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Abstract. Gait has been considered as an efficient biometric trait for
user authentication. Although there are some studies that address the
task of securing gait templates/models in gait-based authentication sys-
tems, they do not take into account the low discriminability and high
variation of gait data which significantly affects the security and prac-
ticality of the proposed systems. In this paper, we focus on addressing
the aforementioned deficiencies in inertial-sensor based gait cryptosys-
tem. Specifically, we leverage Linear Discrimination Analysis to enhance
the discrimination of gait templates, and Gray code quantization to ex-
tract high discriminative and stable binary template. The experimental
results on 38 different users showed that our proposed method signifi-
cantly improve the performance and security of the gait cryptosystem. In
particular, we achieved the False Acceptant Rate of 6×10−5% (i.e., 1 fail
in 16983 trials) and False Rejection Rate of 9.2% with 148-bit security.

Keywords: gait authentication, biometric cryptosystem, biometric tem-
plate protection, fuzzy commitment scheme

1 Introduction

Gait has been considered as an efficient modality for recognizing individual
via human motion [2]. The growth of microelectromechanical technology has
opened a new approach for implementing gait authentication systems (e.g.,
[3,7,8,11,12,13,25,31,33,34,36]), in which the gait signals are collected by inertial-
sensors. This technique permits implicit user authentication and therefore, offers
significant usability advantages compared with password or other biometric sys-
tems [13] which require the user to perform explicit gesture to be authenticated.
Several inertial-sensors based gait authentication schemes have been proposed
in the literature (e.g., [3,7,13,25,31,33]). Despite their merits, all these stud-
ies rely on traditional pattern recognition approaches, where the extracted gait
templates or models are stored locally without confidentiality protection, which



might pose security and privacy issues to the user once such raw data are com-
promised by the attacker (e.g., via malware) [19].

To address the privacy concern of biometric data, several studies leveraging
Biometric Cryptosystem (BCS) [28] have been proposed [11,14,15,21,23,27]. One
of the most common techniques that has been recently used to protect biometrics
templates is Fuzzy Commitment Scheme (FCS) [18], where a binary string is
extracted from the biometric templates and then, binded with a cryptographic
key encoded by Error Correcting Code (ECC) [22] before being written to the
storage (e.g., [11,14,15,27]). Despite the fact that such schemes offer an elegant
strategy to protect the privacy of biometric templates, they did not take into
account the characteristic of behavioral biometric modalities such as gait, which
is well-known to be low discriminative and highly unstable. As described in [20],
these issues can significantly degrade the security and performance of the FCS-
based system (e.g., key length, False Acceptant Rate (FAR), False Rejection
Rate (FRR)), where a low discriminative extracted binary string might result in
a high FAR while an unstable one can lead to high FRR and low security. Thus,
it is vital to develop a method that can extract high discriminative and stable
strings from the gait templates to improve the security and performance of gait
cryptosystem.

In this paper, we propose methods to address the aforementioned deficiencies
to improve the security and performance of inertial-sensor based gait cryptosys-
tem as follows:

– First, we handle the problem of low discriminability and high variation of
gait data by adopting Linear Discriminant Analysis (LDA) [32]. As the tra-
ditional LDA is incompatible with FCS (see Section 3.3), we propose a modi-
fication of LDA to (i) improve the discriminability of gait data from different
users, (ii) reduce the variation of gait data from the same user, (iii) main-
tain the high feature dimension of gait data to extract a long enough binary
string to be used in FCS (Section 3.3).

– Second, we propose Gray code [9] quantization scheme, which can offer strong
capability of error toleration, to quantize the gait templates after LDA pro-
jection to binary template (Section 3.4).

– Third, we design a method that can determine the reliability of each com-
ponents in the extracted binary template (Section 3.5). Highly reliable com-
ponents will be selected to form the final binary string input for FCS.

– Last, we conduct a comprehensive experiment to analyze the efficiency of the
proposed techniques and perform security analysis in details to evaluate the
security of our system against different attacks. We achieved 6×10−5% FAR
(i.e., 1 fail in 16983 trials), 9.2% FRR at 148-bit security. This experimental
result indicated that the proposed methods significantly improve not only
the security but also the performance of the gait cryptosystem compared
with other state-of-the-art works (Section 4).



2 Preliminaries

2.1 Notations

Given a matrix M, M[i, j] denotes accessing the cell indexing at row i and
column j. |M| denotes the determinant of matrix M. Given two matrices A
and B having the same number of rows, C = [A B] denotes that matrix C is

formed by concatenating A and B horizontally. C =

[
A
B

]
means C is formed

by vertically concatenating two matrices A and B having the same number
of columns. Given an m × n matrix M, we denote the mean vector of M as
m = (m1, . . . ,mj , . . . ,mn) where mj = 1

m

∑m
i=1 M[i, j]. Given an n-dimensional

vector x = (x1, . . . , xj , . . . , xn), we denote the mean of x as x̄ = 1
n

∑n
j=1 xj . d·e

is the ceiling operator. |x| means the absolute value of variable x. We denote
⊕ as the bitwise XOR operator and || as binary string concatenation operator.
α � t means logical right shifting α by t bits. H : {0, 1}∗ → {0, 1}n is a secure
cryptographic hash function, where n is the length of hash value.

2.2 The Fuzzy Commitment scheme

Fig. 1: The Fuzzy Commitment Scheme [18].

Fuzzy Commitment Scheme (FCS) is a generic BCS framework proposed by
Juels and Wattenberg [18], which leverages Error Correcting Code (ECC) [22]
to handle the variation of biometric data. The key idea of FCS is to express an
n-bit witness ω (i.e., biometric template) in term of a codeword c ∈ C of length
n and an offset δ ∈ {0, 1}n such that ω = c ⊕ δ where C is an error correcting
codebook. FCS operates in two phases as sketched in Figure 1.

1. Enrollment phase: A codeword c ∈ C is selected randomly and its hash
value H(c) is calculated (step 1.1). Meanwhile, c is sealed to δ by the bio-
metric template ω (step 1.2). The hash value H(c) and δ are stored as helper
data for authentication while c and ω are discarded.

2. Authentication phase: Given a biometric template ω′, the estimated code-
word c′ is retrieved using the helper data δ (step 2.1). Then, its hash value
H(c′) is calculated (step 2.2). Finally, H(c′) is matched with H(c) to give
the final verification decision (step 2.3).



As discussed in [18], each codeword c in C has two parts as information part
of length k (k < n) and redundancy part of length (n − k). The ratio between
the amount of two parts in c is a trade-off between security strength and the
resilience. The system is more secure when the information part is extended. In
contrast, the system provides higher capability of resilience when the redundancy
part is lengthened.

2.3 Fisher’s Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a data dimensional reduction technique
that reserves as much as possible the discrimination information between dif-
ferent classes. Assuming that a training dataset X includes D classes Li, each
having Ni templates. LDA finds W to transform X to Y as Y = WTX so that
the intra-class variation is minimized and inter-class discrimination is maximized
in Y.

Let x̄ be the mean vector of X and x̄i be the mean vector of templates of
class Li. The within-class scatter matrix Sw and between-class scatter matrix
Sb are calculated by:

Sw =

D∑
i=1

Ni∑
j=1

(xij − x̄i)(xij − x̄i)
>, (1)

Sb =

D∑
i=1

Ni(x̄i − x̄)(x̄i − x̄)>, (2)

where xij is the template j of class Li. The projection matrix W is the result
of the maximization problem using the Fisher’s criterion [6] as:

J (W) =

∣∣W>SbW
∣∣

|W>SwW|
. (3)

The optimization task of (3) is equivalent to the following generalized eigen-
value problem described in [32] as: Sbwi = λiSwwi, where wi and λi (1 ≤
i ≤ D − 1) respectively are the eigenvector and eigenvalue of S−1w Sb. When Sw
is nonsingular, the optimal W is the one whose columns are the eigenvectors
corresponding to at most (D − 1) largest eigenvalues of S−1w Sb.

3 The Proposed Gait Cryptosystem

In this section, we first present the general architecture of our proposed inertial-
sensor-based gait authentication cryptosystem. We introduce overall steps of
data (pre)processing to extract gait templates collected from the inertial sensor
data. Finally, we present the main techniques which adopt LDA and Gray code
quantization along with a reliability extraction method to enhance the security
and performance of the gait cryptosystem.



Fig. 2: The architecture of the inertial-sensor based gait cryptosystem.

3.1 Overall of System Architecture

We present in Figure 2 the specification of our proposed inertial-sensor based gait
authentication system which follows the Fuzzy Commitment Scheme as follows.

1. Enrollment: First, we collect the training gait data (step 1.1) from inertial
sensor, and perform data (pre)processing to extract gait templates (step 1.2).
We then apply LDA training (step 1.3a) to the extracted gait templates,
followed by a Gray code-based quantization (step 1.4a) and reliable string
extraction (step 1.5a) to obtain a discriminative and stable binary string.
Concurrently, we generate a key m randomly (step 1.3b) and then encode it
into a BCH codeword (step 1.4b). Meanwhile, we calculate the hash value
of m (denoted as H(m)) (step 1.5b). Finally, we bind the binary string with
the codeword to get the secure δ (step 1.6). We store the hash value H(m)
and δ along with some auxiliary data in steps 1.3a–1.5a as helper data for
using in authentication phase.

2. Authentication: Given gait data to be verified, we extract a stable binary
string by using the stored helper data (steps 2.1–2.5). We retrieve an esti-
mated BCH codeword by binding the new extracted binary string with the
stored secure δ (step 2.6). We then decode the estimated codeword to get
the secret key m′ (step 2.7), and calculate its hash code H(m′) (step 2.8).
Finally, we match H(m′) with H(m) to verify the authenticating user (step
2.9).

Notice that our general framework is inspired and extended from [11]. In this
paper, we mainly focus on improving the security and performance of the gait
cryptosystem, wherein we introduce two additional steps including LDA and
Gray code quantization to enhance the discriminability of gait data. Hence, we
present in following sections how to implement such vital steps in details, and
refer the readers to [11] for detailed presentations of other (pre)processing steps.



3.2 Data Preprocessing and Feature Extraction

We leverage the methods proposed in [12] for gait data preprocessing. Specif-
ically, we address the disorientation problem using the data additionally col-
lected from orientation sensor, and mitigate the noise in gait signals by adopt-
ing the Daubechies orthogonal wavelet with level 2. We represent each sam-
pling of gait signals as a = (aX , aY , aZ), where aX , aY , aZ are acceleration val-
ues captured in X, Y , Z dimensions, respectively. Subsequently, we divide the
gait data into consecutive of gait-cycle-based segments where each gait cycle
is defined as a time period between two times of ground contacting of a same
foot while walking. Hence, each gait cycle Ci contains t acceleration samples as
Ci = [ai1 . . .aij . . .ait]. We then form the gait pattern by concatenating 4 con-
secutive gait cycles in a way that two consecutive gait patterns overlap with each
other by 2 gait cycles as Pi = [C2i−1...C2(i+1)]. For each Pi, we extract features
in both time and frequency domain as described in [12] to form a gait template
xi = (xi1, . . . , xij , . . . , xiM ) ∈ IRM , where xij denotes the feature j extracted
from pattern Pi, and M is the total number of features being extracted.

3.3 Improving the Discriminability of Gait Data

We observe that gait is more noisy and less discriminative than other biometric
traits. Hence, instead of directly using the gait templates for further processing,
we adopt LDA to enhance the inter-class discriminability and reduce the intra-
class variation.

LDA training: In the enrollment phase, we form a data matrix G including

N gait templates xi of the genuine user as G =
[
x1 . . . xi . . . xN

]> ∈ IRN×M ,
and the data matrix I including N ′ gait templates x′i of all other users I =[
x′1 . . . x

′
i . . . x

′
N ′

]> ∈ IRN ′×M . We form the dataset M =

[
G
I

]
∈ IR(N+N ′)×M .

We label the templates in M with two classes including genuine and impostor. We
use M as the data for LDA training to find the projection matrix for transforming
gait templates.

However, the traditional LDA has a dimensional limitation as described in
[32] which makes it incompatible to the gait cryptosystem. Specifically, with
D as the number of classes, there are (D − 1) eigenvectors wi of S−1w Sb that
have the corresponding eigenvalues λi satisfying λi > 0, where Sw and Sb are
calculated by (1) and (2), respectively. Then, LDA will form a projection matrix
W by using at most (D − 1) eigenvectors. Thus, the data dimension after LDA
projection will be at most (D−1). In current system, with D = 2, the dimension
of data after LDA projection is 1 which is insufficient for extracting to a reliable
string because the it is required to have the same length with BCH codeword
for binding (Figure 2, step 1.6). Therefore, we modify the process of LDA as
follows.

First, instead of using M for LDA training, we separate M into S submatrices
Mi (1 ≤ i ≤ S), each having K columns, and apply LDA to each Mi indepen-
dently to get a projection matrix Wi. Specifically, we calculate the within-class



scatter matrix S
(i)
w and between-class scatter matrix S

(i)
b of each dataset Mi.

Then, we factorize the matrix (S
(i)
w )−1S

(i)
b to a set of K eigenvectors w

(i)
l and

corresponding eigenvalues λ
(i)
l (1 ≤ l ≤ K). Second, instead of using at most

(D − 1) eigenvectors w
(i)
l corresponding to (D − 1) largest eigenvalues λ

(i)
l to

form Wi as described in Section 2.3, we use all eigenvectors w
(i)
l as

Wi = [w
(i)
1 . . . w

(i)
l . . . w

(i)
K

]. (4)

Wi is used to transform gait data in sub-space i in both enrollment and authen-
tication phase. We store all projection matrices Wi as helper data.

LDA projection: Given S projection matrices Wi, we determine the LDA
projection G′ of G by (i) determining Gi ∈ IRN×K for each sub-space 1 ≤ i ≤ S;
(ii) calculating the projection of Gi as G′i = W>

i Gi for each Gi; (iii) forming
G′ as:

G′ = [G′1 . . . G
′
i . . . G

′
S ] ∈ IRN×M . (5)

We also transform matrix I to I′ using Wi similar to transforming G as above.
Then, we use G′ and I′ for quantization and reliable binay string extraction as
will be described in the following sections.

3.4 Gray Code Quantization

In order to reduce the natural variation of gait data, we use N templates in
matrix G′ (5) for quantization to construct a binary gait template. We determine
ḡ′ ∈ IRM as the mean vector of matrix G′ and use ḡ′ to generate a binary gait
template as follows.

First, we normalize each component g′j in ḡ′ such that g′j ∈ [0, 1], for 1 ≤
j ≤M . Note that all the min, max values (represented as min, max vectors) ex-
tracted in the normalization process will be stored as the helper data. Let Ψ be a
system parameter that specifies the number of bits representing one real-valued
component in quantization. Then, we divide the range value [0,1] to 2Ψ contin-
uous subranges which are called as quanta. Hence, the range of each quantum
is φ = 1

2Ψ
. Consequently, we map each quantum to a unique Ψ -bit string. The

normalized value of g′j may variate in two continuous quanta at different times
of sampling. So the mapping between the set of quanta and set of Ψ -bit strings
should be well-arranged so that any two binary strings corresponding to two con-
tinuous quanta differ to each other in one bit. Gray code [9] is a good candidate
for this requirement as it is a technique for designing a binary numeral system
in which two successive strings have only one different bit. Given a normalized
value of g′j , the quantum index ij is defined such that ijφ < g′j ≤ (ij +1)φ. Then
we calculate the corresponding Ψ -bit string ωj following Gray code system as
[5]:

ωj = B(Ψ, ij)⊕ (B(Ψ, ij)� 1), (6)

where B(Ψ, ij) is the representation of ij in Ψ -bit string.



Finally, from all ωj , we form the binary gait template ω which is the quan-
tized template of ḡ′ as:

ω = (ω1, . . . , ωj , . . . , ωM ). (7)

3.5 Reliable Binary String Extraction

In this section, we propose a method to extract highly reliable components in
the binary gait template. By reliability, we mean the one having low variation in
enrolled users’ templates and high discriminability between templates of enrolled
user and other users.

Given a binary gait template ω, we select R reliable components ωj to form
the reliable string ω ∈ {0, 1}n which will be used to bind with codeword c. The
value of R is determined based on two other predefined parameters including
the codeword length n and the number of Gray code quantization bits Ψ as
R = d nΨ e.

We use I′ and G′ in (5) for estimating the reliability of each component. We
propose a formula to calculate the reliability ϕj of each component ωj of as:

ϕj =
1

2

1 + erf

 1
N ′

∑N ′

i=1

∣∣I′[i, j]− ḡ′j∣∣√
2σ2

j

 , (8)

where erf denotes the Gaussian Error Function [1], ḡ′j is the component j of

mean vector ḡ′ in Section 3.4, and the variance σ2
j of component j is calculated

as:

σ2
j =

1

N − 1

N∑
i=1

(
G′[i, j]− ḡ′j

)2
. (9)

In (8), the numerator of expression inside the erf function measures the dis-
criminability of component j between enrolled user and other users. The de-
nominator measures the variation of component j of enrolled user. Let p =
(p1, . . . , pj , . . . , pM ) ∈ INM be the vector containing the index of components
that follows the descending order of reliability, ϕpj ≥ ϕpj+1 . We use first R com-
ponents of p to extract the reliable components in ω to form the final reliable
string ω as:

ω = ωp1 ||ωp2 || . . . ||ωpR . (10)

Note that we store the first R components in p as helper data to extract reliable
components in the authentication phase.

4 Experiments

4.1 Configurations and Results

We used the dataset in [12] for the experimental analysis of the proposed system.
The dataset contains gait signals of 38 users. We extracted the gait signals to



10224 gait templates using the process in Section 3.2. For the empirical analysis,
we built an authentication models for each user. In each model, we considered
one user as the genuine and the others are impostors. In the enrollment phase
for each user, we formed the matrix G containing N = 100 gait templates of the
genuine user and I containing N ′ = 100 · 37 = 3700 templates of the impostors;
and the remaining data is used in authentication phase to verify the built model
(12 templates for each time of attempting). In the LDA training step, we divided
the original data space into S = 15 sub-spaces as explained in Section 3.3. We
selected BCH codeword lengths of 255 and 511 bits. We analyzed the system
with different values of quantization bit Ψ and key length k to understand the
impact of such parameters. We used False Acceptant Error Rate (FAR) and False
Rejection Error Rate (FRR) as the standard metrics to evaluate the performance
of our proposed system. Finally, we analyzed the security of our system against
various attacks.
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Fig. 3: The FRR and FAR at different key length of codeword 255, 511 and 4-bit
Gray code quantization.

With 4-bit Gray code quantization, we have the optimal result. Figure 3
displays the FAR and FRR with different key lengths and BCH codewords.
At 255-bit codeword and 87-bit key, the system achieves 0% FAR and 9.8%
FRR. With the 511-bit codeword and 148-bit key, the FRR is 9.2% and FAR is
6×10−5% (i.e., 1 fail in 16983 trials). Under different attacks, the security of the
system is 87 and 148 bits according to 255-bit and 511-bit codeword, respectively
(analyzed in Section 4.4).

4.2 The Impact of LDA Projection

We used Normalized Euclidean distance [35] to analyze the impact of LDA pro-
jection on the discriminability of gait template. Figure 4a displays the Normal-
ized Euclidean distance distribution of gait template before LDA projecting. We
can see that the overlapping area of the intra-class and inter-class is substan-
tial which reflects the naturally low discrimination of gait data. After applying
the modified LDA, the overlapping area reduces significantly as shown in Figure
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Fig. 4: The normalized Euclidean distance distribution of gait templates before
and after LDA projection.

4b. This contrast illustrates the effectiveness of the modified LDA presented in
Section 3.3. The LDA projection step plays an important role since it enhances
the data discriminability, and therefore, significantly improves the system per-
formance.

4.3 The Impact of Gray Code Quantization

We used the Normalized Hamming distance [35] to analyze the impact of Gray
code quantization. As gait signals are unstable, a specific component of gait
template can have different values at each time of sampling. However, if these
values still belong to the same quantum, the system will result in the same
binary string. The use of Gray code quantization can minimize the error bits
when these values fall into different quanta. So, adopting Gray code provides
higher capability of error tolerance to enhance the performance.

The number of quantization bits Ψ is a trade-off between the FAR and FRR
values of the system. The quantum range φ decreases as Ψ increases and vice
versa. Given that Ψ is small, (thus φ is large), it is likely that the same binary
string can be extracted from two different gait templates. As a result, the inter-
class and intra-class Hamming distance are decreased as illustrated in Figure 5.
This results in the increase of the FAR, and the decrease of the FRR. Figure
6 displays the comparison of Hamming distance distribution between the cases
of using 4-bit natural binary code and 4-bit Gray Code quantization. When
using Gray code (Figures 6 c, d), the intra-class Hamming distance is much
smaller compared with using natural binary code (Figures 6 a, b). Table 1 gives
a comparison of 3-bit and 4-bit Gray code quantizations in terms of FRR, FAR
at the same codeword length and key length. We can see that when Ψ = 3, the
FRR is lower while FAR is higher than that of Ψ = 4, respectively.
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Fig. 5: The Hamming distance distribution when using different values of Ψ for
Gray code quantization.

Table 1: The system performance pertaining to codeword length n, key length
k and number of quantization bits Ψ

Ψ = 3 Ψ = 4

n (bits) k (bits) FAR (%) FRR (%) n (bits) k (bits) FAR (%) FRR (%)

79 0.4 1.9 79 6 × 10−5 8.1

255 87 0.3 2.3 255 87 0 9.8

91 0.3 2.8 91 0 12.0

139 0.65 0.93 139 11 × 10−5 8.3

511 148 0.56 1.17 511 148 6 × 10−5 9.2

157 0.38 1.4 157 6 × 10−5 11.5

4.4 Security Analysis

In this section, we analyze the system security against several statistical attacks.
The typical attack is brute force the random key. As the proposed key lengths
are 87 and 148 bits for 255-bit and 511-bit codewords, the security strength
against key brute force attack are 87 and 148 bits, respectively.

We analyze whether an attacker can exploit information from the helper data
including projection matrices Wi, the min, max vectors for normalization, the
reliable components index p, secured δ and hash code H(m). The min, max vec-
tors contain statistical information from the whole dataset, and therefore, is not
user-specific. Thus, the min, max vectors do not reveal information about gen-
uine user. The reliable component index vector p only contains the information
about the discriminability and stability of gait templates. Such indexes does not
reveal information about biometric template, thus it cannot be used to revert to
biometric template. With the hash code H(m), the attacker cannot revert to m
with a non-negligible probability, given that the cryptographic hash function H
is secure.
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Fig. 6: The Hamming distance distribution of 255-, 511-bit reliable strings when
using natural binary code and Gray code with 4-bit quantization.

LDA projection matrices are not user-specific since they only reflect the in-
formation about the dataset population. Additionally, the projection matrix is
formed by eigenvectors λ of S−1w Sb. From λ, we cannot revert to S−1w Sb without
knowing the corresponding eigenvalues, which are immediately discarded after
the LDA training phase. Thus, from the stored eigenvectors, we cannot revert
to S−1w Sb and obtain original biometric templates of the enrolled user.

Using the secure δ, in order to get the key m, the attacker can guess a string
ω′ that is close enough to ω hidden in δ. The distance strictly depends on the
error correcting capability of BCH code and the uncertainty of ω which depends
on the quantization method. We use entropy to measure the uncertainty of ω.
We calculate the entropy of each bit in ω by the formula in [29] as:

H(ωi) = −pi log2(pi) + (1− pi) log2(1− pi), (11)

where pi = Pr(ωi = 1) is the probability of bit i getting value 1 due to quantiza-
tion. The entropy E of reliable string ω is calculated by summarizing entropy of
all components as E =

∑n
i=1H(ωi). According to the Gray code quantization,



the probability of a bit i receiving value 1 is pi = 0.5. Then, the system achieves
the entropy E of 250 and 500 for codeword 255 and 511, respectively. The
strength of system security against this attack is measured by Sphere-packing
bound according to [10] as:

CSB ≥
2E∑t

i=0

(
E
i

) ' 2E(
E
t

) , (12)

where t is the error correcting capability. For two proposed key lengths of 255-bit
and 511-bit codewords, the error correcting capability t is 26 and 53 bits as in
[22], respectively, so the system achieves CSB as 2133 and 2269.

Further more, we analyzed the system under statistical attack that is per-
formed based on the distribution of inter-class Hamming distance of extracted
reliable string. Specifically, the adversary can extract the reliable string ω′ from
his own gait signal. Then, with the inter-class Hamming distance as h, he knows
that he can guess the string ω of enrolled user by searching for all ω satisfying
dH(ω′,ω) = h. Additionally, by utilizing the error correcting capability of BCH
code as t, he only needs to search for all ω such that dH(ω′,ω) = h − t in order
to retrieve key m from secure δ. Let d = h− t, then the cost of this attack is

CST (h) =

(
n
d

)
=

n!

d!(n− d)!
. (13)

We assume that h follows the Gaussian distribution. We estimate the mean µh
and variance σh of h in Figure 6. Then, we analyze CST (h) with h at (µh− 2σh)
and (µh + 2σh) using (13). With 4-bit quantization, the security strength are
108 and 235 bits corresponding to codeword 255 and 511 bits, respectively.

In summary, as the attack on error correcting capability and Hamming dis-
tance are more costly than doing brute force on key, the system security is 87
and 148 bits according to 255-bit and 511-bit codewords, respectively.

5 Related Work

Biometric Cryptosystems (BCS) are techniques for securing biometric templates,
and also provide approaches to integrate biometrics and existing security solu-
tions (i.e., symmetric cryptography, password-based authentication) by releasing
biometric-dependent key [28]. BCS techniques are classified into two main ap-
proaches, namely key binding and key generation. In the key binding approach,
biometric templates are used to hide/retrieve a pre-specified secret key which
can be selected by the user or randomly generated. Fuzzy Commitment [18] and
Fuzzy Vault [17] are cryptographic primitives that offer key binding function.
On the other hand, the key generation approach directly generates secret key
from biometric templates. The cryptographic primitive supporting this approach
is Fuzzy Extractor - Secure Sketch [4].

As the concerns of security and privacy have increased tremendously recently,
the BCS techniques were widely applied to various biometric traits such as face



[21], iris [27], fingerprint [14,23], speech [15], gait [11] and achieved promising
results. Most of studies followed the key binding scheme [11,14,15,27]. For ex-
ample, the authors in [27] proposed an Adaptive FCS to secure the iris-code
and achieved 0% FAR and FRR of 4.92% with 128 bits security. Having to note
that, as the great variation of biometric templates in nature, the task of di-
rectly generating stable and high-entropy secret key from biometric template is
challenging [24,16]. Several studies on key generation on biometric samples have
been proposed [21,30].

A number of studies also proposed methods to protect gait templates (e.g.,
[11,26,34]). In [11], the authors applied FCS to secure inertial sensors based
gait signals. In [26], the authors proposed a two-factor authentication scheme
named Gait-hashing. They used hash code generated from camera-based gait
data and random vectors stored in token for authenticating user, and achieved
EER of 10.8%. The authors in study [34] proposed Key-gait which was a scheme
for generating shared secret key between two legitimate devices using gait sig-
nal captured from wearable sensors, and can generate 128-bit key with 98.3%
probability.

6 Conclusion

In this paper, we addressed the problems of inter-class’s low discrimination and
intra-class’s high variance of nature gait data, which have not been received much
attention in the privacy-preserving gait authentication community. We proposed
a method that applied LDA to increase the discrimination of gait data, and
adopted the Gray code quantization to extract a highly stable binary template.
Finally, we proposed a strategy to extract a reliable binary string from the stable
binary template, which is used as an efficient input for FCS. The achieved results
showed that our proposed system enhances not only the security but also the
performance of the system, compared with other state-of-the-art works.
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