
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 12, NO. 2, FEBRUARY 2015 389

Collaborative-Representation-Based
Nearest Neighbor Classifier for

Hyperspectral Imagery
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Abstract—Novel collaborative representation (CR)-based near-
est neighbor (NN) algorithms are proposed for hyperspectral
image classification. The proposed methods are based on a CR
computed by an �2-norm minimization with a Tikhonov regular-
ization matrix. More specific, a testing sample is represented as a
linear combination of all the training samples, and the weights for
representation are estimated by an �2-norm minimization-derived
closed-form solution. In the first strategy, the label of a testing
sample is determined by majority voting of those with k largest
representation weights. In the second strategy, local within-class
CR is considered as an alternative, and the testing sample is
assigned to the class producing the minimum representation resid-
ual. The experimental results show that the proposed algorithms
achieve better performance than several previous algorithms, such
as the original k-NN classifier and the local mean-based NN
classifier.

Index Terms—Collaborative representation (CR), hyperspec-
tral data, nearest neighbors (NNs), pattern classification.

I. INTRODUCTION

IN STATISTICAL classification tasks, it is usual to make
a simplified assumption that data abide by a normal or

multimodal distribution. Thus, popular choices of statistical
classifiers are the maximum-likelihood estimation classifier and
the Gaussian mixture model classifier [1]. However, a single
Gaussian or mixture Gaussian distribution under small training
sample size situations may not be true, which often happens in
hyperspectral imagery (HSI).

The nearest neighbor (NN) [2], [3] classifier, one of the sim-
plest yet effective classification methods, has been widely used
in HSI analysis. This nonparametric classifier does not need
any prior knowledge about the density distribution of the data.
The principle behind the NN classifier is to find a predefined
number (e.g., k) of training samples closest in distance to the
testing sample and assign the majority category label according
to its k nearest training samples. The distance usually employs
the standard Euclidean distance. Several extensions of this
classifier have been studied. In [4], the k-NN rule was extended
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to a local mean-based NN (LMNN) classifier. In [2], Euclidean
metric in a low-dimensional space was modified to minimize
the variance of given classes for the k-NN classifier. In [5],
cosine-based nonparametric feature extraction was developed
to include a weight function in the within- and between-class
scatter matrices for the k-NN classifier. In [6], a variant of the
k-NN classifier based on the maximal margin principle has been
discussed. In [3], local manifold learning has been combined
with k-NN to improve HSI classification.

Recently, sparse representation-based classification [7] has
been proposed for robust face recognition. The basic idea is
that a testing sample can be represented as a linear combination
of all the training samples with a sparseness constraint, and
the representation is recovered by an �1-norm minimization,
and the final label is assigned by checking against each class
with minimum reconstruction error. Reference [8] argued that
it is the “collaborative” nature of the approximation instead
of “competitive” nature imposed by the sparseness constraint
that actually improves classification accuracy. Collaborative
representation (CR)-based classification has also been success-
fully applied in HSI analysis. In [9], a CR-based classifier,
called nearest regularized subspace, was proposed for HSI clas-
sification. Note that the collaboration mentioned here means
the atoms in a dictionary collaborate together to represent a
single pixel; it is different from the “collaboration” reinforced
in sparse unmixing in [10], where all the pixels collaborate
together to choose the same set of atoms in the dictionary, if
possible. In the latter, the data and the corresponding weights
under consideration have to be matrices in the mathematical
form, and the weight matrix is column-wise sparse; whereas
in the former, they are vectors, and the weight vector is not
sparse. The joint sparse models considering neighboring pixels
for classification in [11] and [12] belong to the latter, where
the term “joint” has the same meaning as “collaborative” as in
“collaborative sparse unmxing” in [10].

In this letter, we propose two novel representation-based NN
classifiers for HSI—CR-based NN (CRNN) and local within-
class CR-based NN (LRNN). The proposed CRNN can be
accomplished by two main steps: in the first step, a test-
ing sample is represented as a linear combination of all the
available training samples, and the weights for representation
are estimated by an �2-norm minimization-derived closed-form
solution with Tikhonov regularization; in the second step, the
label of the testing sample is determined by majority voting
[13] of those with k largest representation weights. As an
alternative, the proposed LRNN calculates the representation
of the testing sample using the local class-specific training
samples, which are obtained from the k-NN training samples
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with Euclidean distance for each class; the testing pixel is
assigned to the class producing the minimum representation
residual. In both CRNN and LRNN, it is assumed that a larger
weight means the corresponding training sample having more
similar spectral characteristics to the testing sample, and the
collaborative coefficients (in a weight vector) tend to have better
discriminative ability compared with the Euclidean distance.
The proposed algorithms are compared with several existing
algorithms, such as the original k-NN and LMNN.

II. RELATED WORK

Consider a data set with n training samples X = {xi}ni=1
in R

d (d-dimensional feature space) and C class labels ωi ∈
{1, 2, . . . , C}. Let nl be the number of available training sam-
ples for the lth class and

∑C
l=1 nl = n.

A. k-NN

The NN classifier attempts to find the training sample nearest
to the testing sample according to a given distance measure
and assigns the former’s class label to the latter. Commonly,
Euclidean distance is used to measure the similarity between a
training sample xi and a testing sample y, i.e.,

d(xi,y) = ‖xi − y‖22 . (1)

The k-NN classifier [6] is a straightforward extension of the
original NN classifier. Instead of using only one sample closest
to the testing point y, the k-NN classifier chooses the k nearest
samples from training data X, and majority voting [13] is
employed to decide the class label of y.

B. LMNN

The LMNN [4] classifier is an extension of the original
k-NN. The essence behind the method is that the local mean
vector of the k-NNs in each class is used for classifying the
testing sample. First, the k-nearest training samples per class
from X are selected via (1). Then, the local mean vector,
represented as ỹl, is calculated using the k-NN training samples
in the lth class, represented as {x(1)

l ,x
(2)
l , . . . ,x

(k)
l }, i.e.,

ỹl =
1

k

k∑
j=1

x
(j)
l . (2)

Finally, after obtaining the local mean vector per class, the
class label of y is then determined according to the class that
minimizes the residual. That is

class(y) = arg min
l=1,...,C

rl(y) (3)

where rl(y) = ‖ỹl − y‖22 is the residual between the mean
vector and the corresponding testing sample. Note that LMNN
is equivalent to the 1-NN classifier when k = 1.

III. PROPOSED CLASSIFIERS

A. Proposed CRNN

CR [8] is based on the concept that the testing sample y
can be represented as a linear combination of all the training
samples X. Assume α is an n× 1 vector of weighting coeffi-
cients. The weight vector α for the linear combination is solved
by an �2-norm regularization, i.e.,

α = argmin
α∗

‖y −Xα∗‖22 + λ ‖Γyα
∗‖22 (4)

where Γy is a biasing Tikhonov matrix, and λ is a global reg-
ularization parameter that balances the minimization between
the residual part and the regularization term. Note that α∗ is an
estimate of α with size of n× 1. Specifically, the regularization
term is designed in the form of

Γy =

⎡
⎢⎣
∥∥y − x(1)

∥∥
2

0

. . .
0

∥∥y − x(n)
∥∥
2

⎤
⎥⎦ (5)

where x(1),x(2), . . . ,x(n) are the columns of matrix X. Then,
the weight vector α can be determined in a closed-form
solution as

α =
(
XTX+ λ2ΓT

yΓy

)−1
XTy. (6)

After obtaining α = {α1, α2, . . . , αn}, the k largest elements
are found, from which the number of weights belonging to
the lth class (denoted as Nl(α)). The final label of the testing
sample is determined by majority voting as

class(y) = arg max
l=1,...,C

Nl(α). (7)

As we can see, the weight vector α has a closed-form
solution, resulting in low computational cost. Furthermore, the
distance-weighted measurement adaptively adjusts the regu-
larization when calculating a representation for each testing
sample. If a weight in α is near 0, it indicates that the corre-
sponding training sample is dissimilar to the testing sample;
comparatively, the training sample who provides the largest
weight is the most similar to the testing sample and can be
viewed as the NN.

B. Proposed LRNN

The proposed LRNN classifier can be considered as a further
extension of LMNN. In LRNN, the local mean vector ỹl of (2)
is replaced by a local within-class CR. First of all, the k-nearest
training samples from class-specific Xl (of size d× nl) are
selected via (1), represented as X

(k)
l = {x(1)

l ,x
(2)
l , . . . ,x

(k)
l }

(of size d× k). An approximation of the testing sample y is
represented via a linear combination of the chosen training
samples per class, X(k)

l . That is, for each class, only from the
training samples in class l, the new local “mean” vector ỹl is
calculated as ỹl = X

(k)
l αl, and αl is an k × 1 vector of weight
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coefficients. The vector αl for the linear combination is solved
by an �2-norm regularization, i.e.,

αl = argmin
α∗

l

∥∥∥y −X
(k)
l α∗

l

∥∥∥2
2
+ λ ‖Γl,yα

∗
l‖22 (8)

where Γl,y is a biasing Tikhonov matrix specific to class l and
the current testing sample y, and λ is a global regularization
parameter that balances the minimization between the residual
and the regularization term. Note that α∗

l is an estimate of
αl with size of k × 1. Specifically, the regularization term is
designed in the form

Γl,y =

⎡
⎢⎢⎣
∥∥∥y − x

(1)
l

∥∥∥
2

0

. . .
0

∥∥∥y − x
(k)
l

∥∥∥
2

⎤
⎥⎥⎦ . (9)

Then, the weight vector αl can be recovered in a closed-form
solution, i.e.,

αl =

(
X

(k)
l

T
X

(k)
l + λ2ΓT

l,yΓl,y

)−1

X
(k)
l

T
y. (10)

Once we obtain the weight vector, the adaptive weighted
representation of y is ỹl = X

(k)
l αl. The class label of y is

determined according to (3). Essentially, LMNN can be viewed
as a special case of the proposed LRNN when all values in αl

are the same with the sum equal to 1.
Note that although both the proposed CRNN and LRNN

adopt CR, they are essentially different. On the one hand, the
proposed CRNN belongs to distance-based classifiers, such as
the k-NN classifier, which can be viewed as a simple imple-
mentation of locating the NNs in the feature space. The NNs
are determined according to some similarity metric, such as the
Euclidean distance in the k-NN classifier or the weight vector
defined in CRNN. Comparatively, the proposed LRNN belongs
to residual-based classifiers, as the LMNN, which assign the
label of a testing pixel according to the minimum residual
between the testing sample and its approximation. On the other
hand, CR in CRNN needs all the training samples. However,
in LRNN, a local within-class CR is employed; in other words,
only some chosen training samples per class are used.

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Data

The first experimental data set employed was collected by
the Reflective Optics System Imaging Spectrometer sensor. The
image, covering the city of Pavia, Italy, was collected under
the HySens project managed by the German Aerospace Agency
(DLR). The data have a spectral coverage from 0.43 to 0.86 μm
and a spatial resolution of 1.3 m. The scene used in the first
experiment is the university area that has 103 spectral bands
with a spatial coverage of 610 × 340 pixels. There are nine
classes (i.e., Asphalt, Meadows, Gravel, Trees, Metal sheets,
Bare soil, Bitumen, Bricks, and Shadow), and 50 training sam-
ples and 650 testing samples per class were randomly selected
from the ground truth map.

The second experimental hyperspectral data set employed
was acquired using a HyMap sensor. The scenario is an area
close to Purdue University cropped into a subimage with 377 ×

Fig. 1. Parameter tuning of λ for the proposed CRNN and LRNN using the
University of Pavia data. (a) Proposed CRNN. (b) Proposed LRNN.

Fig. 2. Parameter tuning of λ for the proposed CRNN and LRNN using the
HyMap Purdue data. (a) Proposed CRNN. (b) Proposed LRNN.

512 pixels and 126 bands spanning the wavelength interval
0.45–2.5 μm with a spatial resolution of 3.5 m. In our exper-
iment, there are six classes (i.e., Road, Grass, Shadow, Soil,
Tree, and Roof), with a total of 60 training samples (10 per
class) and 5635 testing samples (1287, 1114, 219, 379, 1351,
and 1285 per class, respectively).

B. Parameter Tuning of λ

We compare the classification performance of the proposed
CRNN and LRNN with the traditional k-NN and one of its
extension LMNN [4]. For CRNN and LRNN, the regularization
parameter λ is nonnegligible. A preset range of λ is {0, 1e−
3, 5e− 3, 1e− 2, 5e− 2, 1e− 1, 5e− 1, 1}, and leave-one-out
cross validation based on available labeled samples was con-
ducted for parameter tuning. When λ = 0, the accuracy values
of CRNN and LRNN are 40.62% and 66.89%, respectively, for
the University of Pavia data; the accuracy values of CRNN and
LRNN are 61.59% and 89.59%, respectively, for the HyMap
Purdue data. Classification performance with other values of λ
is illustrated in Figs. 1 and 2, where the optimal λ is 0.5 for
both CRNN and LRNN using the University of Pavia data, and
the optimal λ is 5e− 3 for both CRNN and LRNN using the
HyMap Purdue data.

C. More Analysis on CR

Different from the traditional k-NN, the proposed CRNN
chooses the NNs according to the weight coefficients of CR
but not the simple Euclidean distance. Similarly, the difference
between the proposed LRNN and the existing LMNN is that
the local “mean” vector is calculated by an adaptive weight
vector obtained from local within-class CR instead of equal
weights. Here, we take CRNN, for example, to demonstrate the
clear benefits of CR. Fig. 3 illustrates performance discrepancy
when using the weight vector α of the proposed CRNN and the



392 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 12, NO. 2, FEBRUARY 2015

Fig. 3. Example of how the distance-weighted Tikhonov matrix Γy affects the weight vector α for the proposed CRNN using the nine-class University of Pavia
data with 50 training samples per class. The testing sample is selected from class 1. (a) Euclidean distance for k-NN. (b) Weight vector α for CRNN.

TABLE I
KL DIVERGENCE BETWEEN COLLABORATIVE COEFFICIENTS IN CRNN

AND EUCLIDEAN DISTANCES IN k-NN WHEN SEPARATING PAIRWISE

CLASSES IN THE UNIVERSITY OF PAVIA DATA

conventional distance measurement of k-NN for the University
of Pavia data. From the definition of the weighted-distance
Tikhonov matrix Γy [e.g., (9)], we notice that the Euclidean
distances of the original k-NN classifier take exactly the same
value as in the diagonal elements of matrix Γy of the proposed
CRNN.

In Fig. 3(b), the locations exhibited the first seven largest
weights (marked by red squares) are 114 (class 3), 50 (class 1),
149 (class 3), 30 (class 1), 8 (class 1), 267 (class 6), and
380 (class 8), and in Fig. 3(a), the locations exhibited the first
three smallest Euclidean distances (marked by red circles) are
114 (class 3), 380 (class 8), and 149 (class 3). The optimal k
is chosen to be 7 for the proposed CRNN and k = 3 for k-NN
according to our following experiments. The right class is 1, for
which the proposed CRNN finds three weights in the first seven
largest weights, whereas k-NN finds none. From these two
figures, it is evident that the determination using collaborative
weight vector α to the right class is more robust than using the
Euclidean distance.

Next, we investigate the benefits of the proposed CRNN.
Kullback–Leibler (KL) divergence is employed to measure the
dissimilarity between the obtained collaborative coefficients
and the Euclidean distance. Table I shows the ratios of KL
divergence for any two classes using CRNN and k-NN. All
the values, which are larger than 1, confirm that collaborative
coefficients tend to have better discriminative ability than the
Euclidean distance.

Fig. 4. Classification accuracy with standard deviation versus varying k
for the proposed CRNN and LRNN using the two experimental data sets.
(a) University of Pavia data. (b) HyMap Purdue data.



LI et al.: CR-BASED NN CLASSIFIER FOR HSI 393

TABLE II
CLASSIFICATION ACCURACY (%) PER CLASS AND OA WITH STANDARD

DERIVATION OF FOUR CLASSIFIERS UNDER OPTIMAL PARAMETERS

FOR THE UNIVERSITY OF PAVIA DATA

D. Classification Performance

To show the sensitivity of aforementioned methods to
the number of NNs, we investigate the classification ac-
curacy with standard deviation versus different values of
k, as illustrated in Fig. 4. In order to reveal the effi-
ciency of the designed Tikhonov matrix, we also test the
performance of CRNN with identity matrix [CRNN-I, us-
ing identity matrix I to replace the matrix ΓT

yΓy in (6)]
and LRNN with identity matrix [LRNN-I, using identity
matrix I to replace the matrix ΓT

l,yΓl,y in (10)]. CRNN-I
and LRNN-I are implemented with optimal λ after parameter
tuning. To avoid any bias, we randomly choose samples, repeat
the experiments 20 times, and report the average classification
accuracy. The results provide evidence for the excellent per-
formance of the proposed CRNN and LRNN with Tikhonov
regularization.

For the University of Pavia data in Fig. 4(a), the optimal
k is 7 for the proposed CRNN, 30 for the proposed LRNN,
3 for k-NN, and 5 for LMNN. Under the optimal k, the
accuracy values are 84.58%, 86.63%, 79.18%, and 81.28%,
respectively. It is apparent that the proposed LRNN achieves the
best performance compared with the other methods. Further-
more, it is interesting to observe that the performance of other
methods tends to deteriorate when k is very large (e.g., 20);
however, the accuracy of the proposed LRNN remains stable.
We notice that CRNN-I and LRNN-I both perform badly,
sometimes even worse than the traditional k-NN and LMNN.
For the HyMap Purdue data in Fig. 4(b), the optimal k is 1 for
the proposed CRNN, 8 for the proposed LRNN, 1 for k-NN,
and 1 for LMNN. Under the optimal k, the accuracy values
are 90.57%, 92.59%, 87.96%, and 87.96%, respectively. The
proposed CRNN and LRNN outperform the other two, and
the difference is enlarged when k becomes greater. LMNN is
reduced to k-NN when k is equal to 1, and it performs worse
than k-NN when k is larger than 6, which is due to the fact that
only ten training samples per class were employed.

Tables II and III further list the classification accuracy per
class and overall accuracy (OA) with standard derivation of the
proposed classifiers and the traditional two classifiers for the
experimental data. From Tables II and III, it is obvious that most
of the highest accuracy per class is persistently produced by the
proposed CRNN and LRNN.

TABLE III
CLASSIFICATION ACCURACY (%) PER CLASS AS WELL AS OA WITH

STANDARD DERIVATION OF FOUR CLASSIFIERS UNDER OPTIMAL

PARAMETERS FOR THE HYMAP PURDUE DATA

V. CONCLUSION

In this letter, we have proposed two CR-based NN classifiers,
e.g., CRNN and LRNN. They both exploit the discriminative
nature of CR for classification. Compared with the traditional
Euclidean distance, the weight coefficients of CR are more
powerful in finding the true nearest training samples or local
“mean” vector for each single testing sample. The experimen-
tal results demonstrated that the proposed CRNN and LRNN
achieve higher classification accuracy than the traditional k-NN
and LMNN.
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