2. Iterative histogram speci cation algorithm

Eqg. (3) is minimized iteratively. As in7], the local PCA
bases are used as the diction&ry Based on the current
estimation of image, we cluster its patches int6 clusters,
and for each cluster, a PCA dictionary is learned. Then for
each given patch, we rst check which cluster it belongs,
and then use the PCA dictionary of this cluster asDhe

We propose an alternating minimization method to solve
the problem in Eq.[{3). Given the transform functiepwe
introduce a variablg = F(r x), and update (i.e., ) by
solving the following sub-problem:

L P )
min, sLky xké+ i+ kg or x@

st:x=D

1

2 (7)
To get the solution to the above sub-problem, we rst use a
gradient descent method to update

(6+122) = ()

(8)

where is a pre-speci ed constant. Then, the coding coef-
cients ; are updated by

2_12(y X(k))+ rT g r X(k)

i(k+l:2) - DT Rix(k+l:2):

9)
By using Eq. [(b) to obtain;, we further update; by

1
§k+1>=s=dé>d é+ 5 (0

whereS -4 is the soft-thresholding operator, adds a con-

DT Riy
+ k+1=2)
I

D i(|<+ 1=2)

our model has a similar form to the one discussefdlin [1], and
we also adopted an alternating minimization method. Thus
the conclusions inJ1] ensure the convergence of the pro-
posed GHP algorithm, and we empirically found that our
algorithm converges well.

Algorithm 1: Iterative Histogram Speci cation for GHP

1. Initializek = 0,x® =y
2. lterateork=0;1;:::;J
3. Updatey:
g=F(rx)
4. Updatex:
1 (k)
k+122) = y(¥ 720y XY)
X xW+ (T x¥)
5. Update the coding coecients of each patch:
_(k+1=2) - DT Rix(k+1=2)
6. Update 'gﬁe nonlocal mean of coding vectar
= W ]
7. Update : |
. ip"(Ry D *1)°
kh=g_4 d f "(%14) . ) 4 i
I |
8. Updatex
>((k+1) =D (k+1)
9. UpdateF via histogram speci cation by EqC{11)
10. k k+1
11. x=x®+  rT(g r x¥)

4. Reference gradient histogram estimation

To apply the model in Eq[{3), we need to know the ref-
erence histograrh;, which is supposed to be the gradient
histogram of original image&. In this section, we propose
a one dimensional deconvolution model to estimate the his-

stant to guarantee the convexity of the surrogate fU”CtiO”togramhr. Assuming that all pixels in the gradient image

[6]. Finally, we use Eq.[{4) to update the whole image and
let it bex( 1),
Once the estimate of images given, we can update

by solving the following sub-problem:
mingkF(r x) r xiést:he = h;: (11)

To solve this sub-problem, we lely = jr xj, and use the
standard histogram speci cation operafor|[12] to obtaim th

r x are independent and identically distributed (i.i.d.), we
can view them as the samples of a scalar variable, denoted
by x. Then the normalized histogramok can be regarded

as a discrete approximation of the probability density func
tion (PDF) of x. For the additive white Gaussian noise
(AWGN) v, we can readily model its elements as the sam-
ples of an i.i.d. variable, denoted by Sincev N 0; 2

and letg = r v, one can obtain thaj is also i.i.d. Gaussian



with PDF [22] its performance in comparison with state-of-the-art denoi
, ! ing algorithms. Finally, we make some discussion of its po-
Py = pl_ exp 9 : (12) tential improvements. The Matlab source code of our algo-
2 42 rithm can be downloaded &ttp://www4.comp.polyu.

. . edu.hk/ ~cslzhang/code.htm .
Sincey = x+ v, we havery = r x + rv. Itis ready to

modelr y as an i.i.d. variable, denoted yand we have 5 1. Parameter setting
y = X+ g. Let py be the PDF ok, andpy, be the PDF of.

Sincex andg are independent, the joint POF(X; @) is, Our algorithm involves a few parameters to set, includ-
ing the regularization parameterand in Eq. (1) to bal-
P(% Q) = px Pg: (13) ance the eect of gradient preservation, constanin Eq.
(8) andd in Eq. (I0) to ensure convexity. For the parameter
Then the PDFpy is , We use the same strategy as[ih [8] to adaptively update
4 it according to the maximum a posterior (MAP) principle.

ply=t)= pudx=a) pg(g=(t a)da (14) Based on our experimental experience, we set the parameter
a to 5, and to 0.23 for noise level less than 30 while 0.26
for other noise levels. Based on the analysis1n [6], to guar-
antee the convexity of surrogate functidrshould be larger
than the spectral norm of dictionaB. Since in our algo-
hy=he hg; (15) rithm D is an orthonormal PCA matrix, artygreater than
1 will be ne, and we set it to 3 by experience. Note that
where denotes the convolution operator. Note thatan  these parameters are xed to all images in our experiments.
be obtained by discretizingy, andhy can be computed di-
rectly from the noisy observation 5.2. Denoising results
Obviously, the estimation dfiy can be generally mod-
eled as a deconvolution problem:

If we use the normalized histograim andhy to approx-
imate py and py, we can rewrite Eq.[{14) in the discrete
domain as:

To verify the performance of our proposed GHP based
TEID method, we apply it to ten natural images with vari-
ous texture structures. The scenes of these images can be
found in Fig. [3. Some state-of-the-art denoising meth-

, , o ods are used for comparison, including shape-adaptive PCA
wherec is a constant anR(hy) is some regularizationterm  p,sed BM3D (SAPCA-BM3D)T16], the learned simultane-
bgsed on the priqr inf_ormation _of natural _image's gra_dient ously sparse coding (LSSC)[21] and the CSR [7] methods.
histogram.  Considering thaty, i.e., the discrete version g codes of all the competing methods are provided by the
of py, can be well modeled as hyper-Laplacian distribution gthors and we used the recommended parameters by the
[4.15,[17], in this paper we use a simple parametric method 5 ;thors. Considering the fact when noise is too strong, all

hr =argmin, h, h, hg +c R(hy) ;  (16)

to estimatepx and then discretize it intby. methods cannot recover the ne scale texture structures in
The hyper-Laplacian modeling @ is: the image, and in practice the noise is often moderate or be-
b= kexp( X ) (17) !ow, we set _the AWGN noise level 2 f20;25;30; 35, 40g
' in the experiments.
wherek is the normalization factor. The estimationpfis ~ 1he quantitative experimental results by the compet-
converted into the estimation of parameterand . Con-  iNg methods are shown TaHlé 1. Apart from PSNR, we
sidering the fact that for natural imagesand will have also list the results by using the perceptual quality metric

a relatively narrow range, we preset a range of each of theSSIM [30]. From this table, we can see that the proposed
two parameters, and then search for the gair) which GHP method has similar PSN&SIM measures to SAPCA-

BM3D, LSSC and CSR. Nonetheless, the goal of our GHP
2 [0:00%:3] and 2 [0:021:5]. In addition, in our method is to preserve and enhance the image texture struc-

experiments the Nelder-Mead method is used to make the_tures, and lets compare the visual quality of the denoiseq
searching more ecient. Fig[2 shows an example of refer- Images by these m_ethods. Fig. 4 Sh.OWS an example. In this
ence gradient histogram estimation. It can be seen that oufmage. there are d_ergnt texture regions, such as the sky,
method can obtain a good estimatiorhgf tree, water and building. We can see that_SAPCA—BMBD,
LSSC and CSR smooth much the textures in tree, water and
building areas, while SAPCA-BM3D introduces some arti-
facts in the smooth sky area. Though they have good PSNR
We rst give the parameter setting in our GHP based and even SSIM indices, the denoised images by them look

TEID algorithm, and then conduct experiments to validate somewhat unnatural. In contrast, the proposed GHP method

makes hy, hy hg ? the smallest. Speci cally, we let

5. Experimental results
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Figure 2. An example of reference gradient histogram esitima(a) Real and simulated AWGN gradient histograms @tgsel = 30);
(b) real and simulated gradient histograms of noisy imagé;(e) real and estimated gradient histograms of the cleagém

Table 1. PSNR (dB) and SSIM results by drent methods.
\ SAPCA-BM3D[16] [ LSSC[21] I CSRI[7] I GHP
[ 20 [ 25 | 30 | 35 | 40 || 20 | 25 | 30 | 35 [ 40 || 20 | 25 | 30 | 35 | 40 || 20 | 25 | 30 | 35 | 40
30.83] 29.66 | 28.75] 28.02| 27.41[] 30.69 | 29.56 | 28.62] 27.91| 27.32]] 30.59| 29.46] 28.58] 27.76 | 27.19|| 30.49| 29.35] 28.40| 27.31] 26.49

! 0.876| 0.849| 0.825| 0.803 | 0.784 | 0.872| 0.846| 0.820| 0.800| 0.781 || 0.869 | 0.843| 0.820| 0.793| 0.776|| 0.864 | 0.837 | 0.811| 0.792| 0.775
2 28.07 | 26.99| 26.18 | 25.54| 25.02 || 27.98 | 26.94 | 26.14 | 25.51| 24.98 | 27.91| 26.87 | 26.08 | 25.37 | 24.87 || 27.80| 26.68 | 25.81| 24.85| 24.16
0.817| 0.773| 0.734| 0.699| 0.668 || 0.815| 0.773| 0.734| 0.700| 0.670|| 0.807 | 0.764| 0.727 | 0.681| 0.651 || 0.810| 0.768 | 0.731| 0.689 | 0.656
3 28.39| 27.43| 26.66 | 26.01| 25.46 || 28.46 | 27.52| 26.66 | 26.03 | 25.47 || 28.11 | 27.16| 26.39 | 25.64 | 25.10 || 28.09| 27.14 | 26.36 | 25.46 | 24.88
0.755| 0.721| 0.692| 0.667 | 0.647|| 0.762| 0.728 | 0.696 | 0.670| 0.647 || 0.736 | 0.702| 0.675| 0.640| 0.621|| 0.756| 0.721| 0.691| 0.656 | 0.635
4 26.86 | 25.68| 24.79 | 24.08 | 23.50 || 26.75| 25.61 | 24.76 | 24.06 | 23.48 || 26.65| 25.52| 24.64 | 23.84 | 23.26 || 26.59| 25.43 | 24.51| 23.62 | 22.91
0.803| 0.758| 0.715| 0.677| 0.641 | 0.803| 0.758 | 0.717| 0.678 | 0.643|| 0.782| 0.737| 0.697 | 0.640| 0.604 || 0.796| 0.752| 0.715| 0.673 | 0.637
5 30.88| 29.96 | 29.21| 28.58 | 28.06 || 30.75| 29.81 | 29.04 | 28.41| 27.90 || 30.64 | 29.68 | 28.91 | 28.27 | 27.76 || 30.56 | 29.54 | 28.63 | 27.66 | 26.75
0.812| 0.780| 0.754 | 0.730| 0.709 || 0.809 | 0.776 | 0.744| 0.718 | 0.696 || 0.802 | 0.770| 0.742| 0.710| 0.690 || 0.805| 0.773 | 0.742| 0.714 | 0.688
6 28.59 | 27.32| 26.35| 25.59 | 24.97 || 28.47 | 27.26 | 26.33 | 25.59| 24.98 || 28.49 | 27.24| 26.30 | 25.49 | 24.90|| 28.35| 27.11| 26.11| 25.16 | 24.46
0.888 | 0.856| 0.824 | 0.794| 0.765|| 0.883 | 0.850| 0.825| 0.795| 0.769|| 0.882| 0.851| 0.820| 0.788| 0.761 || 0.874| 0.844 | 0.816| 0.798 | 0.776
7 30.17| 29.14| 28.35| 27.71| 27.18 || 30.18 | 29.18 | 28.40| 27.81| 27.32|| 30.13 | 29.14| 28.38 | 27.71| 27.22 || 30.07 | 28.98 | 28.13| 27.11| 26.37
0.839| 0.803| 0.771| 0.744| 0.721 || 0.840| 0.807 | 0.775| 0.751| 0.729| 0.833| 0.799| 0.770| 0.738| 0.717 || 0.840| 0.806 | 0.776| 0.746 | 0.722
8 31.58 | 30.48 | 29.64| 28.94| 28.37|| 31.38| 30.33| 29.54 | 28.86| 28.32 || 31.41| 30.35| 29.52| 28.79 | 28.24|| 31.19| 30.04 | 29.09| 27.87 | 27.05
0.900| 0.879| 0.861| 0.843| 0.828 || 0.894 | 0.872| 0.858 | 0.840| 0.826| 0.897 | 0.877| 0.860 | 0.841| 0.827 || 0.889| 0.865| 0.844| 0.832| 0.820
9 27.58| 26.37 | 25.44 | 24.73| 24.15|| 27.58 | 26.40 | 25.48 | 24.77 | 24.19|| 27.34| 26.18| 25.31| 24.47| 23.92 || 27.26| 26.09 | 25.18| 24.18 | 23.53
0.821| 0.778| 0.740| 0.707| 0.677 || 0.822| 0.782| 0.748| 0.716 | 0.687 | 0.804 | 0.764| 0.729 | 0.683| 0.655|| 0.809| 0.769 | 0.737| 0.700 | 0.671
10 31.23| 30.28 | 29.53| 28.92| 28.42|| 31.04| 30.08 | 29.36 | 28.75| 28.24 || 30.98 | 30.03 | 29.30 | 28.76 | 28.28 || 30.85| 29.73 | 28.78 | 27.73 | 26.83
0.823| 0.791| 0.763| 0.740| 0.721 || 0.818 | 0.787| 0.755| 0.732| 0.712]| 0.813| 0.781| 0.755| 0.728| 0.710|| 0.814| 0.780| 0.749| 0.723 | 0.699
Avg H 29:42 ‘ 28:33 ‘ 27:49 ‘ 26:81 ‘ 26:25 H 29:33 ‘ 28:27 ‘ 27:43 ‘ 26:77 ‘ 26:22 H 29:23 ‘ 28:16 ‘ 27:34 ‘ 26:61 ‘ 26:07 H 29:13 ‘ 28:01 ‘ 27:10 ‘ 26:10 ‘ 25:34
0:833 | 0:799 | 0:768 | 0:740 | 0:716 || 0:832 | 0:798 | 0:767 | 0:740 | 0:716 || 0:823 | 0:789 | 0:760 | 0:724 | 0:701 || 0:826 | 0:792 | 0:761 | 0:732 | 0:708

preserves much better these ne texture areas, making theesults in all regions.
denoised image look more natural and visually pleasant.
Due to the limit of space, here we cannot put more visual g
results. More examples can be found in the supplementary;
le attached to this paper.

5.3. Discussions

It is worth noting that, to further enhance the noise re-
moval and texture preservation performance of our method , s
region-based GHP could be implemented. Since natural im-i= S
ages often consist of derent regions with dierent tex- Figure 3. Ten test images. From left to right and top to bottom
tures, the gradient distributions in these regions wilbals they are labeled as 1 to 10.
vary. Therefore, with the help of image segmentation meth-
ods such as mean-shift [11], we can partition the noisy im- 6
age into several homogeneous regions, and apply the GHP
method to each region. Fifll 5 shows an example. One can In this paper, we presented a novel gradient histogram
see that without segmentation, the proposed GHP methodpreserving (GHP) model for texture-enhanced image de-
may generate some false textures in the less textured areaoising (TEID). The GHP model can preserve the gradi-
(e.g., cloud) due to the in uence of other texture areas.{e.g ent distribution by pushing the gradient histogram of the
trees). With roughly segment the image into 2 regions, asdenoised image toward the reference histogram, and thus
shown in Fig[5(d), GHP leads to very satisfying denoising is promising in enhancing the texture structure while re-

. Conclusion



moving random noise. To implement the GHP model, we [12] R. C. Gonzalez and R. E. Woods. Digital image processing
proposed an ecient iterative histogram speci cation algo-
rithm. Meanwhile, we presented a simple but theoretically [13]
solid algorithm to estimate the reference gradient histogr
from the noisy image. Experimental results verify the ef-
fectiveness of GHP based TEID. The proposed GHP hasl14]
similar PSNRSSIM measures to state-of-the-art denoising
methods such as SAPCA-BM3D, LSSC and CSR; however,
it leads to more natural and visually pleasant denoising re-[ ]
sults by preserving better the image texture areas. In the
future, we will extend GHP to image deblurring, superreso-
lution and other image reconstruction tasks.
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Figure 4. Methods comparison. (a) Noisy image with AWGN ainstard deviation 30; (b) SAPCA-BM3D [116] restoration resgt)
LSSC [21] restoration result; (d) CSR [7] restoration reg@) GHP restoration result; (f) ground truth.

(b) (© (d) (€)

Figure 5. Results comparison with and without segmentati@) Top: noisy image with AWGN of standard deviation 30;tbot: a
two-region segmentation of it; (b) SAPCA-BM3D [16] resttioa results; (c) GHP restoration results without segmtémta (d) GHP
restoration results with segmentation; (e) ground truth.
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