
1

Self-Organizing-Queue Based Clustering
Baohua Sun, Dapeng Wu

Abstract—In this paper, we consider the problem of clustering,
given the similarity matrix of a set of data points or nodes; this
problem is a.k.a. graph clustering. Spectral clustering techniques
are typically used to solve this problem. The performance of
the existing spectral clustering techniques is not satisfactory
for many applications. To improve the performance, we take
a bio-inspired approach to the graph clustering problem and
enable fictitious queues with self-organizing capability to group
similar nodes into the same cluster; we call the resulting scheme,
Self-Organizing-Queue (SOQ) clustering scheme. Experimental
results have demonstrated the superiority of our SOQ scheme
over the existing spectral clustering techniques and K-means
algorithm.

Index Terms—Graph clustering, spectral clustering, K-means

I. INTRODUCTION

In this paper, we consider the problem of graph clustering,
i.e., given the similarity matrix of a set of nodes (or data
points), partition the nodes into clusters. Spectral clustering
techniques [1] are typically used to solve the graph clustering
problem [2]. The performance of the existing spectral clus-
tering techniques is not satisfactory for many applications. To
improve the performance, we take a bio-inspired approach to
the graph clustering problem. Our idea is to place all nodes
into multiple fictitious queues, each of which corresponds to
one cluster; then we enable these fictitious queues with self-
organizing capability to group similar nodes into the same
cluster; we call the resulting scheme, Self-Organizing-Queue
(SOQ) clustering scheme. To show the working of our SOQ
scheme, let us first look at an example of how humans do
grouping. In Fig. 1, at the beginning of time slot t = 1,
suppose students from two different classes are mixed up to
form a line/row; assume that each student is affiliated with
only one class; in Fig. 1, a circle represents a student from
one class while ‘×’ represents a student from another class.
The students are asked to form two groups, each of which
only consists of students from the same class. Suppose in
each time slot, only one person is allowed to move, and we
call this person the Current Person. Suppose only the person
in the middle of the line is allowed to move1; so the middle
person is the Current Person. A strategy of grouping is that in
each slot, the Current Person looks around and moves to the
head of the line if he/she sees more of his/her classmates are
on his/her left-hand side than that on his/her right-hand side;
otherwise, he/she moves to the tail of the line. This procedure
repeats until no change of grouping. Fig. 1 shows the grouping

Baohua Sun and Dapeng Wu are with Department of Electrical and
Computer Engineering, University of Florida, Gainesville, FL 32611. Email of
Baohua Sun: bsun@ufl.edu. Corresponding author: Prof. Dapeng Wu; email:
wu@ece.ufl.edu.

1If there are an even number of students in the line, we let the odd-indexed
middle student be the middle of the line.

result at the beginning of each slot t and the move to be made
during each slot t; at t = 20, the procedure stops and the two
classes are separated. Our SOQ clustering scheme is based on
this grouping strategy. In the remainder of the paper, we call
such a line/row (of people/nodes) as a queue; a queue has a
head and a tail.

class 1

class 2

t=1:

t=2:

t=3:

t=20:

Fig. 1: An example of the working of Self Organizing Queue

II. DESCRIPTION OF SOQ CLUSTERING SCHEME

Algorithm 1 shows the key steps in SOQ. In Algorithm 1,
Current Queue is a variable, pointing to a queue called
‘Current Queue’; Current Person is a variable, pointing to a
member in a queue called ‘Current Person’; Next Queue is a
variable, pointing to a queue called ‘Next Queue’. Similarity
matrix W has a dimension of N ×N and each entry Wi,j in
W denotes the similarity measure between Node i and Node
j. If the input is a dissimilarity matrix, one possible option is
to convert the dissimilarity matrix into a similarity matrix by
adding a negative sign to the dissimilarity matrix. Algorithm 1
outputs K queues/clusters, each with an index set of queue
members.

Algorithm 1: SOQ.
Input: a set of N nodes and similarity matrix W.
1) Initialization: divide the set of N nodes into K queues;

assign a queue to Current Queue; Flag=1.
2) While (Flag)
3) WHO: Choose who in Current Queue as Current Person.
4) HOW: (How to) select a queue as Next Queue

for Current Person to join.
5) WHERE: (Where to) place Current Person in Next Queue.
6) Assign Next Queue to Current Queue.
7) WHEN: (When to) let Flag=0, i.e., stop the loop.
8) Endwhile
Output: the resulting K queues/clusters.

From Algorithm 1, it can be seen that the key features of
SOQ are: 1) self organizing, i.e., each person/node has the
ability to decide where it wants to join; 2) sequential process,
i.e., each time only one queue is selected as Current Queue2;

2Allowing multiple queues to be selected as Current Queues causes non-
convergence in all our experiments.

2

3) similarity matrix W can be asymmetric, and the entries
in W can take any real value, including negative values.
Note that none of the existing spectral clustering algorithms
allows asymmetric similarity matrix and similarity matrix with
negative entries.

There are many variations of SOQ, depending on how
to implement Step 1, 3, 4, 5, and 7. Next, we show some
examples including the default setting used in the basic version
of SOQ.

In Step 1 (Initialization), the default setting is to divide the
set of N nodes into K queues by random selection, and assign
the queue with the most members to Current Queue. Another
way of obtaining initial K queues is to use a spectral clustering
technique [1]; any spectral clustering technique is applicable
here.

In Step 3 (WHO), we can choose any member of Cur-
rent Queue as Current Person; the default setting is to choose
the head of Current Queue as Current Person.

In Step 4 (HOW), Current Person i can use the following
default criterion (called Most Friends) to choose Queue k̂ as
the Next Queue to join:

k̂ = argmax
k

∑
j∈Ck

(Wi,j +Wj,i)

|Ck|
(1)

where Ck is the set of indices of members in Queue k. Note
that Current Person i itself is not counted in its Current Queue
in Eq. (1) since Current Person i is looking for a queue with
most friends excluding itself.

In Step 5 (WHERE), we can place Current Person at
any position in Next Queue; the default setting is to place
Current Person at the tail of Next Queue.

In Step 7 (WHEN), the default criterion to stop the algo-
rithm is that none of the queues has membership change.

Algorithm 1 has a limitation: when the Current Person
joins the Next Queue, the Current Queue may become empty;
then the number of clusters will be reduced to K − 1 rather
than the target value K. To address this, we propose CESOQ
(one Cluster being Empty SOQ) as shown in Algorithm 2;
specifically, we insert Step 5.1 between Step 5 and Step 6 in
Algorithm 1. In Algorithm 2, the Crosstalk Density ρ(Cs, Ct)
between Queue s and Queue t is defined as:

ρ(Cs, Ct) =

∑
j∈Cs

∑
i∈Ct

(Wi,j +Wj,i)

2× |Cs| × |Ct|
(2)

Algorithm 2: CESOQ.
Input and Step 1 through 5 are the same as Algorithm 1.
5.1) If (Current Queue is empty)

Use Algorithm 1 to partition each of the non-empty
queues into two clusters (a pair of clusters).

Find the pair of clusters with minimum crosstalk density.
One of the two clusters with minimum crosstalk density

replaces its original queue, and the other cluster
replaces the empty queue.

Endif
Step 6 through 8 and Output are the same as Algorithm 1.

Algorithm 2 has a limitation: within-cluster-talk of a cluster
may be smaller than cross-talk between clusters. To address

this, we propose MSSOQ (Merge Split SOQ) as shown in
Algorithm 3; specifically, we insert Step 1.1 and 1.2 between
Step 1 and Step 2, and append new Steps 9–15 to Step 8 in
Algorithm 2.

Algorithm 3: MSSOQ.
Input and Step 1 are the same as Algorithm 2.
1.1) Flag2=1.
1.2) While (Flag2)
Step 2 through Step 8 are the same as Algorithm 2.
9) Use (2) to calculate ρ(Cs, Ct) for s ̸= t, s ∈ {1, · · · ,K},

and t ∈ {1, · · · ,K}.
10) Compute ρbetween = max{s,t:s̸=t} ρ(Cs, Ct),

and {s∗1, t∗1} = argmax{s,t:s̸=t} ρ(Cs, Ct).
11) Use Algorithm 1 to split each queue Cs

into two new queues, denoted by Cs,1 and Cs,2.
12) Use (2) to calculate ρ(Cs,1, Cs,2) for s ∈ {1, · · · ,K}.
13) Compute ρwithin = mins∈{1,··· ,K} ρ(Cs,1, Cs,2),

and s∗2 = argmins∈{1,··· ,K} ρ(Cs,1, Cs,2).
14) If (ρwithin < ρbetween)

If (s∗2 == s∗1)
If (ρ(Cs∗2 ,1

, Ct∗1
) > ρ(Cs∗2 ,2

, Ct∗1
))

Merge Cs∗2 ,1
and Ct∗1

into a new Queue t∗1,
and call Cs∗2 ,2

as a new Queue s∗2.
Else

Merge Cs∗2 ,2
and Ct∗1

into a new Queue t∗1,
and call Cs∗2 ,1

as a new Queue s∗2.
Endif

Else
If (s∗2 == t∗1)

If (ρ(Cs∗2 ,1
, Cs∗1

) > ρ(Cs∗2 ,2
, Cs∗1

))
Merge Cs∗2 ,1

and Cs∗1
into a new Queue s∗1,

and call Cs∗2 ,2
as a new Queue s∗2.

Else
Merge Cs∗2 ,2

and Cs∗1
into a new Queue s∗1,

and call Cs∗2 ,1
as a new Queue s∗2.

Endif
Else

Merge Cs∗1
and Ct∗1

into a new Queue s∗1,
call Cs∗2 ,1

as a new Queue s∗2,
and call Cs∗2 ,2

as a new Queue t∗1.
Endif

Endif
Else Flag2=0.
Endif

15) Endwhile
Output is the same as Algorithm 2.

III. EXPERIMENTAL RESULTS

In this section, we test the performance of MSSOQ with
synthetic data and real-world data, and compare it with the
existing main-stream clustering algorithms, i.e., K-means, un-
normalized spectral clustering (SC for short) [1], the normal-
ized spectral clustering algorithm by Ng, Jordan, Weiss (NJW
for short) [3], and ncut [4].

3

−0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(a) Positions of the sample points

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(b) Similarity matrix before random permutation

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(c) Similarity matrix after random permutation

Fig. 2: Synthetic data set and its similarity matrices

A. Experiments with Synthetic Data

1) Description of Synthetic Data Set: The synthetic data set
consists of 2-D Gaussian-distributed sample points. To simu-
late four clusters, we use four 2-D Gaussian distributions with
the same standard deviation of 0.05 and mean (-0.3, 0), (0, 0),
(0.3, 0), and (0.6, 0), respectively, and each 2-D Gaussian
distribution corresponds to one cluster; the two dimensions of
the 2-D Gaussian are independent and identically distributed.
The number of samples for the four clusters are 105, 15, 15,
and 15, respectively, and the total number of points N is 150.
Fig. 2(a) shows the 2-D positions of the 150 sample points.
Note that in this synthetic data set, the size of the first cluster is
much larger than other clusters; this is challenging for many
clustering algorithms since these clustering algorithms only
perform well when all the clusters have similar sizes.

For spectral clustering algorithms, a similarity matrix is
needed. Denote the generated 2-D points by p1,p2, ...,pN ,
with pn = (xn, yn) for 1 ≤ n ≤ N . We generate the
similarity measure Wi,j between any two points pi and pj

by Wi,j = exp(−||pi − pj ||2/(2σ2)), where σ = 1 in this
set of experiments. In this way, we obtain a similarity matrix
W. In order to make a fair performance comparison, we
randomly permute W. Fig. 2(b) shows the similarity matrix
before random permutation; the darker of the entry at Row
i and Column j, the larger similarity measure between point
pi and point pj . Fig. 2(c) shows the similarity matrix (of the
sample points) with randomly permuted entries.

2) Clustering Performance: The input of SC, NJW, ncut,
and MSSOQ is the similarity matrix (of the sample points)
with randomly permuted entries. Fig. 3 shows the clustering
results of ncut and MSSOQ. The results obtained by SC,
NJW are similar to ncut. Each similarity matrix shown in
Fig. 3 is permuted according to the clustering results. E.g.,
Fig. 3(b) shows that p1 to p15 belong to Cluster 1, p16 to
p120 belong to Cluster 2, p121 to p135 belong to Cluster 3,
and p136 to p150 belong to Cluster 4; after re-mapping to the
original order given in Fig. 2(a), we find that all the 150 points
are correctly grouped into the corresponding clusters; hence,
MSSOQ achieves zero clustering error. We run the algorithms
20 times, each with different randomly permuted input; and we
obtain 20 clustering results; by comparing to the ground truth
in Fig. 2(a), we obtain the error rate for each experiment. For
the 20 experiments, we calculate the mean clustering error rate
and 95% confidence interval, which are listed in the second
column of Table I, where µerror denotes the mean clustering
error rate and µerror ± κ denotes upper/lower bound of the
confidence interval, respectively. Table I demonstrates that
MSSOQ significantly outperforms K-means, SC, NJW, and
ncut for this synthetic data set.

3) Time Complexity: We run the algorithms 20 times, each
with different randomly permuted input; and obtain the run-
time of each experiment. For the 20 experiments, we calculate
the mean time complexity and 95% confidence interval, which
are listed in the second column of Table II, where µt denotes
the mean run-time and µt±κ denotes upper/lower bound of the
confidence interval, respectively. Table II shows that MSSOQ
has a higher time complexity than K-means, SC, NJW, and

4

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(a) ncut

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(b) MSSOQ

Fig. 3: Clustering results of synthetic data

TABLE I: Error rate
µerror ± κ Synthetic Data Handwritten Digits

K-means 0.3090± 0.0865 0.2661± 0.0349

SC 0.3483± 0.0620 0.3704± 0.0219

NJW 0.3867± 0 0.3231± 0.0017

ncut 0.5020± 0.0474 0.3228± 0.0204

MSSOQ 0± 0 0.1603± 0.0192

TABLE II: Time complexity (in unit of seconds)
µt ± κ Synthetic Data Handwritten Digits

K-means 0.0139± 0.0141 0.4085± 0.2298

SC 0.0489± 0.0235 1.2401± 0.3889

NJW 0.3438± 0.0038 13.7281± 0.2577

ncut 0.0774± 0.0039 8.9902± 0.1694

MSSOQ 0.6537± 0.0484 32.4512± 4.0747

ncut for this synthetic data set. Though MSSOQ consumes
more time than the existing ones, the time complexity is still
acceptable.

(a) digit 3 (b) digit 9

Fig. 4: Digit 9 in (b) is very similar to digit 3 in (a), and is
clustered into the cluster of digit 3.

B. Experiments with Real-World Data

1) Description of Real-World Data Set: The real-world data
set used in this set of experiments consists of images of hand-
written digits, which is described in [5] and is downloadable at
[6]. The 10 digits data set is used in our experiment. There are
10 clusters in the data set, with 100 members in each cluster.
The dimension of the similarity matrix is 1000 by 1000.

2) Clustering Performance: We run the algorithms 20
times, each with different randomly permuted input; and we
obtain 20 clustering results; by comparing to the ground truth,
we obtain the error rate for each experiment. For the 20
experiments, we calculate the mean clustering error rate and
95% confidence interval, which are listed in the third column
of Table I. Table I demonstrates that MSSOQ significantly
outperforms K-means, SC, NJW, and ncut for this set of
handwritten digits.

To identify what causes incorrect clustering in MSSOQ, we
find that the handwritten digit 9 in Fig. 4(b) is very similar to
the handwritten digit 3 in Fig. 4(a), and hence this sample of
digit 9 is clustered into the cluster of digit 3. We also find that
all the clustering algorithms under our study mis-classified this
sample. We examine other mis-classified instances and find out
that most of the instances mis-classified by MSSOQ are also
mis-classified by K-means, SC, NJW, and ncut.

3) Time Complexity: We run the algorithms 20 times, each
with different randomly permuted input; and obtain the run-
time of each experiment. For the 20 experiments, we calculate
the mean time complexity and 95% confidence interval, which
are listed in the third column of Table II. Though MSSOQ con-
sumes more time than the existing ones, the time complexity
is still acceptable.

REFERENCES

[1] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007.

[2] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3, pp. 75–174, 2010.

[3] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and
an algorithm,” Advances in neural information processing systems, vol. 2,
pp. 849–856, 2002.

[4] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 888–905, 2000.

[5] D. Verma and M. Meila, “A comparison of spectral clustering algorithms,”
University of Washington, Tech. Rep. UW-CSE-03-05-01, 2003.

[6] ——, “digit1000.mat,” 2003. [Online]. Available:
http://www.stat.washington.edu/spectral/datasets.html

