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Abstract: The employed dictionary plays an important role in sparse representation or sparse coding based image 

reconstruction and classification, while learning dictionaries from the training data has led to state-of-the-art 

results in image classification tasks. However, many dictionary learning models exploit only the discriminative 

information in either the representation coefficients or the representation residual, which limits their performance. 

In this paper we present a novel dictionary learning method based on the Fisher discrimination criterion. A 

structured dictionary, whose atoms have correspondences to the subject class labels, is learned, with which not 

only the representation residual can be used to distinguish different classes, but also the representation coefficients 

have small within-class scatter and big between-class scatter. The classification scheme associated with the 

proposed Fisher discrimination dictionary learning (FDDL) model is consequently presented by exploiting the 

discriminative information in both the representation residual and the representation coefficients. The proposed 

FDDL model is extensively evaluated on various image datasets, and it shows superior performance to many 

state-of-the-art dictionary learning methods in a variety of classification tasks. 
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1. Introduction 

The sparse representation technology has been successfully used in image restoration (Elad and Aharon 2006; 

Mairal, et al. 2008; Bryt and Elad 2008; Yang, et al. 2008), morphological component analysis (Bobin, et al. 2007) 

and compressed sensing (Candes 2006). Inspired by the sparse coding mechanism of human vision system 

(Olshausen and Field 1996; Olshausen and Field 1997), sparse representation represents a signal/image vector as a 

sparse linear combination of a dictionary of atoms. Recently sparse representation techniques have also led to 

promising results in face recognition (Wright et al. 2009; Wagner et al. 2009; Yang and Zhang 2010; Yang et al. 

2011), handwritten digit and texture classification (Huang and Aviyente 2006; Mairal et al. 2009; Ramirez et al. 

2010; Yang et al. 2010; Rodriguez and Sapiro 2007; Mairal et al. 2012), natural image classification (Rodriguez 

and Sapiro 2007; Yang et al. 2009), and human action recognition (Qiu et al. 2011; Guha and Ward 2012; Wang et 

al. 2012; Castrodad and Sapiro 2012), etc. In addition, sparse representation, coupled with the low-rank technique, 

has been used to extract robust features directly from matrix, e.g., the transformation invariant low-rank textures 

(TILT) (Zhang et al. 2012). The success of sparsity based classification owes to the fact that a high dimensional 

signal can be sparsely represented by the representative samples of its class in a low dimensional manifold (Wright 

et al. 2009), while the recent progress of l0- and l1-norm minimization (Tropp and Wright 2010; Yang et al. 2010) 

facilitates greatly the use of sparse representation to solve large scale problems.  

Denote by ym a query sample. The first phase of sparsity based classification is to represent y over a 

dictionary D = [d1,…,dp]mp, i.e., y  D, where the representation vector p has only a few large entries. 

The following classification phase is based on the solved vector   and the dictionary D. The choice of dictionary 

D is crucial to the success of sparse representation model (Rubinstein et al. 2010). The history of dictionary design 

could be traced back to 1960s, ranging from the Fast Fourier Transform (FFT) (Cooley and Tukey 1965), 

Principal Component Analysis without/with missing data (Turk and Pentland 1991; Okatani and Deguchi 2007), 

wavelets (Mallat 1999), etc., to modern dictionary learning methods, such as Method of Optimal Directions 

(MOD) (Engan et al. 1999) and KSVD (Aharon et al. 2006). Taking the analytically designed off-the-shelf bases 

(e.g., FFT, wavelets) as the dictionary (e.g., Huang and Aviyente 2006) is universal to all types of images, but this 

might not be effective for specific classification tasks such as face recognition. Instead, learning the desired 
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dictionaries from the training data with sparsity regularization has led to state-of-the-art results in image 

reconstruction (Elad and Aharon 2006; Bryt and Elad 2008; Aharon et al. 2006; Mairal et al. 2012; Zhou et al. 

2012) and image classification (Mairal et al. 2009; Zhang and Li 2010; Ramirez et al. 2010; Yang et al. 2010; 

Yang et al. 2010; Mairal et al. 2008; Rodriguez and Sapiro 2007; Pham and Venkatesh 2008; Jiang et al. 2013; 

Mairal et al. 2012; Qiu et al. 2011; Jiang et al. 2012; Guha and Ward 2012; Yang et al. 2011; Wang et al. 2012; 

Castrodad and Sapiro 2012).  

The unsupervised dictionary learning (DL) algorithms such as KSVD (Aharon et al. 2006) have achieved 

promising results in image restoration, but they are not advantageous for image classification tasks because the 

dictionary is learnt only to faithfully represent the training samples. With the class labels of training samples 

available, the supervised DL methods exploit the class discrimination information and thus can result in better 

classification performance. One may use the training samples themselves as the dictionary without learning. For 

example, Wright et al. (Wright et al. 2009) directly took the training samples of all classes as the dictionary to 

represent the query face image, and classified it by evaluating which class leads to the minimal reconstruction 

error of it. The so-called sparse representation based classification (SRC) scheme has shown interesting face 

recognition results. Nonetheless, the noise and trivial information in the raw training images can make the 

classification less effective, and the complexity of sparse representation can be very high when the number of 

training samples is big. In addition, the discriminative information in the training samples is not sufficiently 

exploited by such a naive supervised DL method. Fortunately, these problems can be addressed, at least to some 

extent, by learning properly a non-parametric dictionary from the original training samples. 

There are mainly two categories of discriminative DL methods for pattern classification. In the first category, a 

shared dictionary by all classes is learnt but the representation coefficients are discriminative (Mairal et al. 2009; 

Zhang and Li 2010; Yang et al. 2010; Rodriguez and Sapiro 2007; Pham and Venkatesh 2008; Jiang et al. 2013; 

Mairal et al. 2012; Lian et al. 2010; Qiu et al. 2011; Jiang et al. 2012). In the DL models proposed by Rodriguez 

and Sapiro (2007) and Jiang et al. (2013), the samples of the same class are encouraged to have similar sparse 

representation coefficients. Apart from the l0- or l1-norm sparsity penalty, nonnegative (Hoyer 2002), group 

(Bengio et al. 2009; Szabo et al. 2011), and structured (Jenatton et al. 2011) sparsity penalty on the representation 

coefficients have also been proposed in different applications. It is popular to learn a dictionary while training a 
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classifier over the representation coefficients. Mairal et al. (2009) and Pham and Venkatesh (2008) proposed to 

learn discriminative dictionaries with linear classifiers simultaneously trained. Inspired by the work of Pham and 

Venkatesh (2008), Zhang and Li (2010) proposed an algorithm called discriminative KSVD (DKSVD) for face 

recognition, followed by the so-called Label-Consistent KSVD (Jiang et al. 2013). DL from image local features 

was studied in (Yang et al. 2010; Lian et al. 2010). Recently, Mairal et al. (2012) proposed a task-driven DL 

framework which minimizes different risk functions of the representation coefficients for different tasks. 

Generally speaking, the above methods (Mairal et al. 2009; Zhang and Li 2010; Yang et al. 2010; Pham and 

Venkatesh 2008; Jiang et al. 2013; Mairal et al. 2012; Lian et al. 2010) aim to learn a shared dictionary together 

with a classifier on the representation coefficients. However, the shared dictionary loses the correspondence 

between the dictionary atoms and the class labels, and thus performing classification based on the class-specific 

representation residual is not allowed. 

Another category of DL methods learns a dictionary whose atoms have correspondences to the subject class 

labels (Ramirez et al. 2010; Yang et al. 2010; Mairal et al. 2008; Sprechmann and Sapiro 2010; Wang et al. 2012; 

Castrodad and Sapiro 2012; Wu et al. 2010). Mairal et al. (2008) introduced a discriminative reconstruction 

penalty term in the KSVD model (Aharon et al. 2006), and used the learned dictionary for texture segmentation 

and scene analysis. Yang et al. (2010) and Sprechmann and Sapiro (2010) learned a dictionary for each class with 

sparse coefficients, and applied it to face recognition and signal clustering, respectively. Castrodad and Sapiro 

(2012) learned a set of action-specific dictionaries with non-negative penalty on both dictionary atoms and 

representation coefficients. Wu et al. (2010) learned active basis models from the training images of each category 

for object detection and recognition. To encourage the dictionaries associated with different classes to be as 

independent as possible, Ramirez et al. (2010) introduced an incoherence promoting term to the DL model. Based 

on (Ramirez et al. 2010), Wang et al. (2012) proposed a class-specific DL method for sparse modeling in action 

recognition. In the above methods (Ramirez et al. 2010; Yang et al. 2010; Mairal et al. 2008; Sprechmann and 

Sapiro 2010; Wang et al. 2012; Castrodad and Sapiro 2012), the representation residual associated with each class 

could be used to do classification, but the representation coefficients are not enforced to be discriminative and are 

not used in the final classification.  

Hybrid DL models have also been proposed to learn a shared dictionary and a set of class-specific dictionaries. 
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Deng et al. (2012) constructed an intra-class face variation dictionary from a generic training dataset, and used it 

as a shared dictionary to represent the query face image with various variations. Such a method achieves 

promising performance in face recognition with a single sample per person. Zhou et al. (2012) learned a hybrid 

dictionary with a Fisher-like regularizer on the representation coefficients, while Kong et al. (2012) learned a 

hybrid dictionary by introducing an incoherence penalty term to the class-specific sub-dictionaries. Instead of 

using a flat category structure, Shen et al. (2013) proposed to learn a dictionary with a hierarchical category 

structure. Although the shared dictionary could make the learned whole hybrid dictionary more compact, how to 

balance the shared part and the class-specific part in the hybrid dictionary is not a trivial task. 

In this paper we propose a Fisher discrimination dictionary learning (FDDL) framework to learn a structured 

dictionary, i.e., the dictionary atoms have correspondences to the class labels. By FDDL, not only the 

representation residual associated with each class can be effectively used for classification, the discrimination of 

representation coefficients will also be exploited. In FDDL, we enforce the sparse representation coefficients 

having small within-class scatter but big between-class scatter, and enforce each class-specific sub-dictionary 

having good reconstruction capability to the training samples from that class but poor reconstruction capability to 

other classes. Therefore, both the representation residual and the representation coefficients of a query sample will 

be discriminative, and a corresponding classification scheme is proposed to exploit such information. The 

extensive experiments on various image classification tasks such as face recognition, handwritten digit 

recognition, gender classification, object categorization and action recognition showed that FDDL could achieve 

competitive performance with those state-of-the-art DL methods proposed in different tasks. 

The rest of this paper is organized as follows. Section 2 briefly reviews some related work. Section 3 presents 

the proposed FDDL model. Section 4 describes the optimization procedure of FDDL. Section 5 presents the 

FDDL based classifier. Section 6 conducts extensive experiments, and Section 7 concludes the paper. 
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2. Related Work 

2.1. Sparse representation based classification 

Wright et al. (2009) proposed the sparse representation based classification (SRC) method for robust face 

recognition (FR). Suppose that there are K classes of subjects, and let A = [A1, A2, …, AK] be the set of training 

samples, where Ai is the subset of training samples from class i. Let y be a query sample. The procedures of SRC 

are summarized as follows. 

i.) Sparsely represent y on A via l1-minimization: 

 2

2 1
ˆ arg min   y A    (1)

where  is a scalar constant. 

ii.) Perform classification via: 

   identity arg min i iey  (2)

where 
2

ˆi i ie  y A , 1 2ˆ ˆ ˆ ˆ[ ; ; ; ]K      and ˆi  is the coefficient vector associated with class i. 

Obviously, SRC utilizes the representation residual ei associated with each class to do classification. Impressive 

results have been reported in (Wright et al. 2009). 

2.2. Class-specific dictionary learning 

In class-specific dictionary learning (DL), the atoms in the learned dictionary D=[D1, D2, ..., DK] have class label 

correspondences to the subject classes, where Di is the sub-dictionary corresponding to class i. After the 

representation vector 1 2ˆ ˆ ˆ ˆ[ ; ; ; ]K      of y is computed, where ˆi  is the sub-vector associated with class i, the 

class-specific representation residual 
2

ˆi iy D   could be used for classification. The sub-dictionary 

1 2[ , ,..., ] i

i

m p
i p

 D d d d  could be learned class by class (Yang et al. 2010; Sprechmann and Sapiro 2010): 

   2

, 1
min

i i i i i iF
 D Z A D Z Z   s.t.  

2
1,j j d  (3)

where Zi is the representation matrix of Ai on Di. Eq. (3) can be seen as the basic model of class-specific DL since 

each Di is trained separately from the samples of a specific class. 
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The basic model in Eq. (3) does not consider the relationship between the sub-dictionaries of different classes. 

Unlike training the class-specific sub-dictionaries separately in Eq. (3), Ramirez et al. (2010) used an incoherence 

promoting term to encourage the sub-dictionaries to be as independent as possible. The so-called DL with 

structured incoherence (DLSI) (Ramirez et al. 2010) is formulated as 

    22

, 11
min

i i

K T
i i i i i jFi i j F

 
 

   D Z A D Z Z D D   s.t.  
2

1,n n d  (4)

where the term 
2T

i ji j F D D  aims to promote the incoherence between the sub-dictionaries and make the whole 

class-specific dictionary more distinctive.  

 

3. Fisher Discrimination Dictionary Learning (FDDL) 

We propose a novel Fisher discrimination dictionary learning (FDDL) scheme, which learns a structured 

dictionary D = [D1, D2, …, DK], where Di is the sub-dictionary associated with class i. By representing a query 

sample over the learned structured dictionary, the representation residual associated with each class can be 

naturally employed to classify it, as in the SRC method (Wright et al. 2009). Different from those class-specific 

DL methods (Ramirez et al. 2010; Yang et al. 2010; Mairal et al. 2008; Sprechmann and Sapiro 2010; Wang et al. 

2012; Castrodad and Sapiro 2012; Wu et al. 2010), in FDDL the representation coefficients will also be made 

discriminative under the Fisher criterion. This will further enhance the discrimination of the dictionary.  

Given the training samples A=[A1, A2, …, AK] as defined in Section 2.1. Denote by X the sparse representation 

matrix of A over D, i.e., ADX. We can write X as X = [X1, X2, …, XK], where Xi is the representation matrix of Ai 

over D. Apart from requiring that D should have powerful capability to represent A (i.e. ADX), we also require 

that D should have powerful capability to distinguish the images in A. To this end, we propose the following 

FDDL model: 

        1, , 1 2
argmin , , s.t. 1,nJ r f n     D X D X A D X X X d  (5)

where r(A,D,X) is the discriminative data fidelity term; ||X||1 is the sparsity penalty; f(X) is a discrimination term 

imposed on the coefficient matrix X; and 1 and 2 are scalar parameters. Each atom dn of D is constrained to have 
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a unit l2-norm to avoid that D has arbitrarily large l2-norm, resulting in trivial solutions of the coefficient matrix X. 

Next let’s discuss the design of r(A,D,X) and f(X) based on the Fisher discrimination criterion. 

3.1. Discriminative data fidelity term r(A,D,X) 

We can write Xi as Xi =[Xi
1; …; Xi

j; …; Xi
K], where Xi

j is the representation coefficients of Ai over Dj. Denote by 

Rk=DkXi
k the representation of Dk to Ai. First of all, the dictionary D should represent Ai well, and there is Ai  DXi 

= D1Xi
1+…+ DiXi

i+…+ DKXi
K = R1+…+Ri+…+RK, where Ri = DiXi

i. Second, since Di is associated with the ith 

class, it is expected that Ai could be well represented by Di but not by Dj, ji. This implies that Xi
i should have 

some significant coefficients such that ||Ai-DiXi
i||2 

F is small, while Xi
j should have very small coefficients such that 

||DjXi
j||2 

F is small. Thus we can define the discriminative data fidelity term as 

  2 22
1, ,

Ki j
ji i i i i i i j iF F Fj i

r 


    A D X A DX A D X D X  (6)

Fig. 1 illustrates the role of the three penalty terms in r(Ai,D,Xi). Fig. 1(a) left shows that if we only require D to 

represent Ai well (i.e., with only the first penalty ||Ai-DXi||
2 
F), Ri may deviate much from Ai so that Di could not well 

represent Ai. This problem can be solved by adding the second penalty ||Ai-DiXi
i||2 

F, as shown in the left of Fig. 1(b). 

Nonetheless, other sub-dictionaries (for example, Di-1) may also be able to well represent Ai, reducing the 

discrimination capability of D. With the third penalty ||DjXi
j||2 

F, the representation of Dj to Ai, ji, will be small, and 

the proposed discriminative fidelity term could meet all our expectations, as shown in the left of Fig. 1(c). Let us 

use a subset of the FRGC 2.0 database to better illustrate the roles of the three terms in Eq. (6). This subset 

includes 10 subjects with 10 training samples per subject (please refer to Section 6.3 for more information of 

FRGC 2.0). We learn the dictionary by using the first term, the first two terms and all the three terms, respectively. 

The representation residuals of the training data over each sub-dictionary are shown in the right column of Fig. 1. 

One can see that by using only the first term in Eq. (6), we cannot ensure that Di has the minimal representation 

residual for Ai. By using the first two terms, Di will have the minimal representation residual for Ai among all 

sub-dictionaries; however, some training data (e.g., A7, A9, and A10) may have big representation residuals over 

their associated sub-dictionaries because they can be partially represented by other sub-dictionaries. By using all 

the three terms in Eq. (6), Di will have not only the minimal but also very small representation residual for Ai, 
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while other sub-dictionaries will have big representation residuals of Ai. 

 

    
(a) 

  
(b)                                          

 
(c) 
 

Figure 1: The role of the three penalty terms in r(Ai,D,Xi). (a) With only the first term, Di may not have the minimal 
representation residual for Ai. (b) With the first two terms, Di will have the minimal representation residual for Ai, but some 
training data (e.g., A7, A9, and A10) may have big representation residuals over their associated sub-dictionaries. (c) With all 
the three terms in Eq. (6), Di will have not only the minimal but also very small representation residual for Ai, while other 
sub-dictionaries will have big representation residuals of Ai. 

 

3.2. Discriminative coefficient term f(X) 

To further increase the discrimination capability of dictionary D, we can enforce the representation matrix of A 

over D, i.e. X, to be discriminative. Based on the Fisher discrimination criterion (Duda et al. 2000), this can be 

achieved by minimizing the within-class scatter of X, denoted by SW(X), and maximizing the between-class scatter 

of X, denoted by SB(X). SW(X) and SB(X) are defined as 
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1 k i

K T

W k i k ii X 
   x

S X x m x m  and     
1

K T

B i i ii
n


  S X m m m m , 

where mi and m are the mean vectors of Xi and X, respectively, and ni is the number of samples in class Ai. 

The Fisher criterion has been widely used in subspace learning (Wang et al. 2007) to learn a discriminative 

subspace, and it is usually defined as to minimize the trace ratio tr(SW(X))/tr(SB(X)), where tr() means the trace of 

a matrix. Instead of minimizing the trace ratio, another commonly used variant of the Fisher criterion is to 

minimize the trace difference, i.e., minimize tr(SW(X))atr(SB(X)), where a is a positive constant to balance the 

contributions of within-class scatter and between-class scatter (Li et al. 2006, Song et al. 2007, Guo et al. 2003, 

Wang et al. 2007). The relationship between the two types of Fisher criterion has been discussed in detail in (Jia et 

al. 2009, Wang et al. 2007, Guo et al. 2003). Based on Theorem 1 of (Wang et al. 2007) and Theorem 6 of (Guo et 

al. 2003), the solution of minimizing tr(SW(X))atr(SB(X)) converges to the solution of minimizing 

tr(SW(X))/tr(SB(X)) with a suitable a. Since our dictionary learning model contains several other terms apart from 

the Fisher discrimination term on X, we employ the trace difference version of the Fisher criterion, which could 

make the minimization of the whole FDDL model easier. Meanwhile, we set a=1 for simplicity. In Section 6.2 we 

will show that our model is insensitive to a in a wide range.  

Based on the above analysis, we define f(X) as f(X)=tr(SW(X))tr(SB(X)). However, the term -tr(SB(X)) will 

make f(X) non-convex and unstable. To solve this problem, we introduce an elastic term ||X||2 
F to f(X): 

f(X)= tr(SW(X))tr(SB(X))+||X||2 
F, (7)

where  is a parameter. The term ||X||2 
F could make f(X) smoother and convex (the convexity of f(X) will be further 

discussed in Section 4).  In addition, in the objective function J(D,X) (refer to Eq. (5)) of FDDL, there is a sparsity 

penalty term ||X||1. As in elastic-net (Zou and Hastie, 2005), the joint use of ||X||2 
F  and ||X||1 could make the solution 

of f(X) more stable while being sparse.  

3.3. The whole FDDL model 

By incorporating Eqs. (6) and (7) into Eq. (5), we have the following FDDL model:  

        2

( , ) 1 211
min , ,

K

i i W B Fi
r tr  


   D X A D X X S X S X X

 2
s.t. 1,n n d  (8)
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Although the objective function in Eq. (8) is not jointly convex to (D, X), we will see that it is convex with respect 

to each of D and X when the other is fixed. Detailed optimization procedures will be presented in Section 4. The 

dictionary D to be learned aims to make both the class-specific representation residual and representation 

coefficients discriminative. Each sub-dictionary Di will have small representation residuals to the samples from 

class i but have big representation residuals to other classes, while the representation coefficient vectors of 

samples from one class will be similar to each other but dissimilar to samples from other classes. Such a D will be 

very discriminative to classify an input query sample.  

A class-specific data representation term was used in (Kong et al. 2012), and a discriminative representation 

coefficient term was adopted in (Zhou et al. 2012). However, there are much difference between FDDL and these 

two models. First, both (Kong et al. 2012) and (Zhou et al. 2012) learn a shared dictionary and a set of 

class-specific sub-dictionaries in their models, while the proposed FDDL only learns a structured dictionary which 

consists of a set of class-specific sub-dictionaries. Note that although FDDL does not explicitly learn a shared 

dictionary, it allows across-class representation by using the structured dictionary. Second, FDDL exploits both 

the representation residual and representation coefficients to learn the discriminative dictionary, while (Kong et al. 

2012) and (Zhou et al. 2012) exploit either the representation residual or the representation coefficients in DL. 

3.4. A simplified FDDL model 

The minimization problem in Eq. (8) can be re-formulated as: 

       22 2

1 21,
1

2

2

min  

                                                                       s.t. 1, ; ,

K
i

i i i i i W BF FF
i

j
n j i fF

tr

n i j

  





      

    


D X

A DX A D X X S X S X X

d D X

 (9)

where f is a small positive scalar. The constraint 
2j

j i fF
D X  guarantees that each class-specific sub-dictionary 

has poor representation ability for other classes.  

It is a little complex to solve the original FDDL model in Eq. (8) or Eq. (9). Considering that Xi
j, the 

representation of Ai over sub-dictionary Dj, should be very small for ji, we could have a simplified FDDL model 

by explicitly assuming 0j
i X  for j≠i. In this case, the constraint in Eq. (9) can be well met since 

2
0j

j i F
D X  
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for j≠i. With the simplified FDDL, the representation matrix X becomes block diagonal. The setting of 0j
i X  

will make the within-class scatter tr(SW(X)) small; meanwhile it could be proved that the between-class scatter 

tr(SB(X)) will be large enough in general (please refer to Appendix 1 for the proof). 

Based on the above discussions, the simplified FDDL model could be written as 

       22 2

1 211,

2

min

                                                                                      s.t. 1, ; ,

K i
i i i i i W BF Fi F

j
n i

tr

n i j

  


     

    


D X

A DX A D X X S X - S X X

d X 0
 (10)

which could be further formulated as  (please refer to Appendix 2 for the detailed derivation)  

 2 2 2

( , ) 1 2 3 21 1
min  s.t. 1,

K i i i i i
i i i i i i i ni F F F

n  


        D X A D X X X M X d  (11)

where 1 1 2   ,  2 2 1 2i     , i=1-ni/n, and  3 2 2i      ; i
iM  is the mean vector matrix (by taking 

the mean vector i
im  as its column vectors) of class i, and i

im  is the column mean vector of i
iX . Clearly, the 

learning of dictionaries in the simplified FDDL model could be performed class by class.   

Compared with the original FDDL model in Eq. (8), the simplified FDDL model in Eq. (11) does not 

explicitly consider the discrimination between different classes. There are two common ways to improve the 

discrimination of a classification model: reduce the within-class variation, and enlarge the between-class distance. 

The FDDL model considers both, while the simplified FDDL model only reduces the within-class variation to 

enhance the discrimination capability. Fortunately, a large between-class scatter can be guaranteed by simplified 

FDDL in general, as we proved in Appendix 1. 

 

4. Optimization of FDDL 

We first present the minimization procedure of the original FDDL model in Eq. (8), and then present the solution 

of the simplified FDDL model in Eq. (11). The objective function in Eq. (8) can be divided into two sub-problems 

by optimizing D and X alternatively: updating X with D fixed, and updating D with X fixed. The alternative 

optimization is iteratively implemented to find the desired dictionary D and coefficient matrix X. 
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4.1. Update of X 

Suppose that the dictionary D is fixed, and then the objective function in Eq. (8) is reduced to a sparse 

representation problem to compute X = [X1, X2, …, XK]. We can compute Xi class by class. When compute Xi, all 

Xj, j≠i, are fixed. The objective function in Eq. (8) is further reduced to:  

 1 21
min ( , , ) ( )

i i i i i ir f  X A D X X X  (12)

with 

  2 2 2

1

K

i i i i k iF F Fk
f 


    X X M M M X , 

where Mk and M are the mean vector matrices (by taking the mean vector mk or m as all the column vectors) of 

class k and all classes, respectively. It can be proved that if >i, fi(Xi) is strictly convex to Xi (please refer to 

Appendix 3 for the proof), where i=1-ni/n, ni and n are the numbers of training samples in the ith class and all 

classes, respectively. In this paper, we set =1 for simplicity. One can see that all the terms in Eq. (12), except for 

||X||1, are differentiable. We rewrite Eq. (12) as 

  1min 2
i i iQ X X X  (13)

where      2, ,i i i i iQ r f X A D X X , and τ=λ1/2. Let ,1 ,2 ,, , ,
i

TT T T
i i i i n

   
 X x x x , where xi,k is the kth column 

vector of matrix Xi. Because Q(Xi) is strictly convex and differentiable to Xi, the Iterative Projection Method 

(IPM) (Rosasco et al. 2009, whose speed could be improved by FISTA (Beck and Teboulle 2009)) can be 

employed to solve Eq. (13), as described in Table 1.  

The update of representation matrix X in the simplified FDDL model (i.e., Eq. (11)) is a special case of 

that in FDDL with   2 2 2

2 32

i i i i
i i i i i i iF F

Q       X A D X X M X  and 0j
i X  for ji, which could also be 

efficiently solved by the algorithm in Table 1. In simplified FDDL, we set =i=1-ni/n (i.e., 3 =0) and in this case 

Q(Xi) is convex w.r.t. Xi. 
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Table 1: The update of representation matrix X in FDDL. 

Algorithm of updating X in FDDL 
1. Input: σ, τ >0.  

2. Initialization:  1
i  0X  and h=1. 

3. While convergence or the maximal iteration number is not reached do 
 h = h+1 

      1 11

2
h h h

i i iQ  
     

 
  X S X X                                                       (14) 

where   1h
iQ  X  is the derivative of Q(Xi) w.r.t.  1h

i
X , and  S is a 

component-wise soft thresholding operator defined by (Wright et al. 2009a): 

 
 

0

sign otherwise

j

j
j j

x

x x
 

 

 

      
S x . 

4. Return  h
i i X X . 

 

4.2. Update of D 

Let’s then discuss how to update D = [D1, D2, …, DK] when X is fixed. We also update 1 2[ , ,..., ]
ii pD d d d  class by 

class. When update Di, all Dj, j≠i, are fixed. The objective function in Eq. (8) is reduced to:  

 2 2 2

21,
ˆmin s.t. 1, 1, ,

i

Ki i i
i i i i i j l ij j iF FF

l p
 

      D A D X A D X D X d  (15)

where 
1,

ˆ K j
jj j i 

 A A D X  and X i  is the representation matrix of A over Di. Eq. (15) could be re-written as 

2

2
min s.t. 1, 1, ,

i i i i l iF
l p   D D Z d  (16)

where ˆ
i i

   0 0 0 0  A A , 1 1 1
i i i i i i

i i i i K      X X X X X X , and 0 is a zero matrix with appropriate size 

based on the context. Eq. (16) can be efficiently solved by updating each dictionary atom one by one via the 

algorithm like (Yang et al. 2010) or (Mairal et al. 2008). 

The update of dictionary in simplified FDDL is the same as original FDDL except that Eq. (16) becomes 

a simpler one with i i A  and i
i i X . 
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4.3. Algorithm of FDDL 

The complete algorithm of FDDL is summarized in Table 2. The algorithm converges since the cost function in Eq. 

(8) or Eq. (11) is lower bounded and can only decrease in the two alternative minimization stages (i.e., updating X 

and updating D). An example of FDDL minimization is shown in Fig. 2 by using the Extended Yale B face 

database (Georghiades et al. 2001). Fig. 2(a) illustrates the convergence of FDDL. Fig. 2(b) shows that the Fisher 

ratio tr(SW(X))/tr(SB(X)), which is basically equivalent to tr(SW(X))tr(SB(X)) in characterizing the discrimination 

capability of X, decreases with the increase of iteration number. This indicates that the coefficients X are 

discriminative by the proposed FDDL algorithm. Fig. 2(c) plots the curves of ||Ai-DiXi
i||F (i=10 here) and the 

minimal value of ||Ai-DjXi
j||F, j=1,2,…,K, j≠ i, showing that Di represents Ai well, but Dj, j≠i, has poor 

representation ability to the samples in Ai. 

 
Table 2: Algorithm of Fisher discrimination dictionary learning. 

Fisher Discrimination Dictionary Learning (FDDL) 
1. Initialize D. 

We initialize the atoms of Di as the eigenvectors of Ai. 
2. Update coefficients X. 

Fix D and solve Xi, i=1,2,…,K, one by one by solving Eq. (13) with the algorithm in Table 1. 
3. Update dictionary D. 

Fix X and update each Di, i=1,2,…,K, by solving Eq. (16) : 
1)  Let 

1 2; ; ;
ii p

   Z z z z  and 
1 2, , ,

ii p
   D d d d , where zj, j=1,2,…,pi, is the row vector 

of Zi, and jd  is the jth column vector of Di. 

2)  Fix all ,l l jd , update jd . Let
i l ll j

 Y d z . The minimization of Eq. (16) becomes 

2
min

j
j j F


d

Y d z  s.t. 
2

1j d ; 

After some deviation (Yang et al. 2010), we could get the solution 
2

T T
j j jd Yz Yz .  

3)  Using the above procedures, we can update all jd , and hence the whole dictionary Di is 

updated. 
4. Output. 

Return to step 2 until the objective function values in adjacent iterations are close enough or the 
maximum number of iterations is reached. Then output X and D. 
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(a) 

    
  (b)                                                   (c) 

Figure 2: An example of FDDL minimization process on the Extended Yale B face database. (a) The convergence of FDDL. 
(b) The curve of Fisher ratio tr(SW(X))/tr(SB(X)) versus the iteration number. (c) The curves of the reconstruction residual of 
Di to Ai and the minimal reconstruction residual of Dj to Ai, j≠i, versus the iteration number. 
 
 

4.4. Time complexity 

In the proposed FDDL algorithm, the update of coding coefficients for each sample is a sparse coding problem, 

whose time complexity is approximately O(q2pε) (Kim et al. 2007, Nesterov and Nemirovskii 1994), where ε≥1.2 

is a constant,  q is the feature dimensionality and p is the number of dictionary atoms. So the total time complexity 

of updating coding coefficients in FDDL is nO(q2pε), where n is the total number of training samples. The time 

complexity of updating dictionary atoms (i.e., Eq. (16)) is ipiO(2nq), where pi is the number of dictionary atoms 

in Di. Therefore, the overall time complexity of FDDL is approximately (nO(q2pε)+ ipiO(2nq)), where  is the 

total number of iterations. 

For simplified FDDL, the time complexity of updating coding coefficients is iniO(q2pi
ε), where ni is the 

number training samples in the ith class. The time complexity of updating dictionary atoms is ipiO(niq). Therefore, 

the overall time complexity of simplified FDDL is (iniO(q2pi
ε)+ ipiO(niq)). Since n=ini and p=ipi, we can see 

that the simplified FDDL algorithm has much lower time complexity than the original FDDL algorithm. 
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Let’s evaluate the running time of FDDL and simplified FDDL by using a subset of FRGC 2.0 with 316 

subjects (5 training samples per subject, please refer to Section 6.3 for more detailed experimental setting). We 

also report the running time of shared dictionary learning method DKSVD (Zhang and Li 2010), class-specific 

dictionary learning method DLSI (Ramirez et al. 2010), and hybrid dictionary learning method COPAR (Kong 

and Wang 2012). The iteration number of all dictionary learning methods is set as 20. Under the MATLAB 

R2011a programming environment and in a desktop of 2.90GHZ with 4.00GB RAM, the running time of FDDL 

and simplified FDDL is 627.6s and 31.2s, respectively, while the running time of DKSVD, DLSI and COPAR is 

728.5s, 1000.6s and 5708.8s, respectively. 

 

5. The Classification Scheme 

Once the dictionary D is learned, it could be used to represent a query sample y and judge its label. According to 

how the dictionary D is learned, different information can be utilized to perform the classification task. In (Mairal 

et al. 2009; Zhang and Li 2010; Yang et al. 2010; Pham and Venkatesh 2008; Jiang et al. 2013; Mairal et al. 2012; 

Lian et al. 2010; Jiang et al. 2012), a shared dictionary by all classes is learned, and the sparse representation 

coefficients are used for classification. In the SRC scheme (Wright et al. 2009), the original training samples are 

employed as a structured dictionary to represent the query sample, and the representation residual by each class is 

used for classification. In (Ramirez et al. 2010; Mairal et al. 2008; Wang et al. 2012; Castrodad and Sapiro 2012), 

the query sample is sparsely coded on each class-specific sub-dictionary, and the representation residual is 

computed for classification. With the proposed FDDL scheme, however, both the representation residual and the 

representation coefficients will be discriminative, and hence we can make use of both of them to achieve more 

accurate classification results. 

By FDDL, not only the desired dictionary D is learned from the training dataset A, the representation matrix Xi 

of each class Ai is also computed. With Xi, the mean coefficient vector of class Ai, denoted by mi, could be 

calculated. (For simplified FDDL, the mean coefficient vector for each class can be constructed by 

; ; ; ;i
i i   0 0 m m , where i

im  is the mean vector of i
iX .) The mean vector mi can be viewed as the center of 

class Ai in the transformed space spanned by the dictionary D. In FDDL, not only the class-specific sub-dictionary 
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Di is forced to represent the training samples in Ai, the representation coefficient vectors in Xi are also forced to be 

close to mi and be far from mj, ji. Suppose that the query sample y is from class Ai, then its representation residual 

by Di will be small, while its representation vector over D will be more likely close to mi. Therefore, the mean 

vectors mi can be naturally employed to improve the classification performance. According to the number of 

training samples per class, here we propose two classifiers, the global classifier (GC) and local classifier (LC), 

which are described as follows. 

5.1. Global classifier  

When the number of training samples per class is relatively small, the learned sub-dictionary Di may not be able to 

faithfully represent the query samples of this class, and hence we represent the query sample y over the whole 

dictionary D. On the other hand, in the test stage the l1-norm regularization on the representation coefficient may 

be relaxed to l2-norm regularization for faster speed, as discussed in (Zhang et al. 2011). With these considerations, 

we use the following global representation model: 

 2

2
ˆ arg min

p
  y D    (17)

where  is a constant and ||||p means lp-norm, p=1 or 2. Note that when p=2, an analytical regularized least square 

solution to ̂  can be readily obtained so that the representation process is extremely fast (Zhang et al. 2011).  

Denote by 1 2ˆ ˆ ˆ ˆ[ ; ; ; ]K     , where ˆi  is the coefficient sub-vector associated with sub-dictionary Di. In the 

training stage of FDDL, we have enforced the class-specific representation residual to be discriminative. 

Therefore, if y is from class i, the residual 
2

2
ˆi iy D  should be small while 

2

2
ˆj jy D  , ji, should be big. In 

addition, the representation vector ̂  should be close to mi but far from the mean vectors of other classes. By 

considering the discrimination capability of both representation residual and representation vector, we could 

define the following metric for classification: 

2

2
ˆi i ie   y D 2

2
ˆ iw   m  (18)

where w is a preset weight to balance the contribution of the two terms to classification. The classification rule is 

simply set as    identity arg min i iey . 
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5.2. Local classifier  

When the number of training samples of each class is relatively large, the sub-dictionary Di is able to well span the 

subspace of class i. In this case, to reduce the interference from other sub-dictionaries and to reduce the 

complexity of sparse representation, we can represent y locally over each sub-dictionary Di instead of the whole 

dictionary D; that is,
 

2

2
ˆ =argmin

ii i i i p
 y D   . However, since in the dictionary learning stage we have 

forced the representation vectors of Ai over Di to be close to their mean, i.e., i
im , in the test stage we can also force 

the representation vector of query sample y over Di to be close to i
im  so that the representation process can be 

more informative. With the above considerations, we propose the following local representation model:  

 22

1 22 2
ˆ arg min

i

i
i i i i i ip

     


   y D m  (19)

where 1 and 2 are constants. Again, when p=2, an analytical solution to ˆi  can be obtained. Based on the 

representation model in Eq. (19), the metric used for classification can be readily defined as:  

22

1 22 2
ˆ ˆ ˆ i

i i i i i ip
e      y D m    (20)

and the final classification rule is still    identity arg min i iey . 

 

6. Experimental Results 

We verify the performance of FDDL on various image classification tasks. Section 6.1 discusses the model and 

parameter selection; Section 6.2 illustrates the effectiveness of FDDL in improving the Fisher discrimination 

criterion of representation coefficients; Sections 6.3~6.7 perform experiments on face recognition, handwritten 

digit recognition, gender classification, object categorization and action recognition, respectively.  

 

6.1. Model and parameter selection 

We discuss the various issues involved in the proposed scheme, including DL model selection (i.e., FDDL or 

simplified FDDL), classification model selection (e.g., GC or LC), the number of dictionary atoms, l1-norm or 

l2-norm regularization, and parameter selection. In studying the DL model selection, the parameters  and w in GC 
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and parameters 1 and 2 in LC are predefined. Specifically, we select the values of  and 1 from set {0.001, 0.01, 

0.1}, and select the values of w and 2 from set {0, 0.001}. Given a dictionary learning and classification model, 

we report the best performance of different classifiers. 

 
6.1.1 Model selection in dictionary learning and classification 

We first discuss the classification model selection. As analyzed in Sections 5.1 and 5.2, the GC and LC are 

suitable for small-sample-size problem and enough-training-sample problem, respectively. In the experiments of 

this sub-section, the l1-norm regularization is used when representing a query sample. 

The FR rates of FDDL and simplified FDDL coupled with GC and LC on the AR database (Martinez and 

Benavente 1998) are listed in Table 3 (more information about the experiment settings can be found in Section 

6.3). Here we set 1=0.005 and 2=0.01 in the DL stage. It can be seen that GC achieves much better performance 

than LC with about 20% advancement. This validates that when the number of training samples per class (denoted 

by Nts) is not sufficient and different classes share some similarities, the cross-class representation in GC is helpful 

to represent the test sample. The competition of different classes in the representation process makes the 

representation residual discriminative for classification.  

 

Table 3: FR rates of FDDL and simplified FDDL coupled with GC or LC on the AR database. 

Nts 4 7 
GC LC GC LC 

FDDL 86.3% 61.5% 92.6% 74.8% 
Simplified FDDL 86.0% 61.4% 93.0% 74.8% 

 

Table 4: Performance of FDDL and simplified FDDL coupled with GC or LC in USPS digit recognition. 

Nts 5 10 100 300 
GC LC GC LC GC LC GC LC 

FDDL 78.9% 79.8% 82.9% 84.3% 90.2% 94.1% 90.8% 94.1% 
Simplified FDDL 78.5% 79.5% 82.9% 84.1% 92.9% 94.2% 94.3% 95.0% 

 

Table 5: Performance of SRC, simplified FDDL and FDDL in FR on Multi-PIE. 

Nts 3 4 5 6 7 8 

SRC 64.8% 75.4% 79.0% 90.4% 95.2% 97.0% 
Simplified FDDL (LC) 51.3% 53.4% 55.2% 76.2% 95.2% 98.7% 

FDDL (LC) 61.9% 72.8% 76.5% 88.6% 95.1% 98.4% 
Simplified FDDL (GC) 70.7% 84.8% 88.7% 97.3% 98.3% 99.3% 

FDDL (GC) 71.9% 86.6% 91.1% 97.6% 98.2% 99.4% 
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Table 4 lists the recognition rates of FDDL and simplified FDDL on the USPS handwritten digit dataset (Hull, 

J.J. 1994) (more information about the experiment settings can be found in Section 6.4). We set 1=0.05 and 

2=0.005. In this experiment, when the number of training samples is not big (e.g., 5 or 10), all methods have 

similar performance; when the number of training samples is relatively large (e.g., 100 and 300), LC outperforms 

GC. This shows that LC is more powerful than GC when there are sufficient training samples per class. 

We then compare the performance of simplified FDDL and FDDL. As mentioned in Section 3.4, simplified 

FDDL is a special but very useful case of FDDL by assuming j
i  0X , j≠i, when we represent the training data A 

= [A1, A2, …, AK] over the structured dictionary D=[D1, D2, ..., DK]. In many situations, different classes have a 

similar number of training samples and have similar variations (i.e., Ai are “balanced”), and this assumption holds 

well because Ai tends to be represented mostly by Di. Actually, in Tables 3 and 4, we have seen that simplified 

FDDL achieves similar recognition rates to FDDL. However, this assumption may not be satisfied when Ai are 

less balanced, and in such cases FDDL can perform much better than simplified FDDL.  

We conduct a face recognition experiment on the Multi-PIE database (please refer to Section 6.3 for more 

information of Multi-PIE). The face images of 60 subjects with illumination and expression variations (including 

neutral, smile in session 1 and session 3, surprise and squint in section 2) are used. Each subject has Nts training 

samples and 27 testing samples (15 samples with illumination variations and 12 samples with expression 

variations). When Nts ≤ 5, the training samples of the first 30 subjects have expression variations, while the 

training samples of the last 30 subjects have illumination variations. When Nts > 5, we add face images with 

illumination variations to the first 30 subjects and add face images with expression variations to the last 30 

subjects. We set 1=2=0.01 in FDDL and simplified FDDL.  

Table 5 lists the FR results of simplified FDDL and FDDL. We also report the results of SRC for reference. 

From Table 5 we can see that FDDL is visibly better than its simplified version when Nts ≤ 5. If LC is used, the 

advantage of FDDL over simplified FDDL is more obvious. This is because in this experiment when Nts ≤ 5 the 

training samples in one class are limited in characterizing the different face variations, and thus the assumption 

j
i  0X , j≠i, does not hold very well. Fortunately, FDDL could exploit the complementary information from 

different classes to learn the dictionary. In contrast, simplified FDDL ignores the collaborative representation 
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between different classes, degrading its performance. When Nts > 5, different classes become more balanced in 

illumination and expression variations, and the assumption j
i  0X , j≠i, can be well satisfied. As a result, the 

performance of simplified FDDL becomes close to FDDL. In addition, both simplified FDDL and FDDL perform 

much better than SRC under different Nts. 

In our following experiments, including face recognition, digit recognition, gender classification, object 

categorization and action recognition, all classes have similar number of training samples and similar variations. 

Based on our above analyses, we adopt simplified FDDL to learn dictionaries except for face recognition (the 

training samples in face recognition are usually less insufficient and FDDL performs slightly better than 

simplified FDDL). In the classification phase, GC is used in face recognition, object categorization and action 

recognition, LC is used in handwritten digit recognition, while both GC and LC are tested in gender classification.  

 
6.1.2 The number of dictionary atoms 

 

 

Figure 3: The recognition rates of FDDL and SRC versus the number of dictionary atoms. 
 

One important parameter in FDDL is the number of atoms in Di, denoted by pi. Usually, we let all pi equal, 

i=1,2,…,K. Here we use SRC as the baseline method to analyze the effect of pi on the performance of FDDL by 

using face recognition experiment on the Extended Yale B database, which consists of 2,414 frontal-face images 

from 38 individuals. For each subject, we randomly select 20 images for training, with the others (about 44 images 

per subject) for testing. Because SRC uses the original training samples as dictionary, we randomly select pi 

training samples as the dictionary atoms and run 10 times the experiment to compute the average recognition rate. 

Fig. 3 plots the recognition rates of FDDL and SRC versus the number of dictionary atoms. We can see that in all 

cases FDDL has at least 3% improvement over SRC. Especially, even with pi=8, FDDL can still have higher 
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recognition rate than SRC with pi=20. Besides, from pi=20 to pi=8, the recognition rate of FDDL drops by 2.2%, 

compared to 4.2% for SRC. This demonstrates that FDDL is effective to learn a compact and representative 

dictionary, which can reduce the computational cost and improve the recognition rate simultaneously.  

 
6.1.3 l1-norm and l2-norm regularization 

It is indicated in (Zhang et al. 2011) that the l1-norm sparsity penalty on the representation coefficients may not be 

critical in the SRC classifier. In the DL stage of FDDL, both l1-norm and l2-norm regularizations are imposed on 

the representation coefficients X. In this sub-section, we first evaluate the role of l1-norm regularization (i.e., ||X||1) 

and l2-norm regularization (i.e., 
2

F
X  ) in Eq. (8) by varying the values of parameters λ1 and η (>i, where 

i=1-ni/n), and then evaluate the performance of GC and LC with l1-norm and l2-norm regularizations (i.e., letting 

p=1 and p=2 in Eq. (17) and Eq. (19)). 

Table 6 lists the recognition rates of FDDL with different values of λ1 and η on the Extended Yale B database 

(the experiment setting is the same as that in Section 6.1.2). The GC is used in this experiment and we set 

2=0.005. It can be seen that without l1-norm regularization (i.e., λ1 =0) in the learning stage of FDDL, the 

performance will degrade (i.e., FR rate with λ1 =0 is lower than that with λ1 =0.005). With l1-norm regularization 

(e.g., λ1 =0.005) in the learning stage, varying the strength of l2-norm regularization has little effect on the final 

classification rate. This finding shows that l1-norm sparse regularization is useful in learning discriminative 

dictionary for pattern classification.  

 

Table 6: FR rates on the Extended Yale B database with various parameter settings of (λ1, η). 

Parameters (0.005, i) (0.005, 1) (0.005, 5) (0, 1) (0, 5) 

l1-regularized GC  92.4% 92.1% 92.4% 90.8% 91.7% 
l2-regularized GC 91.1% 90.7% 91.3% 88.6% 91.6% 

 

Table 7: Recognition rates on the USPS database with various parameter settings of (λ1, η). 

Parameters (0.05, i) (0.05, 1) (0.05, 5) (0, 1) (0, 5) 

l1-regularized LC  95.0% 95.0% 95.2% 93.1% 93.3% 
l2-regularized LC 93.3% 93.3% 93.4% 91.6% 93.3% 

 

In Table 6 we can also see that when λ1 =0.005, the l2-norm regularized GC has lower recognition rates than 
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the l1-norm regularized GC. This is because l1-norm regularization is used in the DL stage, so that if l1-norm 

regularization is not employed to represent the query sample, the discrimination ability of the learnt dictionary 

may not be fully exploited.  

We then apply FDDL to the USPS handwritten digit database with 300 training samples per class. The 

recognition rates are listed in Table 7. The LC classifier is used in this experiment. We fix 2=0.005, and vary the 

values of λ1 and η. Similar conclusions to those in face recognition could be made: l1-norm sparse regularization is 

useful in the phase of DL, and consequently in the phase of classification the l1-regularized classifier is more 

powerful than the l2-regularized one but with more computational cost.   

 
6.1.4 The intra-class variance term in classification 

In the proposed GC and LC, there is an intra-class variance term defined on the solved representation vector, i.e., 

2

2
ˆ iw   m

 
in Eq. (18) and 

2

2 2
ˆ i

i i  m  in Eq. (20). Let’s evaluate if the introduction of this intra-class variance 

term can help to improve the final classification rate. We test GC by face recognition on the AR face database 

(Martinez and Benavente 1998), and test LC by handwritten digit recognition on the USPS database (Hull, J.J. 

1994) using 200 training samples per digit. (More information about the experiment settings can be found in 

Section 6.3 and Section 6.4, respectively.) By fixing  to 0.01 in GC and fixing 1 to 0.1 in LC, we report the 

classification rates by varying w in GC and 2 in LC.  

 
Table 8: The face recognition rates (%) by GC with different w on the AR dataset. 

w 0 0.001 0.003 0.005 0.007 0.01 0.05 0.1 1 

FDDL 91.6 92.0 92.1 92.3 92.4 92.4 92.6 92.6 92.6 
Simplified-FDDL 91.1 91.4 91.6 91.8 92.0 92.0 92.0 92.0 92.1 

 
Table 9: The handwritten digit recognition rates (%) by LC with different 2 on the USPS dataset. 

2 0 0.001 0.002 0.003 0.005 0.01 
FDDL 94.5 94.8 94.8 94.8 94.8 94.9 
Simplified-FDDL 94.5 94.8 94.8 94.9 94.9 94.9 

 

Table 8 shows the face recognition rates with different w. One can clearly see that the intra-class variance of ̂  

would benefit the final classification performance, which is in accordance with our analysis in Section 5. For 

example, GC with w=0.05 could have 1.0% improvement over GC with w=0 (i.e., without using the intra-class 

variance term). The digit recognition results by LC are reported in Table 9. Again, the intra-class variance term 
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could bring certain benefit (about 0.4%) in classification. The benefit is not as obvious as that in GC because the 

sub-dictionary used in LC is much smaller than the whole dictionary used in GC so that the variation of 

representation coefficients in LC is generally smaller than that in GC, and hence the intra-class variance term in 

LC would not affect the final classification result as much as that in GC.  

 
6.1.5 Parameter selection by cross-validation  

There are four parameters need to be tuned in the proposed FDDL scheme, two in the DL model (λ1 and λ2) and 

two in the classifier ( and w in GC, or 1 and 2 in LC). In all the experiments, if no specific instructions, the tuning 

parameters in FDDL and the competing methods are evaluated by 5-fold cross validation. Based on our extensive 

experiment experience, the selection of w (or 2) is relatively independent of the selection of other parameters. 

Therefore, to reduce the complexity of cross validation, we could tune w (or 2) and the other three parameters 

separately. More specifically, we initially set w (or 2) to 0 (other small values such as 0.001 could lead to similar 

results) to search the optimal values of λ1, λ2 and  (or 1), and then fix λ1, λ2 and  (or 1) to search for the optimal 

value of w (or 2). In general, we search λ1, λ2 and  (or 1) from a small set {0.001, 0.005, 0.01, 0.05, 0.1}, and set 

the search range of w and 2 to [0.001, 0.1]. 

6.2. Fisher discrimination enhancement by FDDL 

FDDL aims to learn a dictionary to enhance the Fisher discrimination of representation coefficients. In this section, 

we evaluate if the Fisher discrimination criterion can be truly improved by using the learned dictionary D. We first 

compare FDDL with SRC (Wright et al. 2009), which uses the original training samples as the dictionary. Four 

subjects in the FRGC dataset (Phillips et al. 2005) were randomly selected. Ten samples of each subject were used 

for training, and the remaining samples for testing. Fig. 4(a) shows the ten training samples of one subject; Fig. 4(b) 

illustrates the representation coefficient matrices of the training and test datasets by FDDL; and Fig. 4(c) 

illustrates the coefficient matrices of SRC. Please note that when we code a training sample by SRC, we take this 

sample away from the dictionary (i.e., using the leave-one-out strategy). One can see that by FDDL the coefficient 

matrix of the training dataset is nearly block diagonal, while each block is built by samples from the class 

corresponding to that sub-dictionary. In contrast, by SRC the coefficient matrix of the training dataset has many 
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big non-block diagonal entries. For the test dataset, the coefficient matrix by FDDL is more regular than that by 

SRC. The Fisher ratio (i.e., tr(SW(X))/tr(SB(X)) of each coefficient matrix is computed and shown in Fig. 4. Clearly, 

the Fisher ratio values by FDDL are significantly lower than those by SRC on both the training and test datasets, 

validating the effectiveness of FDDL in enhancing the discrimination of representation coefficients.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 4: (a) The training samples from one subject. (b) The representation coefficient matrices by FDDL on the training (left) 
and test (right) datasets. (c) The representation coefficient matrices by SRC on the training (left) and test (right) datasets.  
 

To more comprehensively evaluate the effectiveness of FDDL in improving the Fisher criterion, we further 

compare it with the baseline DL model in Eq. (3). The simplified FDDL model is also used in the comparison. The 

coefficient matrices by the three models on the training and test datasets are illustrated in Fig. 5(a) and Fig. 5(b), 

respectively. One can see that the baseline DL model will reduce the within-class scatter compared with SRC 

which does not learn a dictionary; however, its Fisher ratio is still much higher than simplified FDDL and FDDL. 

FDDL-train: Fisher ratio = 0.90168
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The Fisher ratio by simplified FDDL is slightly higher than FDDL, showing that our simplification in the learning 

model does not sacrifice much the discrimination capability with much benefit in learning efficiency. Both the 

simplified FDDL model in Eq. (11) and the baseline DL model in Eq. (3) learn the class-specific sub-dictionaries 

class by class. However, compared with Eq. (3), Eq. (11) explicitly minimizes the within-class scatter of 

representation coefficients, which enhances much the discrimination of learned dictionary. This is why simplified 

FDDL has higher discrimination and better classification performance than the baseline DL. 

 

 
(a) 

 
(b) 

 
Figure 5: The representation coefficient matrices by the baseline dictionary learning model (left), simplified FDDL (middle) 
and FDDL (right) on the (a) training dataset and (b) test dataset.  

 

As discussed in Section 3.2, we employed the Fisher difference tr(SW(X))atr(SB(X)), instead of the Fisher 

ratio tr(SW(X))/tr(SB(X)), in the FDDL model (refer to Eq. (7)), and we set a=1 for simplicity. Let’s evaluate if the 

setting of a will affect much the final Fisher ratio value and the recognition rate. 100 subjects in the FRGC 

database (Phillips et al. 2005) are randomly selected in the evaluation. 10 images per subject are used as the 

training set, with the remaining as the test set (1,510 images in total). The images are cropped and normalized to 

Baseline DL: Fisher ratio = 2.5551
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2015. By fixing the other parameters in FDDL, Fig. 6 plots the Fisher ratio values and the recognition rates by 

setting a to 0.1, 0.2, 0.4, 0.8, 1, 2, 4, 8 and 10, respectively. We can see that the resulting Fisher ratio drops slowly 

with the increase of a, and the final recognition rate is almost unchanged. Therefore, we set a = 1 in our FDDL 

model and it works very well in all our experiments. 

 

 
Figure 6: The Fisher ratio and recognition rate versus a. 

 

6.3. Face recognition 

We apply the proposed FDDL method to FR on the FRGC 2.0 (Phillips et al. 2005), AR (Martinez and Benavente 

1998), and Multi-PIE (Gross et al. 2010) face databases. We compare FDDL with five latest DL based FR 

methods, including joint dictionary learning (JDL) (Zhou et al. 2012), dictionary learning with commonality and 

particularity (COPAR) (Kong and Wang 2012), label consistent KSVD (LCKSVD) (Jiang et al. 2013), 

discriminative KSVD (DKSVD) (Zhang and Li 2010) and dictionary learning with structure incoherence (DLSI) 

(Ramirez et al. 2010). We also compare with SRC (Wright et al. 2009) and two general classifiers, nearest 

subspace classifier (NSC) and linear support vector machine (SVM). Note that the original DLSI method and JDL 

method represent the query sample class by class. For a fair comparison, we also extended these two methods by 

representing the query sample on the whole dictionary and using the representation residual for classification 

(denoted by DLSI* and JDL*, respectively). The default number of dictionary atoms in FDDL is set as the 

number of training samples. The Eigenface feature (Turk and Pentland 1991) with dimension 300 is used in 

all FR experiments. 

a) FRGC database: The FRGC version 2.0 (Phillips et al. 2005) is a large-scale face database established 
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under uncontrolled indoor and outdoor settings. Some example images are shown in Fig. 7. We used a subset (316 

subjects with no less than 10 samples, 7,318 images in total) of the query face dataset, which has large lighting, 

accessory (e.g., glasses), expression variations and image blur, etc. We randomly chose 2 to 5 samples per subject 

as the training set, and used the remaining images for testing. The images were cropped to 32×42 and all the 

experiments were run 10 times to calculate the mean and standard deviation. The results of FDDL, SRC, NSC, 

SVM, LCKSVD, DKSVD, JDL, COPAR, and DLSI are listed in Table 10. It can be seen that in most cases FDDL 

can have visible improvement over all the other methods. LCKSVD and DKSVD, which only use representation 

coefficients to do classification, do not work well. DLSI* and JDL* have better results than DLSI and JDL, 

respectively, which shows that representing the query image on the whole dictionary is more reasonable for FR 

tasks. COPAR underperforms FDDL by about 6%. This is mainly because FDDL employs the Fisher criterion to 

regularize the coding coefficients, which is more discriminative than the sparse regularization used in COPAR.  

 

 

Figure 7: Some sample images from the FRGC 2.0 database 

 
Table 10: The FR rates (%) of competing methods on the FRGC 2.0 database. 

Nts SRC NSC SVM DKSVD LCKSVD DLSI  DLSI* COPAR JDL JDL* FDDL 
2  71.1±0.8 43.60.6 45.0±0.8 62.8±0.8 65.6±0.7 43.3±0.8 79.3±0.9 70.90.9 54.60.8 70.81.1 79.5±1.1 
3 81.4±0.6 54.70.7 57.1±0.7 72.2±0.6 75.7±0.6 53.7±0.7 86.7±0.6 81.30.6 62.60.7 83.00.7 89.0±0.8 
4 87.0±0.6 63.00.6 66.2±0.7 77.2±0.7 78.1±0.5 62.9±0.6 91.4±0.5 86.90.6 71.30.6 88.20.5 92.9±0.3 
5 90.1±0.4 69.30.6 72.9±0.7 79.7±0.7 79.8±0.8 68.8±0.4 93.5±0.3 89.50.6 74.70.5 91.20.5 95.1±0.3 

 

Table 11: The FR rates (%) of competing methods on the AR database. 

Method SRC NSC SVM DKSVD LCKSVD DLSI DLSI* COPAR JDL JDL* FDDL
 88.8 74.7 87.1 85.4 89.7 73.7 89.8 89.3 77.8 91.7 92.0 

 

b) FR on the AR database: The cropped AR database (Martinez and Benavente 1998) consists of over 4,000 

frontal images from 126 individuals. For each individual, 26 pictures were taken in two separated sessions. As in 

(Wright et al. 2009), we chose a subset consisting of 50 male subjects and 50 female subjects in the experiment. 

For each subject, the 7 images with illumination and expression changes from Session 1 were used for training, 
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and the other 7 images with the same condition from Session 2 were used for testing. The size of face image is 

60×43. The recognition rates of FDDL and other competing methods are shown in Table 11. Again, we can see 

that FDDL has visible improvement over most of the competing methods. JDL* performs the second best in this 

experiment, followed by DLSI* and LCKSVD.  

Table 12: The FR rates (%) of competing methods on the partial Multi-PIE dataset. 

Method SRC NSC SVM DKSVD LCKSVD DLSI DLSI* COPAR JDL JDL* FDDL 
Test 1 95.5 90.8 91.6 93.9 93.7 91.4 94.1 95.3 90.0 96.1 96.7 
Test 2 96.1 94.7 92.2 89.8 90.8 94.9 95.9 96.3 91.0 96.3 98.0 

 

Table 13: Recognition error rates (%) of competing methods on the whole Multi-PIE dataset. 

Method U-SC S-SC MRR MRR-LBP RASR RASR-IW FDDL 
Session2 5.4 4.8 6.3 4.7 6.1 5.0 4.3 
Session3 9.0 6.6 7.2 4.4 6.2 3.7 3.4 
Session4 7.5 4.9 7.0 4.4 7.7 2.7 3.1 

 

c) FR on the Multi-PIE database: The CMU Multi-PIE face database (Gross et al. 2010) is a large scale 

database of 337 subjects including four sessions with simultaneous variations of pose, expression and illumination. 

We used the first 60 subjects presented in Session 1 as the training set. For each of the 60 training subjects, we 

used the frontal images of 14 illuminations1, taken with neutral expression (for Test 1) or smile expression (for 

Test 2), for training. For the test set, we used the frontal images of 10 illuminations2 from Session 3 with neutral 

expression (for Test 1) or smile expression (for Test 2). Note that Session 1 and Session 3 were recorded with a 

long time interval. The images were manually cropped and normalized to 100×82. For FDDL, the dictionary size 

of each class is set as half of the number of training samples. The experimental results of competing methods are 

listed in Table 12. We see that in both Test 1 and Test 2, FDDL works the best, followed by JDL*. 

Through the above experiments on FRGC 2.0, AR and Multi-PIE databases, it is observed that DLSI* 

outperforms DLSI and JDL* outperforms JDL. This shows that representing the query sample on the whole 

dictionary is more effective than representing it on each class-specific sub-dictionary in the application of FR. 

DKSVD and LCKSVD are worse than FDDL, SRC, COPAR, DLSI* and JDL*, which implies that the 

representation residual is more powerful than the representation coefficients in face recognition. Meanwhile, 

FDDL outperforms COPAR and JDL, which again demonstrates that the utilization of both discriminative 

 
1 Illuminations {0,1,3,4, 6,7,8,11,13,14,16,17,18,19}. 
2 Illuminations {0,2,4,6,8,10,12,14,16,18}. 
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representation term and discriminative coefficient term could learn a more powerful dictionary. 

In the above experiments on Multi-PIE, the frontal face images of the first 60 subjects were used in the 

training and testing, which is to show the advantages of FDDL over existing DL methods. To more 

comprehensively evaluate the performance of FDDL, we further conducted FR experiments on Multi-PIE using 

all the subjects. We adopted the experiment setting in supervised/unsupervised sparse coding (S-SC/U-SC) (Yang 

et al. 2010), misalignment-robust representation (MRR) (Yang et al. 2012), and robust alignment and illumination 

by sparse representation (RASR) (Wagner et al. 2012). We compare FDDL with these state-of-the-art sparse 

representation based methods which can deal with spatial transformation (e.g., misalignment) to some extent. All 

the 249 subjects presented in Session 1 are used in training. For each subject in the training set, the 7 frontal face 

images with neutral expression and extreme illuminations {0, 1, 7, 13, 14, 16, 18} are used. For the test set, all the 

face images with 20 illuminations, which are detected by the Viola and Jones’ face detector (Viola & Jones, 2004), 

from Sessions 2-4 are used. In order to fairly compare with S-SC, U-SC, RASR and MRR, which use local patch 

features and/or involve misalignment correction, we performed face alignment by the method in MRR (Yang et al. 

2012) and employed the 600-dimensional LBP histogram feature in FDDL. We also reported the results of MRR 

by using the 600-dimensioanl LBP histogram feature (MRR+LBP) and RASR with improve window (RASR-IW, 

Wagner et al. 2012). Table 13 lists the recognition rates of these competing methods. We can see that on Sessions 

2-3, the proposed FDDL achieves better performance than others. On Session 4, FDDL is only slightly worse than 

RASR-IW. 

6.4. Handwritten digit recognition 

We then perform handwritten digit recognition on the widely used USPS database (Hull, J.J. 1994), which has 

7,291 training and 2,007 test images. As in task-driven dictionary learning (TDDL, Mairal et al. 2012), we also 

artificially augmented the training set by shifting the digit images by 1 pixel in every direction. We compare 

FDDL with TDDL, COPAR, JDL and the handwritten digit recognition methods reported in (Huang and Aviyente 

2006; Mairal et al. 2009; Ramirez et al. 2010). These methods include the state-of-the-art reconstructive DL 

methods with linear and bilinear classifier models (denoted by REC-L and REC-BL) (Mairal et al. 2009), the 

state-of-the-art supervised DL methods with generative training and discriminative training (denoted by SDL-G 
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and SDL-D, Mairal et al. 2009), the state-of-the-art methods of sparse representation for signal classification 

(denoted by SRSC, Huang and Aviyente 2006) and DLSI (Ramirez et al. 2010). In addition, the results of some 

problem-specific methods (i.e., the standard Euclidean KNN and SVM with a Gaussian kernel) reported in 

(Ramirez et al. 2010) are also listed. Here the number of atoms in each sub-dictionary of FDDL is set to 200 and 

λ1=γ1=0.1, λ2=γ2=0.001.  

Fig. 8 illustrates the learned dictionary atoms of digits 7 and 8, and Table 14 lists the recognition error rates of 

FDDL and the competing methods. We see that FDDL outperforms all the competing methods except for TDDL, 

while the recognition error rate of FDDL (2.89%) is very close to that of TDDL (2.84%). Meanwhile, it should be 

noted that TDDL learns a dictionary as well as an SVM classifier per class, and it performs classification with a 

one-versus-all strategy. In comparison, FDDL only learns a dictionary for each class, and its classifier (i.e., the LC 

presented in Section 5) is much simpler. 

 

    

Figure 8: The learned atoms of digits 8 and 9 by FDDL. 
 
 

Table 14: Recognition error rates (%) of competing methods on the USPS dataset. 

Algorithms SRC REC-L(BL) SDL-G(D) DLSI KNN SVM TDDL COPAR JDL FDDL
Error rate 6.05 6.83(4.38) 6.67(3.54) 3.98 5.2 4.2 2.84 3.61 6.08 2.89 

 

Table 15: The gender classification rates (%) of competing methods on the AR database. 

SRC DKSVD LCKSVD DLSI COPAR JDL SVM NSC FDDL(LC) FDDL(GC)  
93.0 86.1 86.8 94.0 93.4 92.6 92.4 93.8 95.4 94.1 

 
Table 16: The gender classification rates (%) of competing methods on the FRGC 2.0 database. 

SRC DKSVD LCKSVD DLSI  COPAR JDL SVM CNN U-SC S-SC NSC FDDL(LC) FDDL(GC) 
94.0 85.6 89.5 94.5 93.4 90.8 91.4 94.1 93.2 94.7 90.5 96.0 94.5 
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6.5. Gender classification 

We first chose a non-occluded subset (14 images per subject) from the AR face database, which consists of 50 

males and 50 females, to conduct experiments of gender classification. Images of the first 25 males and 25 females 

were used for training, and the remaining 25 males and 25 females were used for testing. PCA was used to reduce 

the dimension of each image to 300. Here 250 atoms per sub-dictionary are learned in FDDL. Table 15 lists the 

gender classification rates of the competing methods. It can be seen that FDDL with LC works the best with 1.4% 

improvement over the third best one, DLSI. FDDL with GC works the second best but it is 1.3% lower than FDDL 

with LC. This is because in gender classification, there are only two classes and each class has enough training 

samples so that the learned dictionary of each class is representative enough to represent the test sample. 

We then evaluated FDDL on the large scale FRGC 2.0 database with the same experiment setting as that in 

(Yu et al. 2008) and (Yang et al. 2010). There are 568 individuals (243 females and 325 males) and 14,714 face 

images collected under various lighting conditions and backgrounds. We used the 3,014 images from randomly 

selected 114 subjects as the test set, and the rest 11,700 images as the training set. The 300-dimensional PCA 

feature is used in FDDL. The experimental results are listed in Table 16, where the state-of-the-art S-SC/U-SC 

methods in (Yang et al. 2010) and the CNN method in (Yu et al. 2008) are also reported. One can see that FDDL 

with LC outperforms all the competing methods, including those DL based ones (e.g., DLSI, LCKSVD, COPAR, 

JDL and SSC) and non-DL based ones (e.g., CNN). 

6.6. Object categorization 

Let’s then validate the effectiveness of FDDL on multi-class object categorization. The Oxford Flowers datasets 

with 17 categories (Nilsback and Zisserman 2006) is used. Some sample images are shown in Fig. 9. We adopted 

the default experiment settings provided on the website (www.robots.ox.ac.uk/~vgg/data/flowers), including the 

training, validation, test splits and the multiple features. It should be noted that these features are extracted from 

the flower regions which are well cropped by the preprocessing of segmentation. 
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Figure 9: Sample images of ‘daffodil’ from the Oxford Flowers dataset. 

 
Table 17: The categorization accuracy (mean±std %) with single feature on the 17 category Oxford Flowers dataset. 

Features NSC SVM  
(Gehler and Nowozin 2009)

MTJSRC-CG 
(Yuan and Yan 2010)

SRC COPAR JDL FDDL 

Color 61.7±3.3 60.9±2.1 64.0±3.3 61.9±2.2 61.14.0 58.66.1 65.0±2.4
Shape 69.9±3.2 70.3±1.3 71.5±0.8 72.7±1.9 72.51.2 63.81.6 72.8±1.7

Texture 55.8±1.4 63.7±2.7 67.6±2.2 61.4±0.9 60.40.7 49.10.9 64.9±1.7
HSV 61.3±0.7 62.9±2.3 65.0±3.9 62.5±3.0 62.72.5 61.70.3 65.5±3.4
HOG 57.4±3.0 58.5±4.5 62.6±2.7 61.4±1.9 61.42.2 51.42.2 62.7±2.4

SIFTint 70.7±0.7 70.6±1.6 74.0±2.2 73.7±2.9 74.13.3 64.83.4 74.4±2.6
SIFTbdy 61.9±4.2 59.4±3.3 63.2±3.3 62.3±2.6 62.61.8 48.40.2 64.0±2.4

FLH 79.34.3 88.61.7 88.42.7 88.42.7 88.61.4 90.12.2 91.71.2
 

Table 18: The categorization accuracy (meanstd %) with combined feature on the 17 category Oxford Flowers dataset. 

Related methods  Accuracy (%) 
SRC combination 85.9±2.2 

MKL (Gehler and Nowozin 2009) 85.2±1.5 
LP-Boost  (Gehler and Nowozin 2009) 85.4±2.4 
CG-Boost  (Gehler and Nowozin 2009) 84.8±2.2 

COPAR 85.90.8 
JDL 81.72.0 

FDDL 86.7±1.3 
MTJSRC-CG 87.5±1.5 

FDDL+MTJSRC 87.7±1.9 
Other state-of-the-art methods

FLH+BOW (Fernando et al. 2012) 94.51.5 
GRLF (Ye et al. 2012) 91.71.7 

L1-BRD (Xie et al. 2010) 89.00.6 
FDDL with FLH feature 97.80.7 

 

 

For a fair comparison with state-of-the-art methods such as MTJSRC (Yuan and Yan 2010), we also extended 

the original features from (Nilsback and Zisserman 2006; Nilsback and Zisserman 2008) to their kernel versions in 

the experiments. Specifically, we adopted the so-called column generation method (Yuan and Yan 2010). The 

idea is to generate a new descriptor for each original feature vector, and the new descriptor is composed of the 

similarities (e.g., the inner products) between this vector and all the training vectors in a higher dimensional kernel 
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space. Given the original training dataset A and a test sample y, their higher dimensional feature vectors can be 

written as (A)=[ (a1),…, (an)] and (y), respectively, where ai is the ith training sample and  is the mapping 

function of the kernel. The similarities between y and all the vectors in A in the kernel space can be computed as 

h=(A)T(y), and h is called the column-generation feature vector of y. Similarly, the column-generation matrix of 

A is G=(A)T(A). Here the kernel function is       exp ,
T   a y a y , where  is set to the mean value 

of the pairwise Chi-square distances, denoted by , on the training set. Finally, G and h take the place of A and y, 

respectively, in the FDDL learning and testing. 

The 17-category flower dataset consists of 17 species of flowers with 80 images per class. As in (Yuan and Yan 

2010), we used the 2 distance matrices of seven features (i.e., HSV, HOG, SIFTint, SIFTbdy, color, shape and 

texture vocabularies) to generate the training matrix G and test sample h. We also used the histogram intersection 

similarity of the recently proposed Frequent Local Histogram (FLH, Fernando et al. 2012) feature to generate G 

and h in the experiment. Table 17 lists the best results of NSC, SVM, MTJSRC-CG, SRC, COPAR, JDL and the 

proposed FDDL on each single feature. Clearly, FDDL could always improve the original SRC (which directly 

uses training samples as the dictionary) by learning a discriminative dictionary, and it performs better than the two 

recently developed DL methods, COPAR and JDL. Compared to the other methods such as SVM and MTJSRC, 

FDDL achieves higher categorization rates in most cases.  

We then evaluated the performance of FDDL by combining the seven features, and compared it with the 

corresponding state-of-the-art methods. The results are shown in Table 18. In order to more fairly compare with 

MTJSRC which is based on multi-task joint sparse representation, we also gave the results of FDDL+MTJSRC 

(i.e., all kinds of features are jointly represented on the dictionary learned by FDDL, and the joint representation 

error is used for classification). Here the parameters in learning dictionary are 1=0.01, 2=0.005, and all the task 

weights in MTJSRC are set to 1. By combining the seven features, MTJSRC, FDDL and FDDL+MTJSRC could 

achieve over 86.5% categorization rates, higher than the other competing methods. FDDL is slightly worse than 

MTJSRC but FDDL+MTJSRC is better than MTJSRC, which shows the effectiveness of FDDL in learning 

discriminative dictionaries. We further employed the FLH feature in FDDL and compared it with the latest 

state-of-the-arts on this flower dataset, including FLH+BOW (Fernando et al. 2012), L1-BRD (Xie et al. 2010) 
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and GRLF (Ye et al. 2012). We see that the proposed FDDL achieves a categorization accuracy of 97.8%, which is 

the best result we can find on the Oxford 17-category flower dataset. 

6.7. Action recognition 

At last, we conduct action recognition on the UCF sport action dataset (Rodriguez et al. 2008) and the large scale 

UCF50 dataset (http://server.cs.ucf.edu/~vision/data.html). The video clips in the UCF sport action dataset were 

collected from various broadcast sports channels (e.g., BBC and ESPN). There are 140 videos in total and their 

action bank features can be found in (Sadanand et al. 2012). The videos cover 10 sport action classes: driving, 

golfing, kicking, lifting, horse riding, running, skateboarding, swinging-(prommel horse and floor), 

swinging-(high bar) and walking. The UCF50 dataset has 50 action categories (such as baseball pitch, biking, 

driving, skiing, and so on) and there are 6,680 realistic videos collected from YouTube. 

On the UCF sport action dataset, we followed the experiment settings in (Qiu et al. 2011, Yao et al. 2010, and 

Jiang et al. 2013) and evaluated FDDL via five-fold cross validation, where one fold is used for testing and the 

remaining four folds for training. The action bank features (Sadanand et al. 2012) are used. We compare FDDL 

with SRC, KSVD, DKSVD, LC-KSVD (Jiang et al. 2013), COPAR, JDL and the methods in (Qiu et al. 2011, Yao 

et al. 2010, and Sadanand et al. 2012). The recognition rates are listed in Table 19. Clearly, FDDL shows better 

performance than all the other competing methods. In addition, by using the leave-one-video-out experiment 

setting in (Sadanand et al. 2012), the recognition accuracy of FDDL is 95.7%, while the accuracy of (Sadanand et 

al. 2012) is 95.0%. 

Following the experiment settings in (Sadanand et al. 2012), we then evaluated FDDL on the large-scale 

UCF50 action dataset by using 5-fold group-wise cross validation, and compared it with the DL methods and the 

other state-of-the-art methods, including Oliva and Torralba 2001, Wang et al. 2009, and Sadanand et al. 2012. 

The results are shown in Table 20. Again, FDDL achieves better performance than all the competing methods. 

Compared with (Sadanand et al. 2012), FDDL has over 3% improvement. 

 
Table 19: Recognition rates (%) on the UCF sports action dataset. 

Qiu et al. 2011 Yao et al. 2010 Sadanand et al. 2012 SRC KSVD DKSVD LCKSVD COPAR JDL FDDL 
83.6 86.6 90.7 92.9 86.8 88.1 91.2 90.7 90.0 94.3 
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Table 20: Recognition rates (%) on the large-scale UCF50 action dataset. 

Oliva et al. 2001 Wang et al. 2009 Sadanand et al. 2012 SRC DKSVD LCKSVD COPAR JDL FDDL 
38.8 47.9 57.9 59.6 38.6 53.6 52.5 53.5 61.1 

 
 

7. Conclusion 

We proposed a sparse representation based Fisher Discrimination Dictionary Learning (FDDL) approach to image 

classification. The FDDL learns a structured dictionary whose sub-dictionaries have specific class labels. The 

discrimination capability of FDDL is two-folds. First, each sub-dictionary is trained to have good representation 

power to the samples from the corresponding class, but have poor representation power to the samples from other 

classes. Second, FDDL will result in discriminative coefficients by minimizing the with-class scatter and 

maximizing the between-class scatter of them. Consequently, we presented the classification schemes associated 

with FDDL, which use both the discriminative reconstruction residual and representation coefficients to classify 

the input query image. Extensive experimental results on face recognition, handwritten digit recognition, gender 

classification, object categorization and action recognition demonstrated the generality of FDDL and its 

superiority to many state-of-the-art dictionary learning based methods. 
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Appendix 1: tr(SB(X)) when 0,j
i j i X  

Denote by mi 
i , mi and m the mean vectors of i

iX , Xi and X, respectively. Because 0j
i X for j≠i, we can rewrite 
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1 1; ; ; ;i K
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Denote by i=1-ni/n. After some derivation, the trace of SB(X) becomes 
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        S X m m m m . 

Because i
im  is the mean representation vector of the samples from the same class, which will generally have 

non-neglected values, the trace of between-class scatter will have big energy in general.  

 
 

Appendix 2: The derivation of simplified FDDL model 

Denote by i
im  and mi the mean vector of i

iX  and Xi, respectively. Because 0j
i X for j≠i, we can rewrite 

; ; ; ;i
i i   0 0 m m . So the within-class scatter changes to 
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The trace of within-class scatter is  
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Based on Appendix 1, the trace of between-class scatter is    2

1 2
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S X m , where i=1-ni/n. 

Therefore the discriminative coefficient term, i.e.,        2

W B F
f   X S X S X X , could be simplified to 
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Then the discriminative coefficient term could be written as 
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With the constraint that 0j
i X  for j≠i in Eq. (10), we have 

22 i
i i i i iF F
  A DX A D X  (22)

With Eq. (21) and Eq. (22), the model of simplified FDDL (i.e., Eq. (10)) could be written as 

 2 2 2

1 2 31 1,
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D X
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2

s.t. 1,n n d  (23)

where 1 1 2   ,  2 2 1 2i     , and  3 2 2i      . 

 
 

Appendix 3: The convexity of fi(X) 

Let  1
i j

j
i n n
E  be a matrix of size ni  nj with all entries being 1, and let 
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Rewrite Xi as a column vector, ,1 ,2 ,, , ,
T

i i i i d   r r r , where ri,j is the jth row vector of Xi, and d is the total 

number of row vectors in Xi. Then fi(Xi) equals to 
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where diag(T) is to construct a block diagonal matrix with each block on the diagonal being matrix T, and vec(T) 

is to construct a column vector by concatenating all the column vectors of T. 

The convexity of fi(χi) depends on whether its Hessian matrix 2fi(χi) is positive definite or not (Boyd and 

Vandenberghe 2004). We could write the Hessian matrix of fi(χi) as 

        2

1,
2diag 2diag 2diag 2

TKT T k k
i i i i i i i ik k i

f 
 

    N N P P C C I . 

2fi(χi) will be positive definite if the following matrix S is positive definite: 
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After some derivations, we have 
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In order to make S positive define, each eigenvalue of S should be greater than 0. Because the maximal 

eigenvalue of Ei
i is ni, we should ensure  
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1
1 2 2 0
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i i kk
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For n=n1+n2+…+nK, we have >i, which could guarantee that fi(Xi) is convex to Xi. Here i=1-ni/n. 

 


