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Abstract

Image denoising is a classical yet fundamental problem
in low level vision, as well as an ideal test bed to eval-
uate various statistical image modeling methods. One of
the most challenging problems in image denoising is how
to preserve the �ne scale texture structures while remov-
ing noise. Various natural image priors, such as gradi-
ent based prior, nonlocal self-similarity prior, and sparsity
prior, have been extensively exploited for noise removal.
The denoising algorithms based on these priors, however,
tend to smooth the detailed image textures, degrading the
image visual quality. To address this problem, in this pa-
per we propose a texture enhanced image denoising (TEID)
method by enforcing the gradient distribution of the de-
noised image to be close to the estimated gradient distri-
bution of the original image. A novel gradient histogram
preservation (GHP) algorithm is developed to enhance the
texture structures while removing noise. Our experimental
results demonstrate that the proposed GHP based TEID can
well preserve the texture features of the denoised images,
making them look more natural.

1. Introduction

The goal of image denoising is to estimate the latent
clean imagex from its noisy observationy. One commonly
used observation model isy = x + v , wherev is additive
white Gaussian noise. Image denoising is a classical yet still
active topic in image processing and low level vision, while
it is an ideal test bed to evaluate various statistical image
modeling methods. In general, we hope that the denoised
image should look like anatural image, and therefore the
statistical modeling of natural image priors is crucial to the
success of image denoising.

Based on the fact that natural image gradients exhibit
heavy-tailed distributions, gradient-based priors are widely
used in image denoising [10, 17, 18]. The well-known to-
tal variation minimization methods actually assume Lapla-
cian distribution of image gradients [25]. By observing that
natural images can be sparsely coded over a redundant dic-

tionary, the sparsity prior has proved to be e� ective in im-
age denoising vial0-norm or l1-norm minimization [8, 9].
Another popular prior is the nonlocal self-similarity (NSS)
prior [2, 16]; that is, in natural images there are often many
similar patches (i.e., nonlocal neighbors) to a given patch,
which may be spatially far from it. The joint use of sparsity
prior and NSS prior has led to state-of-the-art image denois-
ing results [7, 21]. However, the many denoising algorithms
based on the above priors can still fail to preserve the im-
age �ne scale texture structures, which have certain overlap
with noise in the frequency domain. The over-smoothing of
those detailed texture structures makes the denoised image
look less natural, degrading much the visual quality (please
refer to Fig. 1 for example).

With the rapid development of digital imaging technol-
ogy, the resolution of imaging sensor is getting higher and
higher. On one hand, more �ne texture features of the ob-
ject and scene will be captured; on the other hand, the cap-
tured high resolution image is more prone to noise because
the smaller size of each pixel makes the exposure less su� -
cient. However, suppressing noise while preserving textures
is di� cult to achieve simultaneously, and this has been one
of the most challenging problems in natural image denois-
ing. Unlike large scale edges, the �ne scale textures have
much higher randomness in local structure and they are hard
to characterize by using a local model. Considering the fact
that texture regions in an image are homogeneous and are
usually composed of similar patterns, statistical descriptors
such as histogram are more e� ective to represent them. Ac-
tually, in literature of texture representation and classi�ca-
tion [13, 27, 28], global histogram of some local features is
dominantly used as the �nal feature descriptor for match-
ing. Meanwhile, image gradients convey most of semantic
information in an image and are crucial to the human per-
ception of image visual quality. All these motivate us to
use the histogram of image gradient to design new image
denoising models.

With the above consideration, in this paper we propose a
novel method for texture enhanced image denoising (TEID)
via gradient histogram preservation (GHP). From the given
noisy imagey, we will estimate the gradient histogram of
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Figure 1. Denoised images and their gradient histograms. (a)
A cropped image with hair textures; (b) denoised image by the
SAPCA-BM3D method [16]; (c) denoised image by the proposed
texture enhanced image denoising via gradient histogram preser-
vation (GHP); (d) the gradient histograms of the denoised images.
We can see that the proposed GHP method leads to better texture
preservation and visual perception, and the gradient histogram of
the denoised image by GHP is also closer to the reference gradient
histogram estimated from the noisy image.

original imagex. Take this estimated histogram, denoted by
hr , as a reference, we search for an estimate ofx with GHP,
i.e., the gradient histogram of the denoised image should
be close tohr . As shown in Fig. 1, the proposed TEID
method can well enhance the image texture regions, which
are often over-smoothed by other denoising methods. The
major contributions of this paper are as follows:
(1) A novel image denoising framework, i.e., TEID, is

proposed, which preserves the gradient distribution of
the original image. The existing image priors can be
easily incorporated into the proposed framework to im-
prove the quality of denoised image.

(2) A histogram speci�cation operator is developed to en-
sure the gradient histogram of denoised image being
close to the reference histogram, resulting in a simple
yet e� ective GHP based TEID algorithm.

(3) A simple but theoretically solid algorithm is presented
to estimate the gradient histogram from the given noisy
image, making TEID practical to implement.

2. Related work

Generally, image denoising methods can be grouped in
two categories: model-based methods and learning-based

methods. Most denoising methods reconstruct the clean im-
age by exploiting some image and noise prior models, and
they belong to the �rst category. Learning-based methods
attempt to learn a mapping function from the noisy image
to the clean image [26], and have been receiving consid-
erable research interests [3]. Numerous image denoising
algorithms have been proposed, and here we only review
those model-based denoising methods related to our work
from a viewpoint of natural image priors.

Studies on natural image priors aim to �nd suitable mod-
els to describe the characteristics or statistics (e.g., distribu-
tion) of images in some transformed domain. One represen-
tative class of image priors is the gradient priors based on
the observation that natural images generally have a heavy-
tailed distribution of gradients. The use of gradient prior
can be traced back to 1990s, when Rudin et al. [25] pro-
posed a total variation (TV) model for image denoising,
where the gradients are actually modeled by Laplacian dis-
tribution. Another well-known prior model, the mixture of
Gaussians (GMM), can also be used to approximate the
distribution of gradient magnitude [10, 19]. In addition,
the hyper-Laplacian model can more accurately model the
heavy-tailed distribution of gradients, and has been widely
applied to various image restoration tasks [4, 5, 15, 17, 18].

The image gradient prior is basically a kind of sparsity
prior, i.e., the gradient distribution is sparse. More gener-
ally, the sparsity prior has been well applied to �lter re-
sponses, wavelet/curvelet transform coe� cients, or the cod-
ing coe� cients over a redundant dictionary. In [23, 29],
Gaussian scale mixtures are used to characterize the margin
and joint distributions of wavelet transform coe� cients. In
[24, 31], the Studentt-distributions are used for both learn-
ing basis �lters and modeling �lter responses. By assuming
that an image patch can be represented as a sparse linear
combination of the atoms in an over-complete dictionary, a
number of dictionary learning (DL) methods (e.g., K-SVD
[9], task driven DL [20], and ASDS [8]) have been proposed
and applied to image denoising and other restoration tasks.

Based on the fact that a similar patch to the given patch
may not be spatially close to it, another line of research is to
model the similarity between image patches, i.e., the image
nonlocal self-similarity (NSS) priors. The seminal work of
nonlocal means denoising in [2] has motivated a wide range
of studies on NSS, and has led to a �urry of NSS based
state-of-the-art denoising methods, e.g., BM3D [16], LSSC
[21], and EPLL [32], etc.

Di� erent image priors characterize di� erent and com-
plementary aspects of natural image statistics, and thus it
is possible to combine multiple priors to improve the de-
noising performance. For example, Dong et al. [7] uni�ed
both image local sparsity and nonlocal similarity priors via
clustering-based sparse representation. Recently, Jancsary
et al. [14] proposed a method called regression tree �elds



(RTF) to integrate di� erent priors.
However, many existing image denoising algorithms, in-

cluding those sparsity and NSS priors based ones, tend to
wipe out the image detailed textures while removing noise.
As we discussed in the Introduction section, considering
the randomness and homogeneousness of image texture re-
gions, we propose to use the histogram of gradient to de-
scribe the image texture and design new image denoising
algorithm with gradient histogram preservation. In [4, 5],
Cho et al. used hyper-Laplacian to model gradient, and pro-
posed a content-aware prior for image deblurring by setting
di� erent shape parameters of gradient distribution in di� er-
ent image regions. By matching the gradient distribution
prior, Cho et al. found that the deblurred images can have
more detailed textures as well as better visual quality. How-
ever, in [4, 5] the estimation of desired gradient distribution
is rather heuristic, and the gradient histogram matching al-
gorithm is very complex.

3. Denoising with gradient histogram preser-
vation (GHP)

In this section, we �rst present the image denoising
model by gradient histogram preservation with sparse non-
local regularization, and then present an e� ective histogram
speci�cation algorithm to solve the proposed model for tex-
ture enhanced image denoising.

3.1. The denoising model

Given a clean imagex, the noisy observationy of x is
usually modeled as

y = x + v; (1)

where v is the additive white Gaussian noise (AWGN)
with zero mean and standard deviation� . The goal of
image denoising is to estimate the desired imagex from
y. One popular approach to image denoising is the varia-
tional method, in which the denoised image is obtained by
x̂ = arg minx

n
1

2� 2 ky � xk2 + � � R(x)
o
, whereR(x) denotes

some regularization term and� is a positive constant. The
speci�c form of R(x) depends on the used image priors.

One common problem of image denoising methods is
that the image �ne scale details such as texture structures
will be over-smoothed. An over-smoothed image will have
much weaker gradients than the original image. Intuitively,
a good estimation ofx without smoothing too much the tex-
tures should have a similar gradient distribution to that of
x. With this motivation, we propose a gradient histogram
preservation (GHP) model for texture enhanced image de-
noising (TEID).

Our intuitive idea is to integrate the gradient histogram
prior with the other image priors to further improve the de-
noising performance. Suppose that we have an estimation
of the gradient histogram ofx, denoted byhr (the estimation

method will be discussed in Section 4). In order to make the
gradient histogram of denoised imagex̂ nearly the same as
the reference histogramhr , we propose the following GHP
based image denoising model:

x̂ = arg minx;F

n
1

2� 2 ky � xk2 + � R(x) + � kF(r x) � r xk2
o

s:t: hF = hr
;

(2)
whereF denotes an odd function which is monotonically
non-descending in(0; +1 ), hF denotes the histogram of the
transformed gradient imagejF (r x)j, andr denotes the gra-
dient operator. By introducing the transformF, we can use
the alternating method for image denoising. GivenF, we
can �x r x0 = F(r x), and use the conventional denoising
methods to updatex. Given x, we can updateF simply
by the histogram operator introduced in Section 3.2. Thus,
with the introduction ofF, we can easily incorporate gradi-
ent histogram prior with any existing image priorsR(x).

The sparsity and NSS priors have shown promising per-
formance in denoising, and thus we integrate them into the
proposed GHP model. Speci�cally, we adopt the sparse
nonlocal regularization term proposed in the centralized
sparse representation (CSR) model [7], resulting in the fol-
lowing denoising model:

x̂ = arg minx;F

( 1
2� 2 ky � xk2 + �

P
i

 � i � � i


1

+� kF(r x) � r xk2

)

s:t: x = D � � ; hF = hr

; (3)

where� is the regularization parameter,D is the dictionary
and� is the coding coe� cients ofx overD.

Let's explain more about the model in Eq. (3). Letxi =
Rix be a patch extracted at positioni, i = 1; 2; : : : ;N, where
Ri is the patch extraction operator andN is the number of
pixels in the image. Eachxi is coded over the dictionaryD,
and the coding coe� cients is� i . Let � be the concatenation
of all � i , and thenx can be reconstructed by

x = D � � ,
�X N

i=1
RT

i Ri

� � 1 X N

i=1
RT

i D� i : (4)

The physical meaning of Eq. (4) is that we usex̂i = D� i

to reconstruct each patchxi , and then put all reconstructed
patches together as the denoised imagex̂ (the overlapped
pixels between neighboring patches are averaged).

In Eq. (3), � i is the nonlocal means of� i in the sparse
coding domain. With the current estimatex̂, we use the
blocking matching method as in [7] to �nd the non-local
neighbors ofx̂i, denoted bŷxq

i . Denote by� q
i the coding

coe� cients ofx̂q
i . Then� i is computed as the weighted av-

erage of� q
i ,

� i =
X

q
wq

i � q
i ; (5)

where the weightwq
i is de�ned as

wq
i = 1

W exp
�
� 1

h

 x̂i � x̂q
i

 2
�
; (6)



whereh is a parameter to control the decay rate andW is
a normalization factor to guarantee

P
q wq

i = 1. Clearly, the
regularization term

P
i

 � i � � i


1 enforce the coding coe� -

cients� i to approach to its nonlocal means� i so that noise
can be removed, while thel1-norm comes from the fact that � i � � i


1 follows Laplacian distribution [7].

From the GHP model with sparse nonlocal regularization
in Eq. (3), one can see that if the histogram regularization
parameter� is high, the functionF (r x) will be close tor x.
Since the histogramhF of jF (r x)j is required to be the same
ashr , the histogram ofr x will be similar tohr , leading to
the desired gradient histogram preserved image denoising.
Next, we will see that there is an e� cient iterative histogram
speci�cation algorithm to solve the model in Eq. (3).

3.2. Iterative histogram speci�cation algorithm

Eq. (3) is minimized iteratively. As in [7], the local PCA
bases are used as the dictionaryD. Based on the current
estimation of imagex, we cluster its patches intoK clusters,
and for each cluster, a PCA dictionary is learned. Then for
each given patch, we �rst check which cluster it belongs,
and then use the PCA dictionary of this cluster as theD.

We propose an alternating minimization method to solve
the problem in Eq. (3). Given the transform functionF, we
introduce a variableg = F(r x), and updatex (i.e., � ) by
solving the following sub-problem:

minx

n
1

2� 2 ky � xk2 + �
P

i

 � i � � i


1

+ � kg � r xk2
o

s:t: x = D � �
: (7)

To get the solution to the above sub-problem, we �rst use a
gradient descent method to updatex:

x(k+1=2) = x(k) + �
�

1
2� 2 (y � x(k)) + � r T

�
g � r x(k)

��
; (8)

where� is a pre-speci�ed constant. Then, the coding coef-
�cients � i are updated by

� (k+1=2)
i = DTRix(k+1=2): (9)

By using Eq. (5) to obtain� i , we further update� i by

� (k+1)
i = S�= d

0
BBBB@

1
dDT

�
Riy � D� (k+1=2)

i

�

+� (k+1=2)
i � � i

1
CCCCA+ � i ; (10)

whereS�= d is the soft-thresholding operator, andd is a con-
stant to guarantee the convexity of the surrogate function
[6]. Finally, we use Eq. (4) to update the whole image and
let it bex(k+1).

Once the estimate of imagex is given, we can updateF
by solving the following sub-problem:

minFkF(r x) � r xk2 s:t: hF = hr : (11)

To solve this sub-problem, we letd0 = jr xj, and use the
standard histogram speci�cation operator [12] to obtain the

monotonic non-parametric mapping functionF so that the
histogram ofjF (r x)j is the same ashr .

Finally, we summarize our proposed iterative histogram
speci�cation based GHP algorithm inAlgorithm 1 . It
should be noted that, for any gradient based image denois-
ing model, we can easily incorporate the proposed GHP in it
by simply modifying the gradient term and adding an extra
histogram speci�cation operation.

In [1], Attouch et al. showed that: for a nonconvex
function L(x; y) = f (x) + Q(x; y) + g(y), if L satis�es the
Kurdyka-Lojasiewicz inequality, proximal alternating min-
imization would converge to a critical point ofL. Note that
our model has a similar form to the one discussed in [1], and
we also adopted an alternating minimization method. Thus
the conclusions in [1] ensure the convergence of the pro-
posed GHP algorithm, and we empirically found that our
algorithm converges well.

Algorithm 1 : Iterative Histogram Speci�cation for GHP
1. Initializek = 0, x(k) = y
2. Iterate onk = 0; 1; :::;J
3. Updateg:

g = F(r x)
4. Updatex:

x(k+1=2) = x(k) + �
 1

2� 2 (y � x(k))
+� r T(g � r x(k))

!

5. Update the coding coe� cients of each patch:
� (k+1=2)

i = DTRix(k+1=2)

6. Update the nonlocal mean of coding vector� i :
� i =

P
q wq

i �
q
i

7. Update� :

� (k+1)
i = S�=d

 
1
dDT (Riy � D� (k+1=2)

i )
+� (k+1=2)

i � � i

!
+ � i

8. Updatex
x(k+1) = D � � (k+1)

9. UpdateF via histogram speci�cation by Eq. (11)
10. k  � k + 1
11. x = x(k) + �

�
� r T (g � r x(k))

�

4. Reference gradient histogram estimation

To apply the model in Eq. (3), we need to know the ref-
erence histogramhr , which is supposed to be the gradient
histogram of original imagex. In this section, we propose
a one dimensional deconvolution model to estimate the his-
togramhr . Assuming that all pixels in the gradient image
r x are independent and identically distributed (i.i.d.), we
can view them as the samples of a scalar variable, denoted
by x. Then the normalized histogram ofr x can be regarded
as a discrete approximation of the probability density func-
tion (PDF) of x. For the additive white Gaussian noise
(AWGN) v, we can readily model its elements as the sam-
ples of an i.i.d. variable, denoted byv. Sincev � N

�
0; � 2

�

and letg = r v, one can obtain thatg is also i.i.d. Gaussian



with PDF [22]

pg =
1

2
p

��
exp

 
�

g2

4� 2

!
: (12)

Sincey = x + v, we haver y = r x + r v. It is ready to
modelr y as an i.i.d. variable, denoted byy, and we have
y = x + g. Let px be the PDF ofx, andpy be the PDF ofy.
Sincex andg are independent, the joint PDFp(x; g) is,

p(x; g) = px � pg: (13)

Then the PDFpy is

py(y = t) =
Z

a
px(x = a) � pg (g = (t � a)) da: (14)

If we use the normalized histogramhx andhy to approx-
imate px and py, we can rewrite Eq. (14) in the discrete
domain as:

hy = hx 
 hg; (15)

where
 denotes the convolution operator. Note thathg can
be obtained by discretizingpg, andhy can be computed di-
rectly from the noisy observationy.

Obviously, the estimation ofhx can be generally mod-
eled as a deconvolution problem:

hr = arg minhx

�  hy � hx 
 hg

 2
+ c � R(hx)

�
; (16)

wherec is a constant andR(hx) is some regularization term
based on the prior information of natural image's gradient
histogram. Considering thathx, i.e., the discrete version
of px, can be well modeled as hyper-Laplacian distribution
[4, 5, 17], in this paper we use a simple parametric method
to estimatepx and then discretize it intohx.

The hyper-Laplacian modeling ofpx is:

px = kexp(� � jxj ) ; (17)

wherek is the normalization factor. The estimation ofpx is
converted into the estimation of parameters� and . Con-
sidering the fact that for natural images,� and will have
a relatively narrow range, we preset a range of each of the
two parameters, and then search for the pair(�;  ) which
makes

 hy � hx 
 hg

 2
the smallest. Speci�cally, we let

� 2 [0:001; 3] and  2 [0:02; 1:5]. In addition, in our
experiments the Nelder-Mead method is used to make the
searching more e� cient. Fig. 2 shows an example of refer-
ence gradient histogram estimation. It can be seen that our
method can obtain a good estimation ofhx.

5. Experimental results

We �rst give the parameter setting in our GHP based
TEID algorithm, and then conduct experiments to validate

its performance in comparison with state-of-the-art denois-
ing algorithms. Finally, we make some discussion of its po-
tential improvements. The Matlab source code of our algo-
rithm can be downloaded athttp://www4.comp.polyu.
edu.hk/ ~cslzhang/code.htm .

5.1. Parameter setting

Our algorithm involves a few parameters to set, includ-
ing the regularization parameters� and� in Eq. (7) to bal-
ance the e� ect of gradient preservation, constant� in Eq.
(8) andd in Eq. (10) to ensure convexity. For the parameter
� , we use the same strategy as in [8] to adaptively update
it according to the maximum a posterior (MAP) principle.
Based on our experimental experience, we set the parameter
� to 5, and� to 0.23 for noise level less than 30 while 0.26
for other noise levels. Based on the analysis in [6], to guar-
antee the convexity of surrogate function,d should be larger
than the spectral norm of dictionaryD. Since in our algo-
rithm D is an orthonormal PCA matrix, anyd greater than
1 will be �ne, and we set it to 3 by experience. Note that
these parameters are �xed to all images in our experiments.

5.2. Denoising results

To verify the performance of our proposed GHP based
TEID method, we apply it to ten natural images with vari-
ous texture structures. The scenes of these images can be
found in Fig. 3. Some state-of-the-art denoising meth-
ods are used for comparison, including shape-adaptive PCA
based BM3D (SAPCA-BM3D) [16], the learned simultane-
ously sparse coding (LSSC) [21] and the CSR [7] methods.
The codes of all the competing methods are provided by the
authors and we used the recommended parameters by the
authors. Considering the fact when noise is too strong, all
methods cannot recover the �ne scale texture structures in
the image, and in practice the noise is often moderate or be-
low, we set the AWGN noise level� 2 f20; 25; 30; 35; 40g
in the experiments.

The quantitative experimental results by the compet-
ing methods are shown Table 1. Apart from PSNR, we
also list the results by using the perceptual quality metric
SSIM [30]. From this table, we can see that the proposed
GHP method has similar PSNR/SSIM measures to SAPCA-
BM3D, LSSC and CSR. Nonetheless, the goal of our GHP
method is to preserve and enhance the image texture struc-
tures, and let's compare the visual quality of the denoised
images by these methods. Fig. 4 shows an example. In this
image, there are di� erent texture regions, such as the sky,
tree, water and building. We can see that SAPCA-BM3D,
LSSC and CSR smooth much the textures in tree, water and
building areas, while SAPCA-BM3D introduces some arti-
facts in the smooth sky area. Though they have good PSNR
and even SSIM indices, the denoised images by them look
somewhat unnatural. In contrast, the proposed GHP method
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Figure 2. An example of reference gradient histogram estimation. (a) Real and simulated AWGN gradient histograms (noise level� = 30);
(b) real and simulated gradient histograms of noisy image; and (c) real and estimated gradient histograms of the clean image.

Table 1. PSNR (dB) and SSIM results by di� erent methods.

�
SAPCA-BM3D[16] LSSC[21] CSR[7] GHP

20 25 30 35 40 20 25 30 35 40 20 25 30 35 40 20 25 30 35 40

1
30.83 29.66 28.75 28.02 27.41 30.69 29.56 28.62 27.91 27.32 30.59 29.46 28.58 27.76 27.19 30.49 29.35 28.40 27.31 26.49
0.876 0.849 0.825 0.803 0.784 0.872 0.846 0.820 0.800 0.781 0.869 0.843 0.820 0.793 0.776 0.864 0.837 0.811 0.792 0.775

2
28.07 26.99 26.18 25.54 25.02 27.98 26.94 26.14 25.51 24.98 27.91 26.87 26.08 25.37 24.87 27.80 26.68 25.81 24.85 24.16
0.817 0.773 0.734 0.699 0.668 0.815 0.773 0.734 0.700 0.670 0.807 0.764 0.727 0.681 0.651 0.810 0.768 0.731 0.689 0.656

3
28.39 27.43 26.66 26.01 25.46 28.46 27.52 26.66 26.03 25.47 28.11 27.16 26.39 25.64 25.10 28.09 27.14 26.36 25.46 24.88
0.755 0.721 0.692 0.667 0.647 0.762 0.728 0.696 0.670 0.647 0.736 0.702 0.675 0.640 0.621 0.756 0.721 0.691 0.656 0.635

4
26.86 25.68 24.79 24.08 23.50 26.75 25.61 24.76 24.06 23.48 26.65 25.52 24.64 23.84 23.26 26.59 25.43 24.51 23.62 22.91
0.803 0.758 0.715 0.677 0.641 0.803 0.758 0.717 0.678 0.643 0.782 0.737 0.697 0.640 0.604 0.796 0.752 0.715 0.673 0.637

5
30.88 29.96 29.21 28.58 28.06 30.75 29.81 29.04 28.41 27.90 30.64 29.68 28.91 28.27 27.76 30.56 29.54 28.63 27.66 26.75
0.812 0.780 0.754 0.730 0.709 0.809 0.776 0.744 0.718 0.696 0.802 0.770 0.742 0.710 0.690 0.805 0.773 0.742 0.714 0.688

6
28.59 27.32 26.35 25.59 24.97 28.47 27.26 26.33 25.59 24.98 28.49 27.24 26.30 25.49 24.90 28.35 27.11 26.11 25.16 24.46
0.888 0.856 0.824 0.794 0.765 0.883 0.850 0.825 0.795 0.769 0.882 0.851 0.820 0.788 0.761 0.874 0.844 0.816 0.798 0.776

7
30.17 29.14 28.35 27.71 27.18 30.18 29.18 28.40 27.81 27.32 30.13 29.14 28.38 27.71 27.22 30.07 28.98 28.13 27.11 26.37
0.839 0.803 0.771 0.744 0.721 0.840 0.807 0.775 0.751 0.729 0.833 0.799 0.770 0.738 0.717 0.840 0.806 0.776 0.746 0.722

8
31.58 30.48 29.64 28.94 28.37 31.38 30.33 29.54 28.86 28.32 31.41 30.35 29.52 28.79 28.24 31.19 30.04 29.09 27.87 27.05
0.900 0.879 0.861 0.843 0.828 0.894 0.872 0.858 0.840 0.826 0.897 0.877 0.860 0.841 0.827 0.889 0.865 0.844 0.832 0.820

9
27.58 26.37 25.44 24.73 24.15 27.58 26.40 25.48 24.77 24.19 27.34 26.18 25.31 24.47 23.92 27.26 26.09 25.18 24.18 23.53
0.821 0.778 0.740 0.707 0.677 0.822 0.782 0.748 0.716 0.687 0.804 0.764 0.729 0.683 0.655 0.809 0.769 0.737 0.700 0.671

10
31.23 30.28 29.53 28.92 28.42 31.04 30.08 29.36 28.75 28.24 30.98 30.03 29.30 28.76 28.28 30.85 29.73 28.78 27.73 26.83
0.823 0.791 0.763 0.740 0.721 0.818 0.787 0.755 0.732 0.712 0.813 0.781 0.755 0.728 0.710 0.814 0.780 0.749 0.723 0.699

Avg
29:42 28:33 27:49 26:81 26:25 29:33 28:27 27:43 26:77 26:22 29:23 28:16 27:34 26:61 26:07 29:13 28:01 27:10 26:10 25:34
0:833 0:799 0:768 0:740 0:716 0:832 0:798 0:767 0:740 0:716 0:823 0:789 0:760 0:724 0:701 0:826 0:792 0:761 0:732 0:708

preserves much better these �ne texture areas, making the
denoised image look more natural and visually pleasant.

Due to the limit of space, here we cannot put more visual
results. More examples can be found in the supplementary
�le attached to this paper.

5.3. Discussions

It is worth noting that, to further enhance the noise re-
moval and texture preservation performance of our method,
region-based GHP could be implemented. Since natural im-
ages often consist of di� erent regions with di� erent tex-
tures, the gradient distributions in these regions will also
vary. Therefore, with the help of image segmentation meth-
ods such as mean-shift [11], we can partition the noisy im-
age into several homogeneous regions, and apply the GHP
method to each region. Fig. 5 shows an example. One can
see that without segmentation, the proposed GHP method
may generate some false textures in the less textured area
(e.g., cloud) due to the in�uence of other texture areas (e.g.,
trees). With roughly segment the image into 2 regions, as
shown in Fig. 5(c), GHP leads to very satisfying denoising

results in all regions.

Figure 3. Ten test images. From left to right and top to bottom,
they are labeled as 1 to 10.

6. Conclusion

In this paper, we presented a novel gradient histogram
preserving (GHP) model for texture-enhanced image de-
noising (TEID). The GHP model can preserve the gradi-
ent distribution by pushing the gradient histogram of the
denoised image toward the reference histogram, and thus
is promising in enhancing the texture structure while re-



moving random noise. To implement the GHP model, we
proposed an e� cient iterative histogram speci�cation algo-
rithm. Meanwhile, we presented a simple but theoretically
solid algorithm to estimate the reference gradient histogram
from the noisy image. Experimental results verify the ef-
fectiveness of GHP based TEID. The proposed GHP has
similar PSNR/SSIM measures to state-of-the-art denoising
methods such as SAPCA-BM3D, LSSC and CSR; however,
it leads to more natural and visually pleasant denoising re-
sults by preserving better the image texture areas. In the
future, we will extend GHP to image deblurring, superreso-
lution and other image reconstruction tasks.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Methods comparison. (a) Noisy image with AWGN of standard deviation 30; (b) SAPCA-BM3D [16] restoration result; (c)
LSSC [21] restoration result; (d) CSR [7] restoration result; (e) GHP restoration result; (f) ground truth.

(a) (b) (c) (d) (e)

Figure 5. Results comparison with and without segmentation. (a) Top: noisy image with AWGN of standard deviation 30; bottom: a
two-region segmentation of it; (b) SAPCA-BM3D [16] restoration results; (c) GHP restoration results without segmentation; (d) GHP
restoration results with segmentation; (e) ground truth.


