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Abstract

Where does the sparsity in image signals come from?
Local and nonlocal image models have supplied comple-
mentary views toward the regularity in natural images -
the former attempts to construct or learn a dictionary of
basis functions that promotes the sparsity; while the lat-
ter connects the sparsity with the self-similarity of the im-
age source by clustering. In this paper, we present a vari-
ational framework for unifying the above two views and
propose a new denoising algorithm built upon clustering-
based sparse representation (CSR). Inspired by the success
of l1-optimization, we have formulated a double-header
l1-optimization problem where the regularization involves
both dictionary learning and structural structuring. A
surrogate-function based iterative shrinkage solution has
been developed to solve the double-header l1-optimization
problem and a probabilistic interpretation of CSR model is
also included. Our experimental results have shown con-
vincing improvements over state-of-the-art denoising tech-
nique BM3D on the class of regular texture images. The
PSNR performance of CSR denoising is at least compara-
ble and often superior to other competing schemes includ-
ing BM3D on a collection of 12 generic natural images.

1. Introduction
There have been two complementary views toward the

regularization of image denoising problems: local vs. non-
local. In the local view, a signal x⃗ ∈ Rn can be decomposed
with respect to a collection of n-dimensional basis vectors
in the Hilbert space (also-called dictionary) Φ ∈ Rn×m,
namely x⃗n×1 = Φn×mα⃗m×1, where α⃗ denotes the vector
of weights. The sparsity of α can be characterized by its
l0-norm (nonconvex) or computationally more tractable l1
norm [1]. This line of research has led to both construc-
tion of basis functions (e.g., ridgelet, contourlets) and adap-
tive learning of dictionary (e.g., K-SVD [2], stochastic ap-
proximation [3]). In the nonlcoal view, natural images con-
tain self-repeating patterns. Exploiting the self-similarity of
overlapping patches has led to a flurry of nonlocal image
denoising algorithms - e.g., nonlocal mean [4], BM3D [5],

locally learned dictionaries K-LLD [6], learned simultane-
ous sparse coding (LSSC) [7].

Among them, the PSNR performance of BM3D has re-
mained the state-of-the-art since its publication. Despite the
impressive performance of BM3D, there still lacks a solid
understanding about why it performs so well. Moreover, the
subtle relationship between sparsity (widely used for low-
level vision tasks) and clustering (a common tool for the
middle-level vision) remains elusive; we do acknowledge
the most recent effort on joint/group sparsity [7] which at-
tempts to shed some light on this issue. It seems desirable
to connect the two class of most promising ideas, namely
dictionary learning (e.g., K-SVD) and structural clustering
(e.g., BM3D), under a unified theoretic framework.

In this paper, we achieve the above objective by propos-
ing a new image model called clustering-based sparse rep-
resentation (CSR). The basic idea behind our CSR model
is to treat the local and nonlocal sparsity constraints (as-
sociated with dictionary learning and structural clustering
respectively) as peers and incorporate them into a unified
variational framework. The new regularization term can be
viewed as a plausible formalization of joint/group sparsity
discussed in [7]. Thanks to the unitary property of dictio-
nary, we can show the equivalence between spatial-domain
and transform-domain representation of this new term. Ad-
ditionally, inspired by the success of compressed sensing,
we propose to replace the l2-norm of characterizing nonlo-
cal sparsity with an l1-norm, which forms a double-header
l1 optimization problem.

We have developed an iterative shrinkage solution to the
above double-header l1 optimization problem vis surrogate
functions [8]. Our results further generalize those in [8] -
from a single regularization parameter to a pair of regular-
ization parameters. Such generalization allows us to simul-
taneously enforce local and nonlocal sparsity constraints by
computationally efficient shrinkage operators. Additionally,
we have borrowed ideas from reweighted l1-optimization
[9] to adaptively adjust the two regularization parameters
and iterative regularization [10] to further improve the per-
formance of CSR denoising. Extensive experimental re-
sults are reported that our CSR algorithm can achieve highly
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competitive (and often better) performance to other leading
denoising techniques including the state-of-the-art BM3D.

2. Clustering-based Sparse Representation
(CSR) Model

Following the notation used in [2], we first establish the
connection between an image X and the set of sparse co-
efficients α = {α⃗i} (so-called sparseland model). Let xi

denote a patch extracted from X at the spatial location i;
then we have

xi = RiX, (1)

where Ri denotes a rectangular windowing operator. Note
that when overlapping is allowed, such patch-based repre-
sentation is highly redundant and the recovery of X from
{xi} becomes an over-determined system. It is straightfor-
ward to obtain the following Least-Square solution

X = (
∑
i

RT
i Ri)

−1(
∑
i

RT
i xi), (2)

which is nothing but an abstraction of the strategy of aver-
aging overlapped patches. Meantime, for a given dictionary
Φ, each patch is related to its sparse coefficients {α⃗i} by

xi = Φα⃗i. (3)

Substituting Eq. (3) into Eq. (2), we obtain

X = Dα⃗
.
= (

∑
i

RT
i Ri)

−1(
∑
i

RT
i Φα⃗i), (4)

where D is the operator dual to R (reconstructing image
from sparse coefficients). Under the context of image de-
noising, one can formulate the following variational prob-
lem

α⃗ = argmin
α⃗

1

2
||Y −Dα⃗||22 + λ||α⃗||1, (5)

where Y = X+N is the noisy image and λ is the standard
Lagrangian multiplier. Extensive studies have been done on
the design/learning of dictionary [2] and computationally
efficient/robust algorithms for solving the above convex op-
timization problem [11].

The key motivation lies in the observation that the sparse
(nonzero) coefficients α⃗ are NOT randomly distributed
(please refer to Fig. 1 for a concrete example). Their
location uncertainty is often related to the nonlocal self-
similarity of image signals, which implies the possibility
of achieving higher sparsity by exploiting such location-
related constraint. From such perspective of resolving both
intensity and location uncertainty, one might even make
the connection with the idea called bilateral filtering orig-
inally proposed in [12]. Clustering represents a plausible
approach of exploiting such nonlinear (since it is location-
related) constraint; and indeed there are plenty of tools (e.g.,

a) b)

Figure 1. Limitation of K-SVD: a) an image of regular texture; b)
spatial distribution of sparse coefficients corresponding to the 6th
basis vector (note that their locations are NOT random).

kmeans, kNN, spectral, graph-cut) in the literature. How-
ever, it is often difficult to establish a synergic connection
between data clustering and sparse representations partially
because they are viewed as tools developed at different lev-
els (middle vs. low). To gain deeper insight into how non-
local self-similarity can promote the sparsity, we propose to
study the following cost function

(α⃗, µ⃗) = argmin
α⃗,µ⃗k

1

2
||Y −Dα⃗||22 + λ1||α⃗||1

+ λ2

K∑
k=1

∑
i∈Ck

||Φα⃗i − µ⃗k||22. (6)

where µ⃗k stands for the centroid of the k-th cluster Ck

of coefficients α⃗. An intuitive interpretation of the new
clustering-based regularization term is that the weighting
coefficients α⃗ are re-encoded with respect to µ⃗k. With
such further “compression”, sparser representation can be
obtained (the consequence of exploiting nonlocal self-
similarity). Indeed previous works such as BM3D and
LSSC are based on similar considerations about clustering
and sparsity but their connection remains loose. To the best
of our knowledge, this is the first rigorous mathematical for-
mulation of combining clustering and sparsity under a uni-
fied variational framework.

To better understand the significance of the new regular-
ization term, we can rewrite Eq. (6)

(α⃗, β⃗) = argmin
α⃗,µ⃗k

1

2
||Y −Dα⃗||22 + λ1||α⃗||1

+ λ2

K∑
k=1

∑
i∈Ck

||Φα⃗i −Φβ⃗k||22. (7)

where µ⃗k = Φβ⃗k (i.e., all centroid vectors are represented
with respect to the same dictionary Φ as xi). Thanks to the
unitary property of Φ, we have ||Φα⃗i − Φβ⃗k||22 = ||α⃗i −

458



β⃗k||22. Therefore, Eq. (6) boils down to the following joint
optimization problem

(α⃗, β⃗) = argmin
α⃗,µ⃗k

1

2
||Y −Dα⃗||22 + λ1||α⃗||1

+ λ2

K∑
k=1

∑
i∈Ck

||α⃗i − β⃗k||22. (8)

Inspired by the success of compressed sensing (called
l1magic by the authors of [1]), we propose to replace the
L2 norm in the new regularization term by L1 norm.

(α⃗, β⃗) = argmin
α⃗,µ⃗k

1

2
||Y −Dα⃗||22 + λ1||α⃗||1

+ λ2

K∑
k=1

∑
i∈Ck

||α⃗i − β⃗k||1. (9)

To summarize the CSR model, we note that it offers
a new way of understanding sparsity by unifying dictio-
nary learning (α⃗i’s) and structural clustering β⃗k’s into a
variational framework. Higher sparsity is expected to be
achieved by exploiting the structural redundancy in α⃗i’s.
Another way of understanding β⃗k’s is that they are exem-
plars learned through structural clustering to encode α⃗i’s at
a higher level (conceptually similar to the idea of deconvo-
lutional networks [13]).

3. Iterative Reweighted and Regularized l1-
Minimization

One of the major technical contributions of this paper is
to solve the double-header l1-optimization of Eq. (9) via an
iterative algorithm alternatively updating α⃗ and β⃗. Borrow-
ing ideas from surrogate functions [8], we have derived an
iterative shrinkage operator to update α⃗ for fixed β⃗, i.e.,

α
(i+1)
j =

{
Sτ1,τ2(v

(i)
j ) βj ≥ 0

−Sτ1,τ2(−v
(i)
j ) βj < 0

(10)

where
v(i) =

1

c
DT (x− Dα(i)) + α(i). (11)

and τ1 = λ1

c , τ2 = λ2

c (c is an auxiliary parameter guar-
anteeing the convexity of surrogate function), superscript
(i) denotes iteration number and subscript j denotes the j-
th entry in a vector. Therefore, our result shows iterative
shrinkage is also applicable to the case of two regulariza-
tion parameters corresponding to local and nonlocal spar-
sity respectively, which further extends the result of [8] (D
from unitary to non-unitary). Technical details of deriving
the new bi-variate shrinkage operator Sτ1,τ2 are referred to
the Appendix. The update of β⃗ follows a similar procedure

to nonlocal mean denoising [4] (iterative reweighted Least-
Square [14] could offer a more systematic solution but has
not been used in our current implementation).

Computational efficiency of iterative shrinkage allows us
to refine the CSR model and its associated optimization al-
gorithm. First, we have borrowed ideas from the litera-
ture of variational image restoration [15] and reweighted l1-
optimization [9] to adaptively adjust the two regularization
parameters τ1, τ2. In [15], it was shown that the regulariza-
tion parameter λ should be inversely proportional to signal-
to-noise-ratio (SNR); the reweighting strategy proposed in
[9] also suggests that the new weights are inversely pro-
portional to signal magnitude |x|1 in the scenario of com-
pressed sensing (since no noise is involved). Therefore, we
have adopted the following strategy for updating τ1, τ2

τ1 = c1
σ2
w

σα
, τ2 = c2

σ2
w

σγ
. (12)

where σ2
w is noise variance, γ⃗ = α⃗ − β⃗ and c1, c2 are two

predefined constants (we usually set c1 < c2 to emphasize
the nonlocal term).

Second, inspired by the recent work [10], we propose to
update the estimation of recovered image by

X(i+1) = S̃((1− δ)X(i) + δY), (13)

where S̃ = D ◦ S ◦ R denotes the projection onto the regu-
larization constraint set and

(1− δ)X(i) + δY = X(i) + δ(Y − X(i)), (14)

is the operator implementing the idea of iterative regular-
ization. Note that the RHS of Eq. (14) can be viewed as
a degenerated Landweber operator (when the blurring ker-
nel reduces to an identity operator) and δ is a small positive
number controlling the amount of noise fed back to the iter-
ation. We have chosen to manually terminate the algorithm
after three iterations. A complete description of the pro-
posed CSR denoising algorithm is as follows.

Algorithm 1. Image Denoising via CSR
• Initialization: X̂ = Y;
• Outer loop (dictionary learning): for i = 1, 2, ..., I

- update Φ via kmeans and PCA;
• Inner loop (structural clustering): for j =

1, 2, ..., J
- iterative regularization: X̃ = X̂ + δ(Y − X̂);
- regularization parameter update: obtain new es-

timate of τ1, τ2 via Eq. (12);
- centroid estimate update: obtain new estimate

of β⃗k’s via kNN clustering;
- image estimate update: obtain new estimate of

X by X̂ = D ◦ S ◦ RX̃;
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4. Bayesian Interpretation and Extension of
CSR Denoising

In this section, we provide a Bayesian interpretation of
the above CSR denoising algorithm. In the literature of
wavelet thresholding [16], the connection between sparse
representation and Bayesian denoising has been well estab-
lished. Such connection has been fruitful to the develop-
ment of both theories in the past decade because it helps rec-
oncile the differences between deterministic and probabilis-
tic schools. The dual role played by regularization func-
tion and prior distribution in deterministic and probabilis-
tic settings has coherently shown the equivalence between
variational and Bayesian image restoration. Therefore, we
deem it useful to extend the above connection from a lo-
cal (dictionary-based) to nonlocal (clustering-based) frame-
work.

The basic idea behind CSR is to assume that we can treat
the centroids of K clusters β⃗ as the peer hidden variables to
sparse coefficients α⃗. Such idea is essentially to recognize
the importance of resolving the organizational (location-
related) uncertainty underlying image signals. Therefore,
we might formulate the following maximum a posterior
(MAP) estimation problem

(α⃗, β⃗) = argmax
α⃗,β⃗

logP (α⃗, β⃗|Y), (15)

Using Bayesian formula, we can rewrite Eq. (15) into

(α⃗, β⃗) = argmax
α⃗,β⃗

logP (Y|α⃗, β⃗) + P (α⃗, β⃗), (16)

where the two terms correspond to the likelihood and prior
distributions respectively. The first term is easy to charac-
terize by the degradation model Y = X + W, namely

P (Y|α⃗, β⃗) = 1√
2πσw

exp(− 1

2σ2
w

||Y −Dα⃗||22). (17)

The art of statistical modeling often refers to the approx-
imation of the second term - e.g., under the assumption
of i.i.d., we can decompose P (α⃗) into the product of the
marginal distributions. One way of relaxing such assump-
tion is to further exploit its structural constraint by data clus-
tering - i.e.,

P (α⃗, β⃗) = P (β⃗|α⃗)P (α⃗) = P (γ⃗|α⃗)P (α⃗), (18)

where γ⃗ = α⃗ − β⃗ defines the deviation from each cluster.
Such clustering-based differential prediction can be viewed
as another level of sparse coding strategy so γ⃗ is approx-
imately independent from α⃗. If we choose to model both
α⃗ and γ⃗ by i.i.d. Laplacian distribution, the prior model is
given by

P (α⃗, β⃗) =
∏
i

1√
2σα

exp(−||α⃗i||1
σα

)×

∏
k

∏
i

1√
2σγ

exp(−||α⃗i − β⃗k||1
σγ

).(19)

Substituting Eqs. (17) and (19) into Eq. (16), we obtain

(α⃗, β⃗) = argmin
α⃗,β⃗

||Y −Dα⃗||22 +
2
√
2σ2

w

σα

∑
i

||α⃗i||1

+
2
√
2σ2

w

σγ

∑
k

∑
i

||α⃗i − β⃗k||1. (20)

which is equivalent to Eq. (6) by setting λ1 =
2
√
2σ2

w

σα
, λ2 =

2
√
2σ2

w

σγ
.

Probabilistic setting also allows us to reinspect some ad-
hoc choice made in deterministic setting. For example,
inspired by the kernel density estimation techniques (e.g.,
Parzen windows [17]) in nonparametric statistics, we can
generalize Eq. (1) into

Wxi = WRiX, (21)

where W denotes a nonuniform weighting operator in favor
of samples closer to the center of the window. Accordingly,
we can extend the formula of Eq. (3) into a weighted Least-
Square solution

X = (
∑
i

RT
i WRi)

−1(
∑
i

RT
i Wxi). (22)

In our current implementation, a Gaussian window is used
for W (similar to the weighted window used in nonlocal
mean [4]).

5. Image Denoising Experiments
We have implemented the proposed CSR denoising

algorithm under MATLAB (source codes accompanying
this work can be accessed at http://www.csee.wvu.
edu/˜xinl/CSR.html). The following parameters
have been used in our experiments: block-size B = 7,
λ = 0.03, dictionary-size K = 64 and I = J = 3. In
a nutshell, our CSR algorithm can be viewed as the hybrid
of dictionary learning (similar to K-SVD but with 64 dic-
tionaries) and structural clustering (similar to BM3D but in
the transform domain). In CSR, the updating of dictionary
is implemented by kmeans and PCA which attempts to bet-
ter handle the spatially varying characteristics than K-SVD;
the clustering is performed with respect to transform coeffi-
cients as a second-stage sparse coding (while clustering and
filtering are disconnected in BM3D).
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a) b)

Figure 2. Comparison of learned dictionaries from the test image
D34 between a) K-SVD (K = 256) and b) CSR (only four out of
64 sets of dictionaries is displayed).

a) b)

Figure 3. Comparison of sparsity distribution between K-SVD and
CSR: a) spatial distribution of α⃗ plotted on a block-level (B = 8);
b) spatial distribution of γ⃗ = α⃗− β⃗ plotted on a block-level (B =
7); note that how the introduction of β⃗ (cluster centroids) makes
the CSR sparser.

To understand how the idea of structural clustering im-
proves sparsity, we have compared the outputs of CSR and
K-SVD on the same noisy image as shown in Fig. 1. Figs. 2
and 3 include the comparison between learned dictionaries
and sparsity distributions. For this specific image, we can
observe that the basis images learned by K-SVD and CSR
are visually similar. However, the actual sparsity (mea-
sured on a block-by-block basis) varies as the consequence
of structural clustering. It can be seen from Fig. 3 that CSR
appears to be sparser (i.e., reencode α⃗ into γ⃗ = α⃗− β⃗) due
to the exploitation of nonlocal similarity.

It is not surprising to see that CSR significantly outper-
forms both K-SVD and BM3D on such image of regular
texture pattern. The PSNR gain over K-SVD and BM3D
is over 0.77dB and 1.97dB respectively as shown in Fig.
4). Apparently when image is highly self-repeating, dic-
tionary learning plays a more important role than structural
clustering (as verified by the gain of K-SVD over BM3D);
but combining them together leads to further impressive im-
provement. Dramatic gain has also been observed for other

images of regular texture patterns in the Brodatz database
(not included here due to space limit).

We have also compared the CSR algorithm and other
leading denoising techniques in the literature at different
noise levels for a collection of 12 photographic images. The
denoising results of three benchmark schemes (K-SVD [2],
SA-DCT [18] and BM3D [5]) are all based on the source
codes or executables released by the original authors. Ta-
ble I includes the PSNR comparison on the set of 12 im-
ages (the highest PSNR values among fout are highlighted
in each cell). We conclude that the proposed CSR algo-
rithm has achieved highly competitive PSNR performance
to BM3D; on the average CSR has outperformed BM3D
by a small margin. To the best of our knowledge, this is
the first time that under fair comparison situations1, denois-
ing results comparable to BM3D are reported in the open
literature. Subjective quality comparisons for two typical
test images (one abundant with textures and the other with
edges) are shown in Figs. 5 and 6. The PSNR gain of CSR
over BM3D on these two images is less impressive than for
D34 but still in the range of 0.3− 0.4dB.

6. Discussions: Think Globally, Fit Locally?

What have we learned from the new theory of CSR and
the above denoising experiments? It is enlightening to un-
derstand the relationship between dictionary learning and
structural clustering from a manifold perspective. Globally
the collection of patches in natural images would form a
nonlinear manifold consisting of many constellations; how
to discover the local geometry of such nonlinear manifold is
a problem that has attracted lots of attention in recent years2.
Image denoising can also be cast under the framework of
manifold learning/reconstruction except that unsupervised
learning works with noisy data. Dictionary learning such
as K-SVD separates image signals from additive noise by
thinking globally (i.e., change-of-coordinates); while struc-
tural clustering such as BM3D achieves the same objective
by locally fitting the hypersurface in the patch space (i.e.,
iterative shrinkage). What CSR has shown is the benefit of
combining global thinking with local fitting.
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Figure 4. Denoising performance comparison for D34 image: a) noisy (σw = 20); b) BM3D (PSNR = 29.33dB, SSIM = 0.9178); c)
K-SVD (PSNR = 30.53dB, SSIM = 0.9327); d) CSR (PSNR = 31.30dB, SSIM = 0.9426).

Figure 5. Denoising performance comparison for straw image: a) noisy (σw = 20); b) BM3D (PSNR = 27.09dB, SSIM = 0.8963);
c) K-SVD (PSNR = 26.95dB, SSIM = 0.8899); d) CSR (PSNR = 27.50dB, SSIM = 0.9061).

61070138,and 61071170), and the Fundamental Re-
search Funds of the Central Universities of China (No.
K50510020003).

Appendix: Iterative Shrinkage via Surrogate Functions

To simplify the notation, we will write α, β directly in-
stead of their vectorial forms. The classical l1-optimization
problem is written as

α = argmin
α

1

2
||x−Dα||22 + λ||α||1, (23)

The simplest case to solve Eq. (23) is when D is unitary.
With the assumption of DDT = I, the objective function
becomes

f(α) =
1

2
||x−Dα||22 + λ||α||1

=
1

2
||D(DTx− α)||22 + λ||α||1

=
1

2
||D(α0 − α)||22 + λ||α||1

=
1

2
||α0 − α||22 + λ||α||1. (24)

where α0 = DTx and we have used ||x||22 = ||Dx||22. Note
that the consequence of the above procedure is “diagonal-
ization” of the objective function - i.e.,

f(α) =
∑
i

[
1

2
(α0(i)− α(i))2 + λ|α(i)|], (25)

which simplifies Eq. (24) into a scalar minimization prob-
lem

g(t) =
1

2
(t− t0)

2 + λ|t|, (26)

whose solution is given by a soft shrinkage operator

Sλ(t) = { 0 |t0| ≤ λ
t0 − sgn(t0)λ |t0| > λ

. (27)

The basic idea behind surrogate functions is to show that
the simple procedure of iterative shrinkage in the scalar case
is also applicable to more general case (i.e., D is not uni-
tary) [8]. In [8], authors have introduced the following sur-
rogate function

Ψ(α, α0) =
c

2
||α− α0||22 −

1

2
||Dα−Dα0||22, (28)

where c is chosen to make Ψ(α, α0) convex. Then the sur-
rogate objective function for Eq. (23) becomes

f̃(α, α0) =
1

2
||x−Dα||22 + λ||α||1

+
c

2
||α− α0||22 −

1

2
||Dα−Dα0||22. (29)

After some manipulation, the above function can be simpli-
fied into

f̃(α, α0) = const+ λ||α||1 +
c

2
||α− v0||22, (30)
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Figure 6. Denoising performance comparison for monarch image: a) noisy (σw = 20); b) BM3D (PSNR = 30.37dB, SSIM =
0.9209); c) K-SVD (PSNR = 29.89dB, SSIM = 0.9075); d) CSR (PSNR = 30.70dB, SSIM = 0.9197).

where v0 = 1
cD

T (x − Dα0) + α0. This form is similar
to Eq. (25), which admits the following iterative shrinkage
solution

αi+1 = Sλ/c[
1

c
DT (x−Dαi) + αi]. (31)

Next, we show how to solve the double-header l1-
optimization problem in Eq. (9) via surrogate functions.
Without loss of generality, we describe our result for a sin-
gle patch x and a chosen cluster (so the subscript k can be
dropped). The simplified objective function is given by

f(α, β) =
1

2
||x−Dα||22 + λ1||α||1 + λ2||α− β||1, (32)

Similarly, we introduce the following surrogate objective
function

f̃(α, β, α0) =
1

2
||x−Dα||22 + λ1||α||1 + λ2||α− β||1

+
c

2
||α− α0||22 −

1

2
||Dα−Dα0||22. (33)

After some similar manipulation to Eq. (29), we can sim-
plify the above function into

f̃(α, α0, β) = const+λ1||α||1+λ2||α−β||1+
c

2
||α−v0||22,

(34)
where the definition of v0 is the same as above.

After translating the above minimization problem into its
scalar version, we obtain

g(t) =
1

2
(t− t0)

2 + τ1|t|+ τ2|t− b|, (35)

where τ1 = λ1

c , τ2 = λ2

c are scaled relaxation parameters
and b is the scalar component of β. It follows that the solu-
tion to Eq. (32) is given by

α
(i+1)
j =

{
Sτ1,τ2,βj (v

(i)
j ) βj ≥ 0

−Sτ1,τ2,−βj (−v
(i)
j ) βj < 0

(36)

where
v(i) =

1

c
DT (x−Dα(i)) + α(i). (37)

the generalized shrinkage operator Sτ1,τ2,b(t) is defined by

Sτ1,τ2,b(t) =


t+ τ1 + τ2 t < −τ1 − τ2
0 −τ1 − τ2 ≤ t ≤ τ1 − τ2
t− τ1 + τ2 τ1 − τ2 < t < τ1 − τ2 + b
b τ1 − τ2 + b ≤ t ≤ τ1 + τ2 + b
t− τ1 − τ2 t > τ1 + τ2 + b

(38)
The approach based on surrogate functions can be inter-

preted as a proximal-point algorithm in convex optimiza-
tion or a nonexpansive mapping in fixed-point theory. It is
straightforward to justify the nonexpansive property for op-
erator Sτ1,τ2,b(t0) (i.e., |Sτ1,τ2,b(t0)| ≤ |t0|).
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