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Accurate Discretization of Analog Audio Filters
with Application to Parametric Equalizer Design

Simo Srkka, Member, |IEEE and Antti Huovilainen

Abstract—This article is concerned with accurate discretization computationally light, but still produces better approations
of linear analog filters such that the frequency response of the than the bilinear transformation based methods.
discrete time filter accurately matches that of the continuous In this article, we shall present a general methodology

time filter. The approach is based on formal reconstruction of . . .
the continuous time signal using Shannon’s interpolation theorem that can be used for discretizing analog filters such that the

and numerical solving of the differential equation corresponding frequency response of the digital filter accurately mat¢hes
to the analog filter. When the formal continuous time system of the analog filter. The methodology can be used with systems

is _sampled, the resultin_g filter reduces to discrete linear filter, \where the continuous input signal can be assumed to be band-
which can be realized either as a state space model or as an IIR imiteqd to the frequency range from zero to Nyquist, which
filter. The proposed methodology is applied to design of filters - . = . ..
for parametric equalizers. appllgs (_aspemally well to audio signal processing appbos. .
_ _ o ) In principle, the methodology can be used in any applica-
Index Terms—analog filter, discretization, Shannon's interpo- i instead of the traditional discretization methodshsas
lation, differential equation, parametric equalizer . - . . . .
impulse invariant transformation and bilinear z-transfation
(see, e.qg., [6], [7], [8])- _ _ _
I. INTRODUCTION The proposed method is based on quite elementary ideas,
namely to approximation of the Shannon interpolation and
HE need for accurate discretization of analog filtergumerical solutions of the corresponding LTI differenggua-
arises, for example, in the design of virtual analogons. Thus, it is possible that similar methodology hasnbee
synthesizers and modeling of audio effects [1], [2], [3]l, [4 already used, for example, in design of commercial digital
[5]. Parametric equalizers and other linear filters are usegualizer systems. However, to the authors’ knowledgeh suc
as sub-blocks of such systems and therefore their accurgé@eral methodology has not been published before.
discretization is also important — and surprisingly naw. The advantage of the proposed methodology over the bi-
The brute-force approach would be to design a high order Fjjear transformation and related methods is that the fre-
filter with standard design methods (see, e.g., [6], [7].[BUt quency response can be made accurate also near the Nyquist
unfortunately, the resulting filter is computationally ig@nd  frequency, which is hard with the traditional discretipati
has a long delay. For this reason IIR filter design methods affethods. The disadvantage of the methods is that it intesluc
more often used. a slight delay to the signal (order of tens of samples), which
A common method of designing IIR filters for audio applidimits its applicability to control engineering applicatis.
cations is the bilinear transformation, which has the probl However, the delay is a few orders of magnitude shorter than
that it causes significant distortion of the frequency anasgh with FIR based filter design methods.
responses at high frequencies, near the Nyquist frequé&jcy [
One method of coping with this problem is to modify th(?A Idea of Method
bilinear transformation a bit such that the magnitude respo "~ o
at the Nyquist frequency is closer to that of the original The problem of accurate approximation of the analog sys-
analog system [9], [10]. Another possible approach is to ul@M response is re-casted into problem of:
numerical optimization [11], [12], which is computatiolyal 1) Estimating the real input signal from discrete measure-
heavy procedure and thus cannot be used in applications, ments.
where the coefficients need to be computedsitu (as in 2) Solving the analog system response with the real input
audio equalizers). In this article we shall approach thblern signal.
from a bit different perspective, that is, by modeling angecause the input signal is band-limited, the first of these
approximating the sampling and filtering operations diyecttwo problems is solved by help of the Shannon’s interpotatio
using ordinary differential equation (ODE) methods frontheorem [15]. The second problem is solved using the methods
control theory [13], [14]. This results in a method that isrom theory of linear time invariant differential equat®rthat
is, linear state space models borrowed from control theory
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as a continuous-time operation means solving the diffezentdiscrete frequencies from 0 to Nyquif, fs/2), where f
equation corresponding to the analog filter. is the sampling frequency. The disadvantage of this is that
due to the non-linear mapping of frequencies, only part of
the frequency responses of analog and digital filters can be
made to match. In particular, the behavior near the Nyquist
frequency is problematic in digital equalizers.
Orfanidis [9] has suggested an improvement to the bilinear
transformation based filters, where the gain of the disdilte
is matched to the gain of the analog filter at Nyquist freqyenc
This results in different behavior near the Nyquist frequen
because normally the gain of bilinear transformation bded
ter is zero at Nyquist frequency. However, the disadvantdge
Orfanidis’ discretization is that it only attempts to apgiroate
the magnitude response at certain prescribed points arsd thu
the behavior outside these points can still be anythingo Als
the phase response of the filter is not accurately matched to
the analog filter.
eThe common way to discretize systems in control theory
k[313], [14] is to approximate the input using, for example,
ngeroth order hold (ZOH) or first order hold (FOH). These

signal cannot be realized in a computer, but we can comp result in quite gooq approximations of the_ anal(_)g fil_ter,
the parameters of the formula that would reproduce the kig it bec_:aus_e nor tie plelclzew_lshe rﬁ:_or;]s';ant or p_|ecewr|]se linear
accurately. This continuous-time signal is then fed inte gfiPproximation works well with high frequencies, they are

continuous-time filter. The continuous-time filtering ogtéon problematic near the Nyquist frequency. For this reason, in

can be mathematically represented as solving a certaiarlingqIS article we shall apE!thhannpns mterpolanon thm':;
time invariant differential equation (or state space m))delnp'”'t reconstruction, which even in approximate settireg

The exact response of the continuous-time filter can be n(?Qv much better approximations to the analog filter at high
\

computed by formally solving the differential equation hwit '"SdU€NCIES. o .
the input reconstruction formula as the input function. By Yetanother way to design filters would be to design a FIR
sampling the differential equation solution we get the san{'ger with a desired frequency response using the well known
result as if really did the filtering in continuous time andn€thods such as window method (see, e.g., [6], [7], [8]). The
sampled the continuous-time system response at disanes.ti difficulty W|th_FIR.f|Iters is that in order to get Fhe resporete

As a practical application of the methodology we sha|PVY frequencies rlght, we would need extenswely'long fiter
show how the methods can be used for designing a discréds would result in couple of orders of magnitude more
parametric equalizer, whose magnitude and phase resporfgPutations per sample when compared to the lIR designs

match the analog counterparts accurately. presented here.
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Fig. 1. The idea of the approach is to first reconstruct thdicoous time
signal using Shannon’s interpolation theorem, then formafiply the filter
to the continuous-time signal and finally sample the output.

As shown in Figure 1 the proposed approach can
interpreted such that the sampled input signal is first caede
into continuous-time signal. Of course, the continuouseti

B. Discretization of Analog Audio Equalizers C. Analog Equalizer Filter Prototypes

The design of digital time domain parametric audio equal- . N . .
izers is often based on discretizing an analog parametricThe equalizers analyzed in this article will be based on the

equalizer, which is composed of chain of peaking and S|,'g|\mt]ol!owing.common filter prototypes. Each qf the filters can be
filters [8]. Although, in principle, we could skip the analdg- written either as non-proper transfer functions or as a stim o

main design altogether and design discrete equalizerttyirecconstant and a proper transfer function
for historical reasons and due to the superior audio qualitye Peaking filter can be used for amplifying or attenuating

of analog designs, this approach is still commonly used. In
this article, we shall present a numerical approach that can
be used for constructing accurate, but computationallitlig
discrete approximations to these analog equalizers.

The discretization of the analog peaking and shelving §lter
is typically done using some of the well knowsn to z
domain mapping based discretization methods, which are wel
documented in various books on digital signal processing
(see, e.g., [6], [7], [8]). Due to its simplicity the bilinea
transformation still seems to be a common choice nowadays.

All of the standard discretizations have their own weak- «
nesses. For example, the problem in bilinear transformatio
is that it maps the whole analog frequency raf@ec) onto

certain narrow frequency band. In audio terms, it can be
used for modifying the loudness of certain middle range
of frequencies. The Laplace domain transfer function can
be written as

s2 4+ (Kwo/Q) s +wj

2+ wo/Q/K s+ w?
(K — 1/K]wo/Q) s

2+ (@/QR) 5+

Gp(s) =
1)

Low shelf filter can be used for amplifying/attenuating
the frequencies below certain frequency value, that is,
modifying the loudness of bass in audio signal. The
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Fig. 2. Example of peaking filter responses with center fraqué&00Hz
andQ = 1.

transfer function can be written as:

s+ (VEwy/Q) s + K w

) = G (ol VE Q) s + K
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Fig. 3. Example of low shelf filter responses with center figy 100Hz
and@ = 1.
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Fig. 4. Example of high shelf filter responses with centerdergcy5000Hz
andQ@ = 1.

« K defines the gain of the filter at the amplified/attenuated
band such that if;4, is the gain in decibels, we have

(4)

o () defines the quality or the steepness of the transition
from neutral to amplified/attenuated band.

e wy is the active angular velocity, that is, the position of the
peak in peaking filter and the position of the transition in
low and high shelf filters. The angular velocity is related
to the corresponding frequengy in the following simple
manner:

K = 1090/40,

Wo = 27Tf0.

®)

I[l. MAIN RESULTS
A. State Space Discretization of Analog Filter

The Laplace domain transfer function of a generic analog
filter can be written in the following form:

bys™ 4 b1 S+ b
STt ar sl 1 S+ Ay

G(s)=c+

(6)

wherec,aq ... am,b1...b, are some known constants. The
transfer function consists of two parts: first one is a feed-
through part, which simply multiplies the input signal with
constant and the second part is a proper transfer function and

« High shelf filter can be used for amplifying/attenuatingthus realizable as a state space model. The state space model

the frequencies above certain frequency value, that
modifying the loudness of treble in audio signal. Th

transfer function can be written as:

G ls) = K252+ VEKw/Qs + K w3
& 52+ VEKuwy/Q s+ K wd

=K%y

(VE = K2 VRlwo Qs + (K — K*)ut

52+ VKwy/Qs + K w?
®)

In all of the above filters the positive constarits ¢Q andwg
have been defined as follows:

fan be realized, for example, utilizing the observer caceni

éo'rm [14], which results in the following:

—aq 1 bl
—Aas 1 b2
1 x4 | 1w
—Qm—1 1 bm—l

—a, 0 0 0 bm

F L

yt)=(1 0 -+ 0)x(t) +cu(t).
—_——
H

O
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With given initial statex(0) the explicit solution to the In practice, we need to truncate the series and analogausly t
differential equation of the state can be now written as the finite sampling rate case this will cause Gibbs phenomeno
. in spectral domain. In order to get rid of it, we need to apply

x(t) = et F x(0) + / elt=5)F 1, u(t) ds, (8) a window function to the series. With window functiem, (¢)

0 and2n + 1 terms in the series around stép- 1 results is:

wheree! ¥ is the matrix exponential of F, defined as n _ t—trj 1
u(t) = Z Up—j—1 Sinc <At> Wy (t — tg—j—1).

tF I oo 1 3.3 I
e —I+tF+2!tF+3!tF+... 9) J (12)
The output of the system is theiit) = 1 () + cu(?). A.suitable window, which is utilized here is the Hamming
In discrete time filtering, we are only interested in the ealu Window [16]:
of state and output on discrete instants of titget:, to, . . ., () = { 0.54 +0.46 cos (=) , for[t] <nAt
where At = t;, — t;—; is the sampling period. In that case it "™/~ | 0 , otherwise
is useful to write the solution in the following recursivertio (13)
At Thus the formula for the integral in Equations (10) is then
Xp = eAtka71 +/ e(At_s)FLu(tk,l + S) ds given as
0 (10) At n
yr = Hxp + cuy, e(At=9)F Lu(ty—1 + s)ds = Z Bjur_j_1, (14)

j=-n

where X = X(fk), Y = y(tk) and U = u(tk) With
these equations, given the previous state valye; we can Where
exactly compute the next state valag and thus also exactly B, — /At p(At=8)F [ i (s +jAt>
reconstruct outputs at the discrete time instants. Howewer ) At

order to do this, we will need to know the input values also T [s + j Al
between the discrete time instants, but we shall returnigo th X [054 +0.46 cos (mﬂ ds.
issue in the next section. Note that with the recursive defimi /
(10) we no longer need to assume the existence of cert
start time and initial conditiox(0), but instead, we can freely
choose the time step indexing As= —oo, ..., co. This shall
be assumed from now on.

The matrix exponentiat®*¥ can be easily computed using
various methods such as with various numerical software
analytically, for example, using the Taylor series expamsi
Laplace transform or Cayley-Hamilton theorem [13].

(15)

;ilﬁese coefficients can be easily evaluated by using some
suitable numerical integration scheme. In this article Walls
use simple Simpson’s rule, but more efficient methods could
be developed by, for example, using thic part of the
integral as the weight in Gaussian quadrature. In some cases
integral could even be evaluated in closed form or redluce
to expression consisting of some standard special furgtion
which are easy to approximate numerically.

C. Implementing the Filter in Sate Space or IIR Form

B. Input Reconstruction by Shannon’s Interpolation Once the coefficients (15) have been computed, the system
In the previous section we derived the Equations (10), whi¢hO) can be implemented by delaying the outputt time
can be used for solving the response of the analog systanits. The discretized model (10) reduces to form

exactly. However, in order to compute the integral in theéesta 2n

equation, we should know the input signal also between the xp = Axp_1+ ZBJ*” Uk—j—1

sample points. One way to proceed would be to approximate j=0 (16)
the input as piecewise constant or piecewise linear signal, yr = Hxp + ctg_n,

which would result in ZOH or FOH discretizations [13]. ALF _ _ )
However, this would only result in approximately correcthereé A = e=**. This model can be implemented by using
discretization and there is no guarantee that naive intrgas@ Simple delay line for the inputs. The corresponding
of approximation order would converge to the perfect recoff@nsform domain IIR filter can be derived by taking the

struction. transform of the equations:

Fortunately, because the input signal is band-limitedwelo ) . ) 2n . .
the Nyquist frequency, it indeed is possible to reconsttiet  X(z7') =2"AX(z"")+ Y B,z 7' U(z™") 17)
original signal from its samples. This exact interpolationc- j=0

tion is given by theShannon interpolation theorem [15], which Y (z™') = HX(z™') + ¢z "U(z7").
tells that a band-limited signal can legactly reconstructed

. . . . Solving for Y(z~!) gives equation of the fornY’(z—1) =
from its samples by the followinginc-interpolation formula: ving (=) giv quat (z7)

G(z~YYU(z71), where the transfer function is

j=—o0

= . (t—t; 2n
t = . J 11 y
U( ) E U‘J smce < ft ) ’ ( ) G(Z—1> _ H(I _ Z—l A )—1 E ijn Z—J—l + CZ_",
j=0

wheresinc(t) = sin(wt)/(rt). (18)
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which is a lIR filter with numerator ord&dn +m and denom-

B. Cascading in Continuous vs. Discrete Time

inator orderm. The numerator order is the given because the\ye can now design equalizer by deriving a low shelf, a high

adjoint of the matrix(I — 2= A) is of orderm — 1 in 2!

self and a couple of peaking filters by using the procedure

and the highest order in the sum3s + 1. The denominator gescriped in the previous section. The equalizer output wil

of the filter is the determinant of the matdx z—1 A, which

then be the result of applying each of the filters in cascade.

is of the orderm in z~". Note that the transfer function isThe delay of the whole system will be the number of sections,
purely causal such that the output at time stegnly depends say ), times the input reconstruction orderand thus the total

on inputs on time stepk — 1 and before. If there is no needge|ay will bepn. Each of the sections will then be an IIR filter

for such single-sample computation delay, the input can
delayedn — 1 samples instead of, which would drop the
numerator order t@n + m — 1.

[1l. APPLICATION TOPARAMETRIC EQUALIZER DESIGN
A. Discretization of Peaking and Shelving Filters

B8th numerator orde2n +2 and denominator orderand thus
the total computational complexity (hnumber of additionsl an
multiplications) will be roughly2np + 4p.

Alternative way is to cascade the filters in continuous time
by forming a2p order state space model consisting of all the
filters. The discretized model will then be an IIR filter with
numerator orde2n + 2p and denominator ordeéXp. This will

The peaking, low shelf and high shelf filters in Section I'q’ead to computational complexity of roughy, + 4p, which

can be written in the following common form:

ble8+b2w(2)

Gls) = (19)

$2+ajwo s+ azws’

whereay, as, by, by, andc are simple functions of{ and @
given in Section I-C. The transfer function can be realiZed,
example, as the state space model:

dx(t)  [(—ajwy w b w
dt (—a; wg 00) x(t) + (b; wg) u(t)
F L (20)
y(t) = (1 0)x(t) + cult),
——

H

wherex(t) = (z1(t), z2(t)) is the statey(t) is the output and

is always less or equal to the computational complexity of
cascading in discrete time. The total delay of the sectioiis w
also be onlyn.

Thus in final computational complexity point of view it
would be preferable to cascade the filters in continuous time
and discretize only once. However, the disadvantage of this
approach is that the computation of the discrete filter coef-
ficients is much harder with th2p order state space model
than withp models of ordeR. And these coefficients need to
be re-evaluated always when the parameters of the equalizer
change, that is, when the knobs of the equalizer are turreed. F
this reason, here we have chosen to psi#iscretized second
order filters instead of a singl®& order discretized filter.

u(t) is the input. Note that this is not exactly the observabfe- Numerical Comparison of Equalizer Designs

canonical form, because we have rescaledto make the
feedback matrix more well behaved.

Figure 5 shows the magnitude and phase responses of
different designs for the following peaking filter type of

In this case the matrix exponentie®*¥ can be evaluated equalizer, which was also used as an example in Orfanidis’

explicitly. If the quality paramete€) > 1/2, we have

A= AT (j; ﬁ) (21)
where
d = /[ 4az — a3
Apy = em 10 A2 cos(dwy At/2)
— (ay/d)e™ 0 A2 sin(dwy At/2)
Ajg = (2/d) e~ 0 A2 gin(dwy At/2) (22)

Aoy = —(2ag/d) e~ 1“0 A2 gin(dwy At/2)
Agy = e~ @AY 2 cog(dwy At/2)
+ (a1 /d)e™ @0 A2 gin(dwy At/2)
If @ < 1/2, then the result is the same except thatalland

cos functions are changed &inh and cosh, respectively.
The expression for coefficieni8; in Equation (15) is now

article [9]:
« The sampling frequency ig; = 44100 Hz.
« The peak frequency ig, = 11025 Hz, which in normal-
ized scale corresponds t@ = 0.57 rads/sample.
o The bandwidth in normalized scale Aw
rads/sample, which corresponds@o= 2.5.
o The peak gain i92 dB (boost).
Figure 6 shows the responses of the filter designs, which
approximate an equalizer with the same specifications as
above, but the peak gain is12 dB (cut). The following
designs are shown in Figures 5 and 6:
« Bilinear is a conventional bilinear transformation based
design (see, e.g., [9]).
« Orfanidisis the Nyquist matched design proposed in [9].
« New (10) is the design proposed in this article with input
reconstruction orden = 10.
« Analog is the analog filter response.
The coefficientsB; of the new design were numerically

0.27

an integral, where the integrand consists of sinc functiorevaluated using 10 steps of Simpson’s integration rulehén t
sines, cosines and exponential functions and thus is easyplmase responses, before plotting, we have compensated the
evaluate numerically. The transfer function in EquatioB)(1 knownn sample delay to get the different designs comparable.

now corresponds to an IIR with numerator order+ 2 and
denominator orde® in z~ 1.

As can be seen in the magnitude (upper) parts of Figures
5 and 6, the problem in the Bilinear design is that the
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Fig. 6. Peaking equalizer designs with sampling frequerty00 Hz, peak
frequency 11025 Hz (0.57 rads/sample), quality facto® = 2.5 (0.2w
rads/sample) and peak gainl2 dB (cut).

Fig. 5. Peaking equalizer designs with sampling frequet¢y00 Hz,
peak frequencyl 1025 Hz (0.5n rads/sample), quality factap = 2.5 (0.27
rads/sample) and peak gain 12 dB (boost).

TABLE |
. i ROOT MEAN SQUARED ERRORY{RMSE)WITH RESPECT TO THE ANALOG
magnitude response approaches zero too rapidly near thErer in MAGNITUDE AND PHASE RESPONSES OF DIFFERENT DESIGN

Nyquist frequency a22500 Hz. The Orfanidis design is better

; ; i ; Design Magn. Magn. Phase Phase
in this sense, because the gain at Nqu_st frequency has been Method 0-20ktiz | 0-225kHz | 0-20kHz | 0-22 SKHzZ
matched to the analog gain and.thus it stays closer to the—giinear 0.1079 01112 E 0587 =662
analog design also near the Nyquist frequency. The New (10) Orfanidis | 0.0384 0.0366 7.1368 9.2182
design stays very close to the true response up to roughly ~— New (1) 0.2416 02317 | 7.0878 | 9.1820
New (5) 0.0210 0.0324 2.1909 5.8966
kHz and then curves towards zero. New (10) |  0.0044 00210 | 04554 | 4.8430
The phase (lower) parts of the Figures 5 and 6 show that New (20) | 7.8844e-04| 0.0152 0.0200 4.3921
New (50) | 3.5433e-04| 0.0101 0.0094 4.6826

the problem in Bilinear and Orfanidis designs is that starti
already roughly from.3 kHz the phase responses of the filters
start significantly differ from the analog filter phase rasgp®.
The New (10) filter performs better in this sense, because theThe Table | shows the magnitude and phase errors between
phase response matches the analog response up to rdéghlthe discrete approximations and analog prototypes. The roo
kHz and then curves towards zero. mean squared errors (RMSE) have been computed at two
Figure 7 illustrates the effect of input reconstructionesrd different rangesd Hz — 20000 Hz, which corresponds to the
in the proposed filter design. In the figure, New (10), NeWange that is normally considered to be the relevant band for
(20) and New (50) refer to the proposed designs wite 10, audio applications. For completeness, we have also indlude
n = 20 andn = 50, respectively. As can be seen in the figuregrrors computed from the frequency range from zero up to
when the input reconstruction order increases, the magmituUNyquist frequency22050 Hz.
response stays closer and closer to the analog design wheAs the table shows, the 1st order reconstruction has about
the frequency approaches the Nyquist frequency. In the lintwice the error of the bilinear transformation based method
n — oo we would get a filter, which would approximatebut the 5th order input reconstruction is already on the same
the magnitude and phase responses perfectly up to Nyquéstge of errors as Orfanidis’ method. However, in the 5tkeord
frequency and then dropped to zero exactly at the Nyquistethod, the phase error is much lower than that of Orfanidis’
frequency. design. The 10th order input reconstruction is much better
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- any linear signal processing system, which has been de-
sor T Snear 1 signed in continuous time into a discrete-time system with

ar Zixiiﬁi T approximately the same frequency and phase charactsristic

New (50) [ as the original system. These kind of conversions are needed
Anaiog for example, in digital re-implementations of analog audio
processing systems, where an important issue is not toogtestr
their unigque processing characteristics. In telecomnaiitio
systems [17], filters are often formulated in continuousetim
and the proposed method provides the means to convert them
-i into discrete filters while preserving the frequency andsgha
responses more accurately than the traditional methods. Th
e recent rapid increase in computational power of processors
25 has made digital implementation radio frequency (RF) §lter
xa0’ feasible and thus the present methodology could be used for
== — conversion of such analog systems into their digital caunte

= = = Orfanidis parts.
New (10)

20 New (20) 1
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