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Abstract—In this paper, we consider a detection problem of the
underdetermined system when the input vector is sparse and its
elements are chosen from a set of finite alphabets. This scenario
is popular and embraces many of current and future wireless
communication systems. We show that a simple modification of
multipath matching pursuit (MMP), recently proposed parallel
greedy search algorithm, is effective in recovering the discrete
and sparse input signals. We also show that the addition of cross
validation (CV) to the MMP algorithm is effective in identifying
the sparsity level of input vector.

Index Terms—Compressed sensing, sparse signal recovery,
greedy algorithms, multipath matching pursuit (MMP).

I. INTRODUCTION
A. System Model

The relationship between a transmit signal x and a received
signal vector y in many wireless communication systems can
be expressed as

y=Hx+v (D)

where H € C™*" is the system (channel) matrix, v ~
N(0,021) is the noise vector, and x is the input vector whose
entries are chosen from a finite set of integer €. In this work,
we are primarily concerned with the scenario where 1) the
input signal x is sparse (i.e., number of nonzero elements in
a signal vector is small) and 2) the dimension of observation
vector y is smaller than that of the input vector (m < n). This
system, which in essence is modeled as the underdetermined
sparse system, is prevalent and embraces many of modern
wireless communication systems such as wireless sensor net-
work, source localization, multiuser detection, downlink in
massive MIMO, relaying in ad hoc network, to name just a
few.

B. Conventional Detection

The traditional way of detecting the input signals is to use
the estimation technique such as least squares (LS) or linear
minimum mean square error (LMMSE) estimation followed
by the symbol slicing. Let x and x be the output of LMMSE
estimator and its sliced version, respectively, then
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where Qq(-) is the integer quantizer (ak.a slicing function)
which maps the input to the closest value in Q (i.e., Qa(z) =
arg mingeq ||z — wl2). Since the system is underdetermined,
these approaches, which attempt to find a solution by in-
verting the entire covariance matrix, do not perform well
in general. Due to the fact that nonzero elements of the
signal vector are chosen from the set of finite integers, one
can alternatively consider the detection strategy (e.g., sphere
decoding for maximum likelihood detection [1], [2]). Although
it is desirable to exploit the discrete property of transmit
signals, since the algorithm should be performed under the
underdetermined system model, fundamental performance gap
from the overdetermined system is unavoidable.

C. Detection via Sparse Signal Recovery Algorithm

A better treatment of the problem at hand is to use sparse
recovery algorithm. In essence, the goal of the sparse recovery
algorithm is to find the sparest set of atoms (column h; of H)
that best represents the observation y. In doing so, system
model is converted from underdetermined to overdetermined
and an accurate recovery of the original sparse signal is
possible. While a dictionary (a collection of atoms) used in
the signal/image processing (e.g., Fourier, Wavelet, Haar dic-
tionaries) can be tailored to the design purpose, the dictionary
in the communication systems is mostly in the form of channel
matrix and needs to be estimated using the known signal so
called the pilot signal.

Over the years many algorithms to find the sparsest rep-
resentation of the observation vector from the (overcomplete)
dictionary have been proposed. Two popular approaches are
£1-minimization technique and greedy pursuit algorithm:

o /1-minimization: ¢;-minimization technique solves the

problem

min ||x[]; st [y — Hx|2 <e, 4)

where € > 0 (in the noiseless setting, ¢ = 0). In [3], it
is shown that if the noise power is limited to € and the
number of observations is sufficiently large, ¢-norm of
the reconstruction error is within the constant multiple of
€ (i.e., [|[Xx—x|2 < ¢p€). Basis pursuit de-noising (BPDN)
[4], also called Lasso [5], relaxes the hard constraint on
the reconstruction error by introducing a soft weight A as

X = argmin [ly — Hx|[2 + Allx|1, (5)

Since the ¢;-minimization problem is convex optimiza-
tion problem, efficient solvers based on the linear pro-
gramming (LP) exist (e.g., BP-interior [4]). From our
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Fig. 1. Comparison between the OMP and the MMP algorithm (L = 2 and K = 3). While OMP maintains a single candidate T* in each iteration, MMP
investigates multiple promising candidates T]k (subscript j counts the candidate in the i-th iteration).

perspective, unfortunately, it is not easy to incorporate
the integer constraint into the LP based algorithm.

¢ Greedy Pursuit: Greedy pursuit attempts to find the
support (index set of nonzero entries) of the input vector'
in an iterative fashion, obtaining a sequence of possible
estimates (X1, - ,X,). For example, orthogonal match-
ing pursuit (OMP) picks a column of the channel matrix
H one at a time using a greedy strategy [6]-[8]. In the k-
th iteration, the estimate Xy, is generated by projecting the
observation into the subspace spanned by the submatrix
contructed from chosen columns.

While the use of sparse recovery algorithm is desirable in
the sense that it exploits the sparsity of signal to be recovered,
in itself it does not exploit the property that the nonzero
element of x is from the set of finite alphabets. To exploit this
information, one can use the sliced output Qq(Xy) instead of
X} as an estimate in each iteration. However, just using the
slicer output Qq (%) might not be effective, in particular for
the sequential greedy algorithms like OMP, due to the error
propagation. For example, if an incorrect index is chosen in
an iteration of OMP, then the estimate would be incorrect.
Furthermore, if this incorrect estimate is sliced, additional
quantization error will be added on top of the estimation
error, exacerbating the quality of the subsequent operation.
For example, if 2, = 0 and &, = 0.01, then Qq(&x) = 1
for @ = {+1,—1} (and hence |z — &x|| = 0.01 and
2k — Qa(dx)| = D.

II. MULTIPATH MATCHING PURSUIT (MMP) WITH
SLICING

A. MMP Algorithm

While many of greedy recovery algorithms construct K-
sparse estimate through the sequential process, recently pro-
posed algorithm referred to as multipath matching pursuit
(MMP) performs the parallel search to find multiple promising
candidates and then chooses the best one minimizing the

IFor example, if x = [1 0002 0 4]7, then the support S is S = {1,5,7}.
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Fig. 2. Evolution of the error magnitude as a function of the iteration number
of the proposed SsMMP algorithm. For illustration purpose, we plot only a few
paths. While the quantization error introduced by the integer slicer affects
the incorrect paths (green colored paths in the figure), no such phenomenon
happens to the true path. As a result, the performance difference between the
true path and incorrect paths grows drastically as an iteration goes on.

residual magnitude in the last minute [9]. As shown in Fig.
1, each candidate brings forth L child candidates in the
MMP algorithm. In the k-th iteration, L indices t¢y,---ty,
whose columns are maximally correlated with the residual
are chosen and each of these indices, in conjunction with
previously selected indices, constructs a new candidate in
the next iteration. Let Tf‘l = {t1, -+ ,tk—1} be the j-th
candidate in the (k — 1)-th iteration, then the set of L indices
chosen from T]k_l, denoted as T, is expressed as

T* — (I’/ ]?71 2
arg‘rjr,l‘gll( r; )73



TABLE I
THE SMMP ALGORITHM

Input: observation y, channel matrix H, modulation set €2
sparsity K, number of path L

Output: estimated signal %

Initialization:
k := 0 (iteration index), r¥ := y (initial residual), 7° := {0}

while £ < K do
ki=k+1,u:=0,TF:=0
for i =1 to |T*~1| do
T* := arg max ||(H'r* )72
nglzLII( il
for j =1 to L do
temp o= tFT U {t5}
if tymp & T then
u:=u+1
v o= timp
k.=TkuU{th}
1’3 = (H%Htﬁ)_lH%y
xE = Qa(x)
rﬁ =y — Htﬁfcﬁ
end if
end for
end for
end while
u* := argminy, ||rX||2
return % = %*,

(choose L best indices)

(construct a temporary path)
(check if the path already exists)
(candidate index update)

(path update)

(update the set of path)
(perform estimation)

(perform slicing)
(residual update)

k—1

where the residual is defined as r; o =y-— Hk_p“c?*l and

&7 = H_,y=(H_ H) ' H y,
Hi1 = f[hy by oo by ] ©

The corresponding child candidates become T* 1| J{t;} for
i = 1,---, L. Although the number of candidates seems to
increase by the factor of L in each iteration, due to the fact that
many candidates are overlapping (see Fig. 1), actual number
of child candidates is quite moderate. The main benefit of
MMP, in the perspective of incorporating the integer slicer,
is that it deteriorates the quality of incorrect candidate and
at the same time improves the quality of correct one. This is
because the quality of incorrect candidates gets worse due to
the additional quantization noise caused by the slicing while
no such phenomenon happens to the correct one. As a result, as
shown in Fig. 2, the difference of estimation quality, measured
in terms of the estimation error ||x — X||2, between the final
output (mostly it corresponds to the true path) and the rest
(incorrect paths) increases as iteration goes on. The MMP
algorithm with slicing, henceforth referred to as sMMP, is
summarized in Table I.

B. Multipath Matching Pursuit with Cross Validation

Thus far, we assumed that the sparsity of the input vector
(K = ||x|lo = #{zi;x; # 0}) is known in advance. Indeed,
many greedy pursuit algorithms implicitly assume that the
sparsity of the input vector is known in a priori. Since this
assumption does not hold true in practice, absence of sparsity
information can lead to either early or late termination of the
recovery algorithm. In the former case, the transmit signal
will not be fully recovered (underfitting), while in the latter
case some of the noise vector is treated as the transmit signal
(overfitting). In both scenarios, the reconstruction quality will

Recovery error

—6— CV error
—#— Residual
—&— MSE

Iterations

Fig. 3. Snapshot of the recovery error as a function of the iteration number
(m =12, n =24, and K = 5).

be affected considerably (in general, more harmful to under-
fitting).

Cross validation (CV) is a statistical technique to identify
the model order (sparsity level K in this work) and thus avoid
overfitting and underfitting of the parameter [10]. In CV, the
received vector y is divided into a training vector y*) and a
validation vector y(*), which are given respectively by

0 — HOx 4 v® (7

Hx +v(®), )
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Using the training vector y(*), a sequence of possible esti-
mates (Xi,---,X,) is generated. For each estimate %;, the
validation vector y(*) is used to compute the estimation error
er = |ly®™ — H®x%y||o. When the algorithm is finished, an
iteration count corresponding to the minimum validation error
becomes the sparsity estimate (K = arg miny €;) and X is
chosen as the final output.

It is worth mentioning that in many applications, the residual
based stopping criterion is widely used to identify the sparsity
level (or iteration number) of the greedy algorithm. Basically,
this scheme terminates the algorithm when the residual power
is smaller than the pre-specified threshold € (i.e., [|r*||2 < ).
However, since the residual magnitude decreases monotoni-
cally and the rate of decay depends on the system parameters,
it is not easy to identify the optimal point. Whereas, the /5-
norm of the validation error ¢; usually has minimum value
when an iteration number equals the sparsity level so that one
can easily estimate the sparsity using CV (see Fig. 3). Finally,
we note that since multiple candidates are investigated in
SMMP, a candidate with the minimum validation error among
all candidates is chosen as the final output.

III. SIMULATIONS AND DISCUSSIONS

This section describes the numerical experiments that illus-
trate effectiveness of the proposed approach. Other than the



proposed sMMP algorithm, we test the original MMP algo-
rithm, OMP algorithm (with and without slicing?), CoSaMP
algorithm [11], LMMSE estimation, and also Oracle LMMSE
estimation. Note that Oracle estimator knows the support
information in a priori and hence it solves the overdetermined
system y = Hprxpr + v where Hp is the submatrix of H
containing columns indexed by 7' (x7 is defined in the same
way). The performance of Oracle estimator is popularly used
as a lower bound of the recovery algorithms.

A. Simulation Setup

The simulation setup is based on 12 x 24 channel matrix
H whose entries drawn independently from complex Gaussian
distribution CA(0, 1). Two sparsity levels (K = 3 and 5) are
tested so that 12.5% and 20% of elements in x are nonzero.
The positions of nonzero elements (i.e., symbol positions)
are randomly selected and symbols of nonzero locations are
chosen from 16-QAM modulation. We use the symbol error
rate (SER) as a performance measure. For each point in the
plot, we perform 24 trials for the CV operation and the average
value of these trials is used as a sparsity estimate K. Also, to
measure the performance, we perform at least 5,000 trials for
each point of the tested algorithm.

B. Simulation Results

Fig. 4 shows the SER performance as a function of
signal-to-noise-ratio (SNR). Since the system is underdeter-
mined, LMMSE estimator exploiting whole channel matrix
to estimate the sparse signal vector does not perform well.
Whereas, performance of all sparse recovery algorithms we
tested improves with the SNR. Due to the fact that multiple
promising candidates are investigated, it is no wonder that the
MMP algorithm exhibits the best performance among sparse
recovery algorithms under test. As mentioned, since the slicing
is effective in improving performance of MMP, the sMMP
algorithm outperforms the original MMP by more than 1 dB
gain. In Fig. 5, we plot the performance for K = 5 (i.e.,
20% of signal vectors is active). While the performance of
conventional sparse recovery algorithms is not so appealing
for this less sparse scenario, the proposed sSMMP algorithm is
effective and performs close to the Oracle estimator (around
2 dB gap at 10~2 SER).
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