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Fig. 1. Cumulative estimated information potential [ν(Nc)] versus the number of dimension components for different toy data sets, using KECA and OKECA
and different σ estimation approaches.

C. OKECA Components for Data Classification

We here illustrate the capabilities of OKECA for data classification.
A great many feature extraction methods exist, both linear, such as
PCA [29] or ICA-based methods [24], [30], and nonlinear, such
as the family of kernel multivariate analysis [16]. In this brief,
however, for the sake of a fare comparison, we restrict to compare our
OKECA proposal to the original KECA counterpart, which are the
only existing unsupervised feature extraction kernel methods based
on the same principle of entropy maximization. The experiments
are conducted on a wide range of synthetic and real problems:
1) the two moons and the pinwheel data sets considered previously
in Section III-A; 2) six real data sets from the University California
Irvine (UCI) Machine Learning Repository1; and 3) a real satellite
multispectral image classification problem. In order to evaluate the
data classification, we have used the overall classification accu-
racy (OA) which is obtained as the average of samples correctly
predicted in percentage terms. While one could classify on top of the
extracted features, we here rely intentionally on the class-dependent
estimated densities and perform maximum a posteriori (MAP)
classification.

1) Synthetic Data Sets: Fig. 3 shows the test OA obtained with
different σ values and different numbers of retained dimensions with
the KECA and the proposed OKECA on the two moons and pinwheel
data sets. The five bars for every number of retained features are from
left to right: σd1, σd2, σSilv, σML, and σclass. The value of σclass
has been optimized for classification using all features in a fivefold
cross-validation scheme. We used 20 samples and 45 samples per
class for training two moons and pinwheel, respectively, and 500 per
class for testing the models and computing the test OA in both the
data sets. Note that the OKECA method achieves better classification

1http://archive.ics.uci.edu/ml/datasets.html

results than KECA for all σ values, confirming that to seek for
optimally entropic data descriptors may benefit classification. Smaller
differences between the methods are observed as the number of
components increases. When all n features are used, OKECA and
KECA are trivially equivalent.

In the following, we discuss the capabilities of OKECA in the pres-
ence of distorted distributions. The question raised is how sensitive
is the optimization algorithm to the presence of noise. To this end,
a toy example of the KECA and OKECA projections in the presence
of noise is analyzed. We used 50 samples of two moons data set for
training and 500 samples to test the classifier. Gaussian noise was
added to the original data distributions by varying the dimensionwise
standard deviation of the Gaussian noise σn from 0.001 to 0.091.
Numerical results are shown in Fig. 4 (left). Note that one main aim
of feature extraction and dimensional reduction methods is achieved
using the proposed method: KECA needs at least 12 components to
obtain similar results to the ones obtained by the OKECA with just
one component, even in high-noise regime.

2) UCI Benchmark Data Sets: We used six data sets from the UCI
machine learning repository of different sizes and dimensionality:
the Ionosphere data set is a binary classification problem of the
quality of the radar signal returned from the ionosphere; the goal for
the Letter data set is to detect each of a large number of black-
and-white rectangular pixel displays as one of the 26 capital letters
in the English alphabet; the Pendigits problem deals with the
recognition of pen-based handwritten digits; the Pima-Indians
data set constitutes a classical problem of diabetes diagnosis in
patients from clinical variables; the Vowel data set deals with the
vowels detection problem in japanese and contains data from a large
number of time series of cepstrum coefficients taken from speakers;
and finally wdbc is another clinical problem for the diagnosis
of breast cancer in malignant/benign classes. The data sets were
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Fig. 2. Density estimation for the ring data set by the KECA and the OKECA
using different numbers of extracted features Nc and approaches to estimate
the kernel length-scale parameter σ . Black color: low pdf values. Yellow color:
high pdf values.

Fig. 3. Overall accuracy obtained with two moons (left) and pinwheel (right)
data sets. The five bars for every number of retained features are from left to
right: σd1, σd2, σSilv, σML, and σclass.

intentionally selected either because of the observed high collinearity
between input features or because of the diversity in the number of
classes. Table I gives details on the dimensionality, number of classes,
and training and test samples used in the experiments that follow.

We run KECA and OKECA for all the data sets for different
numbers of extracted components. The average of the OA for the
ten first dimensions is shown in Fig. 4 (right). In this case, we
restrict ourselves to σML because of the good performance in the
previous experiments and for the sake of simplicity. In general, the
OKECA method outperforms the KECA method and, as observed
before, OKECA saturates its performance with just the first extracted
dimension.

TABLE I

UCI DATABASE DESCRIPTION (d : NUMBER OF DIMENSIONS,
nc : NUMBER OF CLASS, Ntrain : NUMBER OF TRAINING

SAMPLES, AND Ntest : NUMBER OF TEST SAMPLES)

Fig. 4. Overall accuracy obtained by the KECA and OKECA methods using
different values of noise (left) and UCI database (right) with different numbers
of dimensions. The bars for every number of retained features are different
noise values (left) and different databases (right), respectively.

3) Satellite Image Classification: In this experiment, we apply
KECA and OKECA to the segmentation of remotely sensed multi-
spectral images. Nowadays, sensors mounted on satellite or airborne
platforms may acquire the reflected energy by the earth with high
spatial detail and in several wavelengths or spectral channels [31].
This allows an improved detection and classification of the pixels
in the scene. We consider a real multispectral image acquired over
a residential neighborhood of the city of Zürich by the QuickBird
satellite in 2002. The analyzed image has 329 pixel × 347 pixel.
Additional spatial information was added by means of morphological
operators, so the data set has 22 input features. The images contain
nine classes of interest: water, meadows, trees, asphalt, brick roofs,
bitumen, parking lots, bare soil, and shadows. The classes of training
samples have been labeled by photointerpretation. The considered
data not only are high dimensional but also show high collinearity,
since spectral and spatial features are stacked together at a pixel level.
The problem may be quite challenging for classification and feature
extraction.

The KECA and OKECA cumulative information potential values
follow similar trends to the toy examples (see Fig. 5). OKECA
reaches the maximum with just one feature, while KECA needs much
more components to achieve similar informative content, especially
noticeable for σML and σd2 criteria. Such dependence with the
criterion is not shared by OKECA. These results suggest that the
sharpness in the component selection made by OKECA is relevant
in the cases of high feature redundancy as well.

Fig. 6 shows the classification results obtained using different
σ values and different numbers of retained dimensions. In this case,
we use 22 and 200 samples per class for training and testing the
models, respectively. Both the methods achieve the best results using
σML and σclass criteria. Finally, note that σd1, which is a common
choice in unsupervised kernel methods, provides very poor results
for both the methods. Fig. 7 shows the classification MAPs obtained
using three retained features and σclass for both the methods. Note
how OKECA outperforms KECA in general for all the classes.
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Fig. 5. Cumulative information potential for the multispectral image data set
using the KECA and OKECA and different σ estimation approaches. Results
for KECA and OKECA in σd1 are equal (appear overlapped).

Fig. 6. Classification results for the Zürich QuickBird satellite image for
different σ values and numbers of retained dimensions by KECA and OKECA.
The five bars for every number of retained features are from left to right:
σd1, σd2, σSilv, σML, and σclass.

D. Discussion

The OKECA potential has been shown in the different experiments.
In all of them, the proposed method presents an extraordinary advan-
tage: the information is compacted in very few features (often in just
one or two) with higher expressive power optimizing the information
potential. That is demonstrated from experimental viewpoint, not only
in pdf estimation but also in classification tasks. As we have shown,
the proposed method reduces the number of features clearly required
for improving the results. OKECA correctly estimates the pdf using
one dimension concentrating most of the entropy information better
than the KECA method, and it is more robust to the selection of the
kernel parameter. Furthermore, the experiments show an improvement
of the classification results even in the presence of noise. In some
situations, using just one OKECA feature is enough to achieve the

Fig. 7. Classification MAPs for the Zürich QuickBird satellite image using
three features and σclass in the KECA and OKECA. Top-left: RBG version
of the original image. Top-right: ground truth classification MAP (each color:
different land-cover classes). Bottom-left: classification MAP obtained with
KECA. Bottom-right: classification MAP obtained with OKECA.

best overall performance, extracting more components does not add
new complementary information and classification results do not
change significantly.

IV. CONCLUSION

We proposed a highly efficient modification of the KECA algo-
rithm for the optimal extraction of entropic kernel components. While
KECA reduces to sort the kernel eigenvectors by entropy, OKECA
explicitly searches for the features that retain most informative
content. We have illustrated the ability of OKECA to retain more
information in pdf estimation and classification on both synthetic
and real examples. Results consistently showed that the OKECA
outperforms KECA in terms of information content and robustness.
In fact, in many experiments, just one or two OKECA compo-
nents retain almost all the relevant information for data description.
Accounting for optimal entropic features allows us to improve the
description of the density shape, which is in turn the core for
pdf estimation and pdf-based classification. Furthermore, we have
analyzed the effect of using different unsupervised rules to fit the RBF
kernel length-scale parameter on KECA performance and OKECA
performance. In general, the maximum likelihood approach showed
the best performance.
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