
Fast Random k-Labelsets for Large-Scale
Multi-Label Classification

Keigo Kimura, Mineichi Kudo, Lu Sun
Graduate School of Information Science and Technology

Hokkaido University, Sapporo, Japan.
{kkimura,mine,sunlu}@main.ist.hokudai.ac.jp

Sadamori Koujaku
Department of Engineering Mathematics
University of Bristol, United Kingdom

sadamori.koujaku@bristol.ac.uk

Abstract—Multi-label classification (MLC), allowing instances
to have multiple labels, has been received a surge of interests
in recent years due to its wide range of applications such
as image annotation and document tagging. One of simplest
ways to solve MLC problems is label-power set method (LP)
that regards all possible label subsets as classes. LP validates
traditional multi-classification classifiers such as multi-class SVM
but it suffers from the increased number of classes. Therefore,
several improvements have been made for LP to be scaled for
large problems with many labels. Random k labELsets (RAkEL)
proposed by Tsoumakas et al. solves this problem by randomly
sampling a small number of labels and taking ensemble of
them. However, RAkEL needs all instances for constructing each
model and thus suffers from high computational complexity.
In this paper, we propose a new fast algorithm for RAkEL.
First, we assign each training instance to a small number of
models. Then LP is applied for each model with only the
assigned instances. Experiments on twelve benchmark datasets
demonstrated that the proposed algorithm works faster than the
conventional methods while keeping accuracy. In the best case,
it was 100 times faster than baseline method (LP) and 30 times
faster than the original RAkEL.

I. INTRODUCTION

Multi-label classification (MLC) problems, which allow
instances to have more than one label at the same time, have
become popular because of the natural modeling in several real
applications such as image annotation and document tagging.
For example, an image of a tiger in the jungle would be
labeled “tiger”, “tree” and “jungle” at the same time. In such
an MLC problem, all possible combinations of labels must be
considered, and thus, there are many challenging tasks [1], [2].

There are two extreme ways to solve MLC: binary relevance
(BR) and label-power set method (LP) [3]. BR decomposes a
MLC problem into a set of independent binary classification
problems associated to individual label. In contrast to the
simplicity, in BR, the correlation between labels are totally
ignored. As a result, its classification accuracy is relatively
low [16], [20] LP takes another extreme strategy. It transforms
an MLC problem into a multi-class single-label classification
problem by considering all possible label subsets as newly
extended classes. LP can fully utilize the label correlation
but causes an combinatorial explosion instead. Thus, recently,
several intermediate methods have been proposed [4]–[6].

Random k-labelsets (RAkEL) is one of such approaches [4].
RAkEL randomly samples some label subsets of a relatively

TABLE I: Classification process of a test instance in RAkEL.

Classification result in each label subset
Label subset λ1 λ2 λ3 λ4 λ5 λ6

L(1) = {λ1, λ2, λ6} 1 1 – – – 0
L(2) = {λ2, λ4, λ5} – 1 – 0 0 –
L(3) = {λ4, λ5, λ6} – – – 0 0 1
L(4) = {λ2, λ3, λ6} – 0 1 – – 0
L(5) = {λ3, λ4, λ5} – – 1 0 1 –
Average votes 1/1 2/3 2/2 0/3 1/3 1/3
Final prediction 1 1 1 0 0 0

small size and applies LP for each label subset. A test instance
is classified by all the classifiers and the results are combined
by the majority voting (See Table I). It is known that RAkEL
performs better compared to the other MLC methods in many
datasets. Usually, the sizes of the label subsets are fixed
to a small number to make RAkEL scalable. Nevertheless,
RAkEL still suffers from a large computational complexity
because it needs all the instances to build each component
LP classifier. The reason is as follows. Suppose that a test
instance with a hidden label set {λ1, λ2, λ3} is classified by
five classifiers built on the five corresponding models with
label subset L(m) (m = 1, 2, . . . , 5) as shown in Table I.
Then the expected output of the third classifier associated with
L(3) = {λ4, λ5, λ6} is all zero’s. However, usually any multi-
class classifier is designed to output at least one label, and
thus, such “no label” output is not possible. We connect such
a “no label” output to a special class and call it Null class.
RAkEL solves this ”no null class problem” by making the
null class φ explicitly and assigns every instance into one of
2|L

(m)| classes, for example, four classes of φ, {1}, {2}, {1, 2}
for |L(m)| = 2. However, this means that every component
classifier needs the all training instances many of which are
assigned to the null class. This causes two problems: one
is the designing cost that is increased in proportion to the
total number of training instances, and another is that an
enhanced imbalance problem where the instances of null class
occupy the majority in each model, bringing a bad influence
to classifier design.

In this paper, we solve this multiple usage of the whole
data by establishing an upper-level classification. We build
individual classifiers using the only instances assigned to that
model. That is, we do not use instances assigned to the null

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4846-5/16/$31.00 ©2016 IEEE 433

class. Instead, we select models in accord with a given test
instance in each round. The difference is illustrated in Fig. 1.
A training instance is distributed into multiple models such
that it shares at least one label with the label subset of the
model. We carry out such an assignment by regression for
a test instance. For example, in Table I, ideally, an instance
with hidden labels {λ1, λ2, λ3} is distributed to four models
except for the third and majority voting is performed on the
four models.

Notations The goal of MLC is to learn the relationship
between a F -dimensional vector x ∈ RF and a L-dimensional
binary vector y ∈ {0, 1}L from N training instances
D = {(x(1),y(1)), . . . , (x(N),y(N))}, and to predict a label
vector ŷ for a test instance x from the relationship. For
simplicity, we use X =

[
x(1), . . . ,x(N)

]T ∈ RN×F as a
feature matrix and Y =

[
y(1), . . . ,y(N)

]T ∈ {0, 1}N×L as a
label matrix.

We use L = {λ(1), . . . , λ(L)} as a set of labels, L(m) as mth
sampled label subset of size |L(m)| and P(L(m)

) as its power-
set. We use w(m) =

[
w

(m)
1 ,w

(m)
2 , . . . ,w

(m)
L

]
∈ {0, 1}L as a

membership vector for mth model with L(m) such that w(m)
i

takes 1 if λi ∈ L(m), otherwise 0. By D(m) ⊆ D, we denote
the subset of training instances for mth model with L(m).
We sample randomly M label subsets of a constant size K,
|L(m)| = K (m = 1, 2, . . . ,M).

II. RELATED WORK

A meta-label, a reasonable combination of labels, is gener-
ally accepted idea in MLC field and its typical construction
and usage is as follows [7]:

1) (Partitioning): Partition a label set L into M meta-labels
(label subsets) L(1), . . . ,L(M).

2) (Relabeling): Choose reasonable combinations in each
L(m) (m = 1, 2, . . . ,M). Usually a limited number of
combinations is adopted, but in LP methods, all possible
label subsets are chosen within L(m).

3) (Recombination): Decompose a meta-label into a set of
original labels as the candidates of the output.

In the partitioning step, RAkEL repeats M times a random
sampling in a fixed size K. This achieves a faster computation
compared to the other partitioning methods by clustering [6],
chi-square testing [8], conditional dependencies of labels [5]
and solving a cover-set problem [9], [10].

In the relabeling step, Read et al. proposed a pruning to
reduce the number of classes [20]. It prunes the less-frequent
classes in the LP method. In [7], pruning on label subsets is
proposed in RAkEL. This method enables us to handle even
a large size of label subsets even in RAkEL.

In the recombination step, several variants of RAkEL have
been proposed so far. Some improve the voting scheme by
optimizing the classification accuracy in a cross validation
[11]. RAkEL++ uses a confidence value instead of a majority
voting [10]. Gharroudi et al. choose the value of a threshold
of majority voting for each labels greedily [12].

(a) The original RAkEL (b) The proposed fRAkEL

Fig. 1: Difference of classification processes in a model of a
label subset of size two. LP denotes a Label-Power model and
RM denotes a regression model.

In addition, some other methods try to incorporate random-
forest type approaches with RAkEL [7], [13]. They sample
instances, features and labels at the same time. At the expense
of an improved accuracy, they need more computational time.

In contrast to label reduction approaches above, some
methods reduce the number of instances by clustering [14].
Unfortunately, it costs a large amount of computational time
too. In this paper, we reduce both labels and instances, where
each model consists of a small number of labels such as
RAkEL and is learned from a limited number of instances
sharing labels with each model.

The label space dimension reduction (LSDR) [15] is also
related to our approaches. It can be considered as a soft cluster-
ing of labels. However, due to its soft membership manner, the
number of labels in each model cannot be reduced. Therefore,
instead of LP, BR methods are used for the classification
in each model. Several variants of LSDR with traditional
dimension reduction methods such as PCA and CCA [16]–
[18] have been considered.

III. THE PROPOSED MODEL

We first provide a brief review of RAkEL [4].

A. A Brief Review of Random k Label Set (RAkEL)

RAkEL is one of meta-label learning methods which al-
lows overlapping between meta-labels. RAkEL carries out the
following steps:

1) Sample K labels at random from L (K � L). Repeat
this M times to have L(m) (m = 1, 2, . . . ,M).

2) Construct an LP classifier with P(L(m)
) classes and the

null class using all instances in D(m) = {(x(1),y(1) ∧
w(m)), . . . , (x(N),y(N)∧w(m))} where many of which
are assigned to the null class.

3) Combine the classification results on a test instance by
majority voting.

RAkEL is known as one of best LP based methods. However,
as we stated, RAkEL is not efficient since it needs all instances
for designing each component LP classifier (See Step 2).

434

Algorithm 1 The proposed fast RAkEL (fRAkEL)

1: Input: Label matrix Y,Feature matrix X, Size of label
subsets K, Number of model M , Base LP classifier f(),
Ridge parameter α, Threshold parameter β, A test instance
x;

2: Output: Predicted label vector ŷ;
{Training}

3: for m = 1 to M do
4: L(m) ← randomsampling(L,K);
5: w(m) ← (w

(m)
1 ,w

(m)
2 , . . . ,w

(m)
L) ∈ {0, 1}L where

w
(m)
i = 1 if λ(i) ∈ L(m);

6: D(m) ← {(x(n),y(n) ∧w(m))|y(n)Tw(m) ≥ 1};
7: Construct f (m) with D(m);
8: end for
9: Construct a target matrix Z according to (1);

10: Learn V by minimizing minV ‖Z−XV‖22 + α‖V‖22;
{Testing}

11: Obtain assignment ẑ = round(xTV, β);
12: Apply all classifiers f (m) of ẑm = 1 and combine the

output ŷ by majority voting;

B. Framework

We solve this problem by two-stage classification. In the
training phase, as shown in Fig. 1(b), at the first stage we
distribute every instance to a limited number of models only.
At the second stage, we learn an LP classifier in each model
with the distributed instances.

The detailed steps are as follows:

1) Sample K labels from L (K � L). Repeat this M
times.

2) Build D(m) by collecting instances with labels intersect-
ing L(m) (m = 1, 2, . . . ,M).

3) Construct an LP classifier in each model m with D(m).
4) For a test instance, choose the models in the following

way and combine the outputs by majority voting.

Here, Step 2 and Step 4 are the key processes of the
proposed method. We simply choose the training instances
which share at least one label with L(m) in Step 2. With the
membership vector w(m), D(m) is defined as

D(m) = {(x(n),y(n) ∧w(m))|y(n)Tw(m) ≥ 1}.

In the testing phase, for the simplicity and the small
computation cost, we use a regression for the model selection
in Step 4. First, we construct an instance-model relation matrix
Z ∈ {0, 1}N×M from the training instances defined as

Z = (Znm) =

{
1 (y(n)Tw(m) ≥ 1)

0 (otherwise).
(1)

Regarding Z as the target matrix, we carry out Ridge Regres-
sion of Z on X:

minV ‖Z−XV‖22 + α‖V‖22, (2)
Z ∈ {0, 1}N×M , X ∈ RN×F , V ∈ RF×M ,

where α is the ridge parameter. Finally, we predict the mem-
bership ẑ of x by

ẑ = round(xTV, β), where round(x,β) =

{
1 (x ≥ β)
0 (otherwise).

Here, β is a parameter.
A pseudo-code of the proposed framework is described in

Algorithm 1. Note that the regression part can be replaced
to the other regressions including non-linear regression or
the other binary classification algorithms. In addition, the
proposed framework can be applicable for the other RAkEL
based algorithms such as [7], [10], [13].

C. Complexity Analysis

In the training phase, the complexity of RAkEL is O(MT1)
where M is the number of models and T1 denotes the com-
plexity of the base learner for training. The proposed algorithm
has the same complexity O(MT1), however, the complexity of
the base learner T1 is largely reduced. For example, if we use
a linear SVM, with one vs. the rest strategy, the complexity
T1 is O(FN22K). Since the proposed algorithm reduces the
number of training instances from N to N (m) = |D(m)|, T1
is α2 times less than that of RAkEL for α = N (m)/N . If any
pair of instances does not share labels in the label subsets, the
expected number of instances used in each model is calculated
as

E(N (m)) = BNK, (3)

where B is the label-density defined as

B =
1

NL

∑
i,j

Yij .

For example, on the corel5k dataset, since the label-density
is about B = 0.03 (see Table II), the expected number of
instances used in each model is 0.03NK. Therefore, the
proposed algorithm with a linear SVM and K = 3 is about
(1/α)2 = (N/E(N (m)))2 = (1/(BK))2 = (1/0.09)2 '
123.4 times faster than the original RAkEL theoretically,
although the actual ratio was about 30 times.

In the testing phase, the complexity of RAkEL is O(MT2)
where T2 denotes the complexity of the base learner for
testing. On the other hand, the proposed algorithm needs
O(F + ‖ẑ‖1T2), assuming the regression matrix is already
learned (Step 10 in Algorithm 1). Since the complexity T2 is
larger than O(F) in general, if the number of selected models,
‖ẑ‖1, is less than m, the proposed algorithm is faster than
RAkEL.

As shown above, the proposed algorithm is more advan-
tageous if we use classifiers with a larger complexity in N .
For example, if we use a RBF-kernel SVM, T1 = O(FN2)
and T2 = O(FN), thus, fRAkEL is 123.4 times faster in the
training phase than RAkEL and more than 11.1 times faster
in testing phase on the corel5k.

435

TABLE II: Dataset used in the experiment.

Dataset N L F B C LD
scene 2407 6 294 0.18 1.07 15

emotions 593 6 72 0.31 1.87 27
genbase 662 27 1186 0.05 1.25 32

yeast 2417 14 103 0.30 4.23 198
medical 978 45 1449 0.03 1.25 94
enron 1702 53 1001 0.06 3.38 753

CAL500 502 174 68 0.15 26.04 502
corel5k 5000 374 499 0.01 3.52 3175
bibtex 7395 159 1836 0.02 2.40 2856

tmc2007 28596 22 500 0.10 2.16 1341
mediamill 43907 101 120 0.04 4.38 6555
delicious 16105 983 500 0.02 19.02 15806

IV. EXPERIMENTS

A. Dataset and Evaluation Measurement

We conducted experiments on twelve benchmark datasets
which are summarized in Table II [19].1 In Table II, B, C and
LD denote the label-density, label-cardinality and the number
of distinct label subsets, respectively.

To evaluate the results, we used Macro-F1 and Micro-F1 as
the evaluation measurements defined as

Macro F1: =
1

L

L∑
j=1

2
∑N

i=1 Ŷij ·Yij∑N
i=1 Ŷij +

∑N
i=1 Yij

,

Micro F1: =
2
∑L

j=1

∑N
i=1 Ŷij ·Yij∑L

j=1

∑N
i=1 Ŷij +

∑L
j=1

∑N
i=1 Yij

,

where, N is the number of test instances, L is the number of
labels, Ŷ is the predicted label matrix and Y is the ground-
truth label matrix. By taking an average over labels, Macro-
F1 takes into account the less-frequent labels evenly, while
Macro-F1 does not. We repeated five trials with different
random label subsets and calculated the averaged values of
the measurements.

B. Comparing Methods and Parameters

We compared the following three methods including our
proposal:2

1) LP: Label-Power method
2) RAkEL: Random K label subsets [4]
3) fRAkEL: Proposed method

We used a linear SVM implemented in liblinear [21] as a base
learner in all algorithms because of its fast computation. For
RAkEL and the proposed fRAkEL, we employed the same
setting in [4], [8], [13], and used the size of label subsets
K = 3 and the number of label subsets M = 2L. Note that
LP is a special case of RAkEL with K = L, M = 1. We
implemented all algorithms on MATLAB.3 For the proposed

1All datasets are available at http://mulan.sourceforge.net/datasets-mlc.html
2The other acceleration methods or more accurate methods such as [7], [9],

[10], [13], [20] were not compared for simplicity.
3https://github.com/KKimura360/fast RAkEL matlab

fRAkEL, we used ridge parameter α = 0.1 for all datasets and
β was tuned by five cross validation on the training dataset.

C. Results

First, we see in Table III that the averaged number of
instances used in each model is reduced to 3% − 74% of
the total number of instances. Similarly, the averaged number
applied classifiers for each test instance is also reduced to
5%− 81% of the number of all classifiers. Especially, on the
large datasets (N ≥ 5000) as estimated as BK by (3), the
average number of N (m) were less than 27% of N .

Table IV shows the execution time on all datasets. The
proposed fRAkEL was faster than the original RAkEL on
all datasets. However, the proposed fRAkEL was slower than
the LP method on five datasets. This is because LP uses
distinct label subsets as classes in practice, thus, in practice
the complexity depends on the number of LD. On these five
datasets, LD is far smaller than the possible combination
of 2L. In such cases, the cost of constructing M = 2L
models becomes larger than LP methods (e.g. fRAkEL and
RAkEL needed to construct 348 models and each model
has less than 23 classes on CAL500 dataset). Otherwise, LP
is the slowest. As explained above, when the label number
L is large and the label density B is low such as corel5k
(L = 374, B = 0.03), bibtex (L = 159, B = 0.02) and
delicious (L = 983, B = 0.05), the proposed fRAkEL is 5
to 30 times faster than RAkEL.

Table V and Table VI show the accuracy by Macro-F1 and
Micro-F1. The proposed fRAkEL and RAkEL outperformed
LP on all datasets except yeast. This is consistent to the result
of previous reports [4], [7]. This is probably because ensem-
ble did not work for this particular problem. The proposed
fRAkEL outperformed RAkEL on all datasets except for enron
and medical and in Micro-F1. Even in medical and enron
datasets, the difference is slight.

This shows that the proposed fRAkEL succeeded to avoid
the imbalance problem that RAkEL possessed. However, it
turned out that fRAkEL has another problem in the regression
step as shown below. We compared the values of Accuracy of
component LP classifiers on RAkEL (with the null class) and
fRAkEL (without the null class) defined as

Accuracy: =
TP + TN

TP + TN + FP + FN
,

where TP , TN , FP , and FN denotes the number of True-
Positive, True-Negative, False-Positive and False-Negative ex-
amples, respectively. For investigation of the goodness of
training instance distribution (Step 2), we assign the test
instances to the correct models, sharing the labels, instead
of assigning by regression. We picked one small size dataset
(scene), two medium size datasets (yeast, enron) and two
large size datasets (corel5k, bibtex) for this comparison. Table
VII shows the averaged values of Accuracy of component
LP classifiers on these five datasets. On the datasets which
have a large null class (e.g. enron, corel5k and bibtex dataset,
see Table III), the classification accuracy of component LP

436

TABLE III: The average number of training instances used in a classifier and the average number of applied classifiers for a
test instance.

Sample Dataset
ratio scene emotions genbase yeast medical enron CAL500 corel5k bibtex tmc2007 mediamill delicious

|D(m)|/|D| .51±.02 .73±.09 .12±.09 .69±.17 .08±.08 .17±.17 .37±.22 .03±.04 .04±.02 .26±.21 .12±.18 .05±.06
‖ẑ‖1/m .62±.01 .81±.13 .13±.01 .82±.04 .12±.01 .22±.02 .57±.01 .04±.00 .03±.00 .29±.03 .12±.01 .07±.00

TABLE IV: Execution time (seconds)

Dataset
Algorithm scene emotions genbase yeast medical enron CAL500 corel5k bibtex tmc2007 mediamill delicious

LP 0.69 0.06 0.07 7.69 0.22 3.06 0.75 212.07 40.79 110.18 NA (> 1000) NA (> 1000)
RAkEL 4.30 0.21 0.27 5.26 0.80 7.95 4.17 61.06 36.47 23.48 468.03 900.86
Proposal 2.00 0.18 0.11 2.82 0.26 1.33 2.05 2.32 3.75 6.95 54.74 62.38

TABLE V: Macro-F1

Dataset
Algorithm scene emotions genbase yeast medical enron CAL500 corel5k bibtex tmc2007 mediamill delicious

LP .67±.03 .59±.03 .69±.04 .40±.01 .37±.03 .17±.01 .15±.00 .03±.00 .24±.00 .61±.00 NA NA
RAkEL .68±.02 .63±.02 .72±.03 .47±.00 .39±.02 .19±.01 .11±.01 .04±.00 .33±.00 .57±.00 .05±.00 .09±.00
Proposal .70±.02 .65±.02 .73±.02 .47±.01 .40±.02 .20±.01 .21±.00 .05±.00 .33±.00 .61±.00 .11±.00 .13±.00

TABLE VI: Micro-F1

Dataset
Algorithm scene emotions genbase yeast medical enron CAL500 corel5k bibtex tmc2007 mediamill delicious

LP .66±.03 .60±.02 .97±.00 .62±.00 .75±.02 .46±.01 .33±.01 .14±.00 .32±.00 .68±.00 NA NA
RAkEL .67±.02 .65±.01 .98±.00 .59±.00 .78±.00 .49±.01 .40±.01 .14±.00 .41±.00 .70±.00 .54±.00 .23±.00
Proposal .69±.03 .66±.02 .99±.00 .61±.01 .77±.01 .48±.02 .46±.00 .27±.00 .45±.00 .71±.00 .58±.00 .37±.00

classifiers of fRAkEL is far better than that of fRAkEL. This
result implies that our model selection and training with the
assigned training instances work well. Next we investigated the
correctness of the ridge regression by Threat-Score defined as

Threat-Score: =
TP

TP + FP + FN
.

Table VIII shows that Threat-Score on five datasets. The values
of Threat-Score are low, especially on large datasets. These
two facts mean that the performance of fRAkEL is limited by
the regression step not by the performance of component LP
classifiers.

In summary, the proposed fRAkEL could avoid the im-
balance problem that RAkEL possess in each component LP
classifier and performs faster than RAkEL with higher classi-
fication accuracy. However, fRAkEL has another problem in
the regression. This problem would be lesser by employing
the other more suitable regression methods such as Logistic
regression with sacrificing computational time instead of the
ridge regression.

We conducted a sensitivity analysis on the parameter K,
the size of label subset, and M , the number of models on
enron dataset. Fig. 2 and Fig. 3 show the results. On the
previous experiments with K = 3 and M = 2L, the proposed
algorithm performed worse w.r.t. both Micro-F1. However, we

TABLE VII: The averaged Accuracy of component LP clas-
sifiers.

LP Dataset
scene yeast enron corel5k bibtex

RAkEL .63±.07 .41±.46 .29±.20 .10±.12 .27±.17
Proposal .79±.92 .46±.05 .73±.16 .73±.20 .87±.08
TABLE VIII: The averaged correctness of regression.

RM Dataset
scene yeast enron corel5k bibtex

Proposal .67±.01 .70±.02 .32±.02 .16±.00 .28±.01

see that the proposed fRAkEL can perform better by choosing
a value of K larger than 4. Fig.4 shows the execution time
with different values of K and M . The proposed fRAkEL is
more sensitive than RAkEL. This is consistent to our analysis.
Nevertheless, fRAkEL is still advantageous to RAkEL in large
K and large M w.r.t. computational time.

V. CONCLUSION

In this paper, we have proposed a fast algorithm for Random
k-labelsets strategy for multi-label classification. The proposed
algorithm employs a two-stage classification to reduce the
number of instances used in each local model in addition of

437

(a) Macro-F1 (b) Micro-F1

Fig. 2: The result with different size K of label subsets on
enron dataset (M = 2L).

(a) Macro-F1 (b) Micro-F1

Fig. 3: The result with different number M of models on enron
dataset (K = 3).

(a) Different size K of models (b) Different number M of models

Fig. 4: The result of execution time with different settings.

a small number of labels. In the experiments on large-scale
datasets, the proposed algorithm worked about 30 times faster
at the best case than the original RAkEL algorithm, and even
improved the accuracy on most of all datasets.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI
Grant Number 14J01495 and 15H02719.

REFERENCES

[1] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”
Dept. of Informatics, Aristotle University of Thessaloniki, Greece, 2006.

[2] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label data,”
in Data mining and knowledge discovery handbook. Springer, 2010,
pp. 667–685.

[3] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning al-
gorithms,” IEEE Transactions on Knowledge and Data Engineering,
vol. 26, no. 8, pp. 1819–1837, 2014.

[4] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Random k-labelsets for
multilabel classification,” IEEE Transactions on Knowledge and Data
Engineering, vol. 23, no. 7, pp. 1079–1089, 2011.

[5] J. Read, C. Bielza, and P. Larrañaga, “Multi-dimensional classification
with super-classes,” IEEE Transactions on Knowledge and Data Engi-
neering,, vol. 26, no. 7, pp. 1720–1733, 2014.

[6] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Effective and efficient
multilabel classification in domains with large number of labels,” in
Proc. ECML/PKDD 2008 Workshop on Mining Multidimensional Data,
2008, pp. 30–44.

[7] J. Read, A. Puurula, and A. Bifet, “Multi-label classification with meta-
labels,” in IEEE International Conference on Data Mining. IEEE, 2014,
pp. 941–946.

[8] L. Tenenboim-Chekina, L. Rokach, and B. Shapira, “Identification of
label dependencies for multi-label classification,” in Working Notes of
the Second International Workshop on Learning from Multi-Label Data,
2010, pp. 53–60.

[9] L. Rokach and E. Itach, “An ensemble method for multi-label classifi-
cation using an approximation algorithm for the set covering problem,”
in Proceedings of the 2nd International Workshop on Learning from
Multilabel Data (MLD), 2010, pp. 37–44.

[10] L. Rokach, A. Schclar, and E. Itach, “Ensemble methods for multi-label
classification,” Expert Systems with Applications, vol. 41, no. 16, pp.
7507–7523, 2014.

[11] R.-E. Fan and C.-J. Lin, “A study on threshold selection for multi-
label classification,” Department of Computer Science, National Taiwan
University, pp. 1–23, 2007.

[12] O. Gharroudi, H. Elghazel, and A. Aussem, “Calibrated k-labelsets for
ensemble multi-label classification,” in Neural Information Processing.
Springer, 2015, pp. 573–582.

[13] G. Nasierding, A. Z. Kouzani, and G. Tsoumakas, “A triple-random
ensemble classification method for mining multi-label data,” in IEEE
International Conference on Data Mining Workshops (ICDMW). IEEE,
2010, pp. 49–56.

[14] G. Nasierding, G. Tsoumakas, and A. Z. Kouzani, “Clustering based
multi-label classification for image annotation and retrieval,” in IEEE
International Conference on Systems, Man and Cybernetics, 2009.
IEEE, 2009, pp. 4514–4519.

[15] D. Hsu, S. Kakade, J. Langford, and T. Zhang, “Multi-label prediction
via compressed sensing.” in Advances in Neural Information Processing
Systems 22, 2009, pp. 772–780.

[16] Y.-N. Chen and H.-T. Lin, “Feature-aware label space dimension reduc-
tion for multi-label classification,” in Advances in Neural Information
Processing Systems, 2012, pp. 1529–1537.

[17] F. Tai and H.-T. Lin, “Multilabel classification with principal label space
transformation,” Neural Computation, vol. 24, no. 9, pp. 2508–2542,
2012.

[18] Y. Zhang and J. G. Schneider, “Multi-label output codes using canonical
correlation analysis,” in International Conference on Artificial Intelli-
gence and Statistics, 2011, pp. 873–882.

[19] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas,
“Mulan: A java library for multi-label learning,” The Journal of Machine
Learning Research, vol. 12, pp. 2411–2414, 2011.

[20] J. Read, B. Pfahringer, and G. Holmes, “Multi-label classification using
ensembles of pruned sets,” in IEEE International Conference on Data
Mining. IEEE, 2008, pp. 995–1000.

[21] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“Liblinear: A library for large linear classification,” The Journal of
Machine Learning Research, vol. 9, pp. 1871–1874, 2008.

438

