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Accurate Discretization of Analog Audio Filters
with Application to Parametric Equalizer Design

Simo S̈arkkä, Member, IEEE and Antti Huovilainen

Abstract—This article is concerned with accurate discretization
of linear analog filters such that the frequency response of the
discrete time filter accurately matches that of the continuous
time filter. The approach is based on formal reconstruction of
the continuous time signal using Shannon’s interpolation theorem
and numerical solving of the differential equation corresponding
to the analog filter. When the formal continuous time system
is sampled, the resulting filter reduces to discrete linear filter,
which can be realized either as a state space model or as an IIR
filter. The proposed methodology is applied to design of filters
for parametric equalizers.

Index Terms—analog filter, discretization, Shannon’s interpo-
lation, differential equation, parametric equalizer

I. I NTRODUCTION

T HE need for accurate discretization of analog filters
arises, for example, in the design of virtual analog

synthesizers and modeling of audio effects [1], [2], [3], [4],
[5]. Parametric equalizers and other linear filters are used
as sub-blocks of such systems and therefore their accurate
discretization is also important – and surprisingly non-trivial.
The brute-force approach would be to design a high order FIR
filter with standard design methods (see, e.g., [6], [7], [8]), but
unfortunately, the resulting filter is computationally heavy and
has a long delay. For this reason IIR filter design methods are
more often used.

A common method of designing IIR filters for audio appli-
cations is the bilinear transformation, which has the problem
that it causes significant distortion of the frequency and phase
responses at high frequencies, near the Nyquist frequency [9].
One method of coping with this problem is to modify the
bilinear transformation a bit such that the magnitude response
at the Nyquist frequency is closer to that of the original
analog system [9], [10]. Another possible approach is to use
numerical optimization [11], [12], which is computationally
heavy procedure and thus cannot be used in applications,
where the coefficients need to be computedin situ (as in
audio equalizers). In this article we shall approach the problem
from a bit different perspective, that is, by modeling and
approximating the sampling and filtering operations directly
using ordinary differential equation (ODE) methods from
control theory [13], [14]. This results in a method that is
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computationally light, but still produces better approximations
than the bilinear transformation based methods.

In this article, we shall present a general methodology
that can be used for discretizing analog filters such that the
frequency response of the digital filter accurately matchesthat
of the analog filter. The methodology can be used with systems
where the continuous input signal can be assumed to be band-
limited to the frequency range from zero to Nyquist, which
applies especially well to audio signal processing applications.
In principle, the methodology can be used in any applica-
tion instead of the traditional discretization methods such as
impulse invariant transformation and bilinear z-transformation
(see, e.g., [6], [7], [8]).

The proposed method is based on quite elementary ideas,
namely to approximation of the Shannon interpolation and
numerical solutions of the corresponding LTI differentialequa-
tions. Thus, it is possible that similar methodology has been
already used, for example, in design of commercial digital
equalizer systems. However, to the authors’ knowledge, such
general methodology has not been published before.

The advantage of the proposed methodology over the bi-
linear transformation and related methods is that the fre-
quency response can be made accurate also near the Nyquist
frequency, which is hard with the traditional discretization
methods. The disadvantage of the methods is that it introduces
a slight delay to the signal (order of tens of samples), which
limits its applicability to control engineering applications.
However, the delay is a few orders of magnitude shorter than
with FIR based filter design methods.

A. Idea of Method

The problem of accurate approximation of the analog sys-
tem response is re-casted into problem of:

1) Estimating the real input signal from discrete measure-
ments.

2) Solving the analog system response with the real input
signal.

Because the input signal is band-limited, the first of these
two problems is solved by help of the Shannon’s interpolation
theorem [15]. The second problem is solved using the methods
from theory of linear time invariant differential equations, that
is, linear state space models borrowed from control theory
[13], [14].

The step 1 above can be interpreted to interpolate all
the possible values between the discrete samples and thus
it can be considered as oversampling to infinite sampling
frequency (i.e., to continuous time). The step 2 approximates
the analog filter for the infinitely oversampled signal, which
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as a continuous-time operation means solving the differential
equation corresponding to the analog filter.

Fig. 1. The idea of the approach is to first reconstruct the continuous time
signal using Shannon’s interpolation theorem, then formallyapply the filter
to the continuous-time signal and finally sample the output.

As shown in Figure 1 the proposed approach can be
interpreted such that the sampled input signal is first converted
into continuous-time signal. Of course, the continuous time
signal cannot be realized in a computer, but we can compute
the parameters of the formula that would reproduce the signal
accurately. This continuous-time signal is then fed into the
continuous-time filter. The continuous-time filtering operation
can be mathematically represented as solving a certain linear
time invariant differential equation (or state space model).
The exact response of the continuous-time filter can be now
computed by formally solving the differential equation with
the input reconstruction formula as the input function. By
sampling the differential equation solution we get the same
result as if really did the filtering in continuous time and
sampled the continuous-time system response at discrete times.

As a practical application of the methodology we shall
show how the methods can be used for designing a discrete
parametric equalizer, whose magnitude and phase responses
match the analog counterparts accurately.

B. Discretization of Analog Audio Equalizers

The design of digital time domain parametric audio equal-
izers is often based on discretizing an analog parametric
equalizer, which is composed of chain of peaking and shelving
filters [8]. Although, in principle, we could skip the analogdo-
main design altogether and design discrete equalizer directly,
for historical reasons and due to the superior audio quality
of analog designs, this approach is still commonly used. In
this article, we shall present a numerical approach that can
be used for constructing accurate, but computationally light
discrete approximations to these analog equalizers.

The discretization of the analog peaking and shelving filters
is typically done using some of the well knowns to z
domain mapping based discretization methods, which are well
documented in various books on digital signal processing
(see, e.g., [6], [7], [8]). Due to its simplicity the bilinear
transformation still seems to be a common choice nowadays.

All of the standard discretizations have their own weak-
nesses. For example, the problem in bilinear transformation
is that it maps the whole analog frequency range[0,∞) onto

discrete frequencies from 0 to Nyquist[0, fs/2), where fs
is the sampling frequency. The disadvantage of this is that
due to the non-linear mapping of frequencies, only part of
the frequency responses of analog and digital filters can be
made to match. In particular, the behavior near the Nyquist
frequency is problematic in digital equalizers.

Orfanidis [9] has suggested an improvement to the bilinear
transformation based filters, where the gain of the discretefilter
is matched to the gain of the analog filter at Nyquist frequency.
This results in different behavior near the Nyquist frequency,
because normally the gain of bilinear transformation basedfil-
ter is zero at Nyquist frequency. However, the disadvantageof
Orfanidis’ discretization is that it only attempts to approximate
the magnitude response at certain prescribed points and thus
the behavior outside these points can still be anything. Also
the phase response of the filter is not accurately matched to
the analog filter.

The common way to discretize systems in control theory
[13], [14] is to approximate the input using, for example,
zeroth order hold (ZOH) or first order hold (FOH). These
can result in quite good approximations of the analog filter,
but because nor the piecewise constant or piecewise linear
approximation works well with high frequencies, they are
problematic near the Nyquist frequency. For this reason, in
this article we shall apply Shannon’s interpolation theorem to
input reconstruction, which even in approximate setting results
in much better approximations to the analog filter at high
frequencies.

Yet another way to design filters would be to design a FIR
filter with a desired frequency response using the well known
methods such as window method (see, e.g., [6], [7], [8]). The
difficulty with FIR filters is that in order to get the responseat
low frequencies right, we would need extensively long filters.
This would result in couple of orders of magnitude more
computations per sample when compared to the IIR designs
presented here.

C. Analog Equalizer Filter Prototypes

The equalizers analyzed in this article will be based on the
following common filter prototypes. Each of the filters can be
written either as non-proper transfer functions or as a sum of
constant and a proper transfer function

• Peaking filter can be used for amplifying or attenuating
certain narrow frequency band. In audio terms, it can be
used for modifying the loudness of certain middle range
of frequencies. The Laplace domain transfer function can
be written as

GP (s) =
s2 + (Kω0/Q) s+ ω2

0

s2 + ω0/Q/K s+ ω2
0

= 1 +
([K − 1/K]ω0/Q) s

s2 + (ω0/Q/K) s+ ω2
0

.

(1)

• Low shelf filter can be used for amplifying/attenuating
the frequencies below certain frequency value, that is,
modifying the loudness of bass in audio signal. The
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Fig. 2. Example of peaking filter responses with center frequency 500Hz

andQ = 1.

transfer function can be written as:

GL(s) =
s2 + (

√
Kω0/Q) s+K ω2

0

s2 + (ω0/
√
K/Q) s+ ω2

0/K

= 1 +
([
√
K − 1/

√
K]ω0/Q) s+ (K − 1/K)ω2

0

s2 + (ω0/
√

(K)/Q) s+ ω2
0/K

.

(2)
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Fig. 3. Example of low shelf filter responses with center frequency100Hz

andQ = 1.

• High shelf filter can be used for amplifying/attenuating
the frequencies above certain frequency value, that is,
modifying the loudness of treble in audio signal. The
transfer function can be written as:

GH(s) =
K2 s2 +

√
Kω0/Qs+K ω2

0

s2 +
√
Kω0/Qs+K ω2

0

= K2 +
([
√
K −K2

√
K]ω0/Qs+ (K −K3)ω2

0

s2 +
√
Kω0/Qs+K ω2

0

.

(3)

In all of the above filters the positive constantsK, Q andω0

have been defined as follows:
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Fig. 4. Example of high shelf filter responses with center frequency5000Hz

andQ = 1.

• K defines the gain of the filter at the amplified/attenuated
band such that ifgdb is the gain in decibels, we have

K = 10gdb/40. (4)

• Q defines the quality or the steepness of the transition
from neutral to amplified/attenuated band.

• ω0 is the active angular velocity, that is, the position of the
peak in peaking filter and the position of the transition in
low and high shelf filters. The angular velocity is related
to the corresponding frequencyf0 in the following simple
manner:

ω0 = 2πf0. (5)

II. M AIN RESULTS

A. State Space Discretization of Analog Filter

The Laplace domain transfer function of a generic analog
filter can be written in the following form:

G(s) = c+
b1 s

m−1 + · · ·+ bm−1 s+ bm
sm + a1 sm−1 + · · ·+ am−1 s+ am

, (6)

where c, a1 . . . am, b1 . . . bm are some known constants. The
transfer function consists of two parts: first one is a feed-
through part, which simply multiplies the input signal with
constantc and the second part is a proper transfer function and
thus realizable as a state space model. The state space model
can be realized, for example, utilizing the observer canonical
form [14], which results in the following:

dx(t)

dt
=










−a1 1
−a2 1

...
. ..

−am−1 1
−am 0 0 · · · 0










︸ ︷︷ ︸

F

x(t) +










b1
b2
...

bm−1

bm










︸ ︷︷ ︸

L

u(t)

y(t) =
(
1 0 · · · 0

)

︸ ︷︷ ︸

H

x(t) + c u(t).

(7)
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With given initial statex(0) the explicit solution to the
differential equation of the state can be now written as

x(t) = etF x(0) +

∫ t

0

e(t−s)F
Lu(t) ds, (8)

whereetF is the matrix exponential oftF, defined as

etF = I+ tF+
1

2!
t2 F2 +

1

3!
t3 F3 + . . . (9)

The output of the system is theny(t) = x1(t) + c u(t).
In discrete time filtering, we are only interested in the values

of state and output on discrete instants of timet0, t1, t2, . . .,
where∆t = tk − tk−1 is the sampling period. In that case it
is useful to write the solution in the following recursive form:

xk = e∆tF
xk−1 +

∫ ∆t

0

e(∆t−s)F
Lu(tk−1 + s) ds

yk = Hxk + c uk,

(10)

where xk = x(tk), yk = y(tk) and uk = u(tk). With
these equations, given the previous state valuexk−1 we can
exactly compute the next state valuexk and thus also exactly
reconstruct outputs at the discrete time instants. However, in
order to do this, we will need to know the input values also
between the discrete time instants, but we shall return to this
issue in the next section. Note that with the recursive definition
(10) we no longer need to assume the existence of certain
start time and initial conditionx(0), but instead, we can freely
choose the time step indexing ask = −∞, . . . ,∞. This shall
be assumed from now on.

The matrix exponentiale∆tF can be easily computed using
various methods such as with various numerical software or
analytically, for example, using the Taylor series expansion,
Laplace transform or Cayley-Hamilton theorem [13].

B. Input Reconstruction by Shannon’s Interpolation

In the previous section we derived the Equations (10), which
can be used for solving the response of the analog system
exactly. However, in order to compute the integral in the state
equation, we should know the input signal also between the
sample points. One way to proceed would be to approximate
the input as piecewise constant or piecewise linear signal,
which would result in ZOH or FOH discretizations [13].
However, this would only result in approximately correct
discretization and there is no guarantee that naive increasing
of approximation order would converge to the perfect recon-
struction.

Fortunately, because the input signal is band-limited below
the Nyquist frequency, it indeed is possible to reconstructthe
original signal from its samples. This exact interpolationfunc-
tion is given by theShannon interpolation theorem [15], which
tells that a band-limited signal can beexactly reconstructed
from its samples by the followingsinc-interpolation formula:

u(t) =
∞∑

j=−∞

uj sinc

(
t− tj
∆t

)

, (11)

wheresinc(t) = sin(π t)/(π t).

In practice, we need to truncate the series and analogously to
the finite sampling rate case this will cause Gibbs phenomenon
in spectral domain. In order to get rid of it, we need to apply
a window function to the series. With window functionwn(t)
and2n+ 1 terms in the series around stepk − 1 results is:

u(t) =

n∑

j=−n

uk−j−1 sinc

(
t− tk−j−1

∆t

)

wn(t− tk−j−1).

(12)
A suitable window, which is utilized here is the Hamming
window [16]:

wn(t) =

{
0.54 + 0.46 cos

(
π t
n∆t

)
, for |t| ≤ n∆t

0 , otherwise.
(13)

Thus the formula for the integral in Equations (10) is then
given as

∫ ∆t

0

e(∆t−s)F
Lu(tk−1 + s) ds =

n∑

j=−n

Bj uk−j−1, (14)

where

Bj =

∫ ∆t

0

e(∆t−s)F
L sinc

(
s+ j∆t

∆t

)

×
[

0.54 + 0.46 cos

(
π [s+ j∆t]

n∆t

)]

ds.

(15)

These coefficients can be easily evaluated by using some
suitable numerical integration scheme. In this article we shall
use simple Simpson’s rule, but more efficient methods could
be developed by, for example, using thesinc part of the
integral as the weight in Gaussian quadrature. In some cases
the integral could even be evaluated in closed form or reduced
to expression consisting of some standard special functions,
which are easy to approximate numerically.

C. Implementing the Filter in State Space or IIR Form

Once the coefficients (15) have been computed, the system
(10) can be implemented by delaying the output byn∆t time
units. The discretized model (10) reduces to form

xk = Axk−1 +

2n∑

j=0

Bj−n uk−j−1

yk = Hxk + c uk−n,

(16)

whereA = e∆tF. This model can be implemented by using
a simple delay line for the inputs. The correspondingz-
transform domain IIR filter can be derived by taking thez-
transform of the equations:

X(z−1) = z−1
AX(z−1) +

2n∑

j=0

Bj−n z
−j−1 U(z−1)

Y (z−1) = HX(z−1) + c z−nU(z−1).

(17)

Solving for Y (z−1) gives equation of the formY (z−1) =
G(z−1)U(z−1), where the transfer function is

G(z−1) = H (I− z−1
A)−1





2n∑

j=0

Bj−n z
−j−1



+ c z−n,

(18)
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which is a IIR filter with numerator order2n+m and denom-
inator orderm. The numerator order is the given because the
adjoint of the matrix(I − z−1

A) is of orderm − 1 in z−1

and the highest order in the sum is2n+ 1. The denominator
of the filter is the determinant of the matrixI− z−1

A, which
is of the orderm in z−1. Note that the transfer function is
purely causal such that the output at time stepk only depends
on inputs on time stepsk − 1 and before. If there is no need
for such single-sample computation delay, the input can be
delayedn − 1 samples instead ofn, which would drop the
numerator order to2n+m− 1.

III. A PPLICATION TO PARAMETRIC EQUALIZER DESIGN

A. Discretization of Peaking and Shelving Filters

The peaking, low shelf and high shelf filters in Section I-C
can be written in the following common form:

G(s) = c+
b1 ω0 s+ b2 ω

2
0

s2 + a1 ω0 s+ a2 ω2
0

, (19)

wherea1, a2, b1, b2, andc are simple functions ofK andQ
given in Section I-C. The transfer function can be realized,for
example, as the state space model:

dx(t)

dt
=

(
−a1 ω0 ω0

−a2 ω0 0

)

︸ ︷︷ ︸

F

x(t) +

(
b1 ω0

b2 ω0

)

︸ ︷︷ ︸

L

u(t)

y(t) =
(
1 0

)

︸ ︷︷ ︸

H

x(t) + c u(t),

(20)

wherex(t) = (x1(t), x2(t)) is the state,y(t) is the output and
u(t) is the input. Note that this is not exactly the observable
canonical form, because we have rescaledx2 to make the
feedback matrix more well behaved.

In this case the matrix exponentiale∆tF can be evaluated
explicitly. If the quality parameterQ > 1/2, we have

A = e∆tF =

(
A11 A12

A21 A22

)

(21)

where

d =
√

|4a2 − a21|
A11 = e−a1 ω0 ∆t/2 cos(dω0 ∆t/2)

− (a1/d)e
−a1 ω0 ∆t/2 sin(dω0 ∆t/2)

A12 = (2/d) e−a1 ω0 ∆t/2 sin(dω0 ∆t/2)

A21 = −(2a2/d) e
−a1 ω0 ∆t/2 sin(dω0 ∆t/2)

A22 = e−a1 ω0∆t/2 cos(dω0 ∆t/2)

+ (a1/d)e
−a1 ω0 ∆t/2 sin(dω0 ∆t/2)

(22)

If Q < 1/2, then the result is the same except that allsin and
cos functions are changed tosinh andcosh, respectively.

The expression for coefficientsBj in Equation (15) is now
an integral, where the integrand consists of sinc functions,
sines, cosines and exponential functions and thus is easy to
evaluate numerically. The transfer function in Equation (18)
now corresponds to an IIR with numerator order2n + 2 and
denominator order2 in z−1.

B. Cascading in Continuous vs. Discrete Time

We can now design equalizer by deriving a low shelf, a high
self and a couple of peaking filters by using the procedure
described in the previous section. The equalizer output will
then be the result of applying each of the filters in cascade.
The delay of the whole system will be the number of sections,
sayp, times the input reconstruction ordern and thus the total
delay will bepn. Each of the sections will then be an IIR filter
with numerator order2n+2 and denominator order2 and thus
the total computational complexity (number of additions and
multiplications) will be roughly2np+ 4p.

Alternative way is to cascade the filters in continuous time
by forming a2p order state space model consisting of all the
filters. The discretized model will then be an IIR filter with
numerator order2n+2p and denominator order2p. This will
lead to computational complexity of roughly2n + 4p, which
is always less or equal to the computational complexity of
cascading in discrete time. The total delay of the sections will
also be onlyn.

Thus in final computational complexity point of view it
would be preferable to cascade the filters in continuous time
and discretize only once. However, the disadvantage of this
approach is that the computation of the discrete filter coef-
ficients is much harder with the2p order state space model
than withp models of order2. And these coefficients need to
be re-evaluated always when the parameters of the equalizer
change, that is, when the knobs of the equalizer are turned. For
this reason, here we have chosen to usep discretized second
order filters instead of a single2p order discretized filter.

C. Numerical Comparison of Equalizer Designs

Figure 5 shows the magnitude and phase responses of
different designs for the following peaking filter type of
equalizer, which was also used as an example in Orfanidis’
article [9]:

• The sampling frequency isfs = 44100 Hz.
• The peak frequency isf0 = 11025 Hz, which in normal-

ized scale corresponds toω0 = 0.5π rads/sample.
• The bandwidth in normalized scale is∆ω = 0.2π

rads/sample, which corresponds toQ = 2.5.
• The peak gain is12 dB (boost).

Figure 6 shows the responses of the filter designs, which
approximate an equalizer with the same specifications as
above, but the peak gain is−12 dB (cut). The following
designs are shown in Figures 5 and 6:

• Bilinear is a conventional bilinear transformation based
design (see, e.g., [9]).

• Orfanidis is the Nyquist matched design proposed in [9].
• New (10) is the design proposed in this article with input

reconstruction ordern = 10.
• Analog is the analog filter response.

The coefficientsBj of the new design were numerically
evaluated using 10 steps of Simpson’s integration rule. In the
phase responses, before plotting, we have compensated the
knownn sample delay to get the different designs comparable.

As can be seen in the magnitude (upper) parts of Figures
5 and 6, the problem in the Bilinear design is that the



TO APPEAR IN IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 6

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−2

0

2

4

6

8

10

12

14

16

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

 

 
Bilinear
Orfanidis
New (10)
Analog

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−50

−40

−30

−20

−10

0

10

20

30

40

50

60

Frequency [Hz]

P
ha

se
 [D

eg
]

 

 
Bilinear
Orfanidis
New (10)
Analog

Fig. 5. Peaking equalizer designs with sampling frequency44100 Hz,
peak frequency11025 Hz (0.5π rads/sample), quality factorQ = 2.5 (0.2π
rads/sample) and peak gain 12 dB (boost).

magnitude response approaches zero too rapidly near the
Nyquist frequency at22500 Hz. The Orfanidis design is better
in this sense, because the gain at Nyquist frequency has been
matched to the analog gain and thus it stays closer to the
analog design also near the Nyquist frequency. The New (10)
design stays very close to the true response up to roughly19
kHz and then curves towards zero.

The phase (lower) parts of the Figures 5 and 6 show that
the problem in Bilinear and Orfanidis designs is that starting
already roughly from13 kHz the phase responses of the filters
start significantly differ from the analog filter phase response.
The New (10) filter performs better in this sense, because the
phase response matches the analog response up to roughly19
kHz and then curves towards zero.

Figure 7 illustrates the effect of input reconstruction order
in the proposed filter design. In the figure, New (10), New
(20) and New (50) refer to the proposed designs withn = 10,
n = 20 andn = 50, respectively. As can be seen in the figure,
when the input reconstruction order increases, the magnitude
response stays closer and closer to the analog design when
the frequency approaches the Nyquist frequency. In the limit
n → ∞ we would get a filter, which would approximate
the magnitude and phase responses perfectly up to Nyquist
frequency and then dropped to zero exactly at the Nyquist
frequency.
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Fig. 6. Peaking equalizer designs with sampling frequency44100 Hz, peak
frequency11025 Hz (0.5π rads/sample), quality factorQ = 2.5 (0.2π
rads/sample) and peak gain−12 dB (cut).

TABLE I
ROOT MEAN SQUARED ERRORS(RMSE) WITH RESPECT TO THE ANALOG

FILTER IN MAGNITUDE AND PHASE RESPONSES OF DIFFERENT DESIGNS.

Design Magn. Magn. Phase Phase
Method 0-20kHz 0-22.5kHz 0-20kHz 0-22.5kHz
Bilinear 0.1079 0.1112 5.0587 7.7662
Orfanidis 0.0384 0.0366 7.1368 9.2182
New (1) 0.2416 0.2317 7.0878 9.1820
New (5) 0.0210 0.0324 2.1909 5.8966
New (10) 0.0044 0.0210 0.4554 4.8430
New (20) 7.8844e-04 0.0152 0.0200 4.3921
New (50) 3.5433e-04 0.0101 0.0094 4.6826

The Table I shows the magnitude and phase errors between
the discrete approximations and analog prototypes. The root
mean squared errors (RMSE) have been computed at two
different ranges:0 Hz – 20000 Hz, which corresponds to the
range that is normally considered to be the relevant band for
audio applications. For completeness, we have also included
errors computed from the frequency range from zero up to
Nyquist frequency22050 Hz.

As the table shows, the 1st order reconstruction has about
twice the error of the bilinear transformation based method,
but the 5th order input reconstruction is already on the same
range of errors as Orfanidis’ method. However, in the 5th order
method, the phase error is much lower than that of Orfanidis’
design. The 10th order input reconstruction is much better
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Fig. 7. Enlarged view of magnitude and phase responses of peaking equalizer
designs, which illustrates the effect of input reconstruction order.

than any other method in both magnitude and phase responses.
Increasing the reconstruction order lowers all the errors,expect
that the phase response error, when measured from the whole
range does not go down. This is because just below the Nyquist
frequency there still is a small range where the phase differs
from the analog prototype.

IV. CONCLUSION AND DISCUSSION

In this article, we have presented a general discretization
method, which can be used for designing discrete versions of
analog filters such that the frequency response of the digital
design accurately matches that of the analog design. The
approach is based on approximation of the input reconstruction
with classical Shannon’s interpolation theorem and numerical
solving of the LTI differential equation with the reconstructed
input. The resulting filter is a relatively low order IIR filter,
which can be implemented in state space form or in direct IIR
form. The proposed methodology has been applied to design
of parametric equalizers and the frequency response of an
example equalizer design has been compared to previously
proposed equalizer design methods.

Although, the application example in this paper was the
parametric equalizer design, the proposed methodology can
be used in much wider range of applications. In audio signal
processing, the proposed method can be used for converting

any linear signal processing system, which has been de-
signed in continuous time into a discrete-time system with
approximately the same frequency and phase characteristics
as the original system. These kind of conversions are needed,
for example, in digital re-implementations of analog audio
processing systems, where an important issue is not to destroy
their unique processing characteristics. In telecommunication
systems [17], filters are often formulated in continuous time
and the proposed method provides the means to convert them
into discrete filters while preserving the frequency and phase
responses more accurately than the traditional methods. The
recent rapid increase in computational power of processors
has made digital implementation radio frequency (RF) filters
feasible and thus the present methodology could be used for
conversion of such analog systems into their digital counter-
parts.
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[13] K. J. Åström and B. Wittenmark,Computer-Controlled Systems: Theory

and Design, 3rd ed. Prentice Hall, 1996.
[14] T. Glad and L. Ljung,Control Theory: Multivariable and Nonlinear

Methods. Taylor & Francis, 2000.
[15] C. E. Shannon, “Communication in the presence of noise,”Proceedings

of the IRE, vol. 37(1), pp. 10–21, 1949.
[16] R. W. Hamming,Digital Filters, 3rd ed. Dover, 1998.
[17] A. B. Carlson,Communication Systems: An Introduction to Signals and

Noise in Electrical Communication, 3rd ed. McGraw-Hill International
Editions, 1986.



TO APPEAR IN IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 8
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