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Probabilistic Radius Tightening

Jaeseok Lee, Student Member, IEEE,, Byonghyo Shim, Senior Member, IEEE,, and Insung Kang, Member, IEEE,

Abstract—In this paper, we present a low-complexity list
sphere detection algorithm for achieving near-optimal a posteriori
probability (APP) detection in an iterative detection and decoding
(IDD). Motivated by the fact that the list sphere decoding
searching a fixed number of candidates is computationally
inefficient in many scenarios, we design a criterion to search
lattice points with non-vanishing likelihood and then derive a
hypersphere radius satisfying this condition. Further, in order
to exploit the original sphere constraint as it is instead of
using necessary conditioned version, we combine a probabilistic
tree pruning strategy and the proposed list sphere search. Two
features, tightened hypersphere radius and probabilistic tree
pruning, collaborate and improve the search efficiency in a
complementary fashion. Through simulations on 4 × 4 MIMO
system, we show that the proposed method provides substantial
reduction in complexity while achieving negligible performance
loss over the conventional list sphere detection.

Index Terms—Sphere decoding, Iterative detection and de-
coding, a posteriori probability, probabilistic radius tightening,
multiple-input multiple-output system, complexity reduction.

I. INTRODUCTION

As a means for achieving near-capacity performance in
multiple-input multiple-output (MIMO) systems, iterative de-
tection and decoding (IDD) has received much attention
recently [2], [3]. By exchanging the soft information so called
extrinsic information between the MIMO detector and the
channel decoder which serves as a priori information to each
other, IDD jointly improves the detection quality as well as
the decoding reliability. The key ingredient of the IDD receiver
is the a posteriori probability (APP) detector generating the
posteriori log-likelihood ratio (LLR) which is given by

L(bk) = ln
P (bk+| y)
P (bk−| y)

(1)

where bk is the k-th information bit, P (bk+) and P (bk−) are
the probabilities that bk = +1 and bk = −1, respectively,
and y is the real-valued observation vector. Typically, y =
Hs+v is obtained from the complex-valued observation yc =
Hcsc + vc via the complex-to-real conversion where s ∈ Λℓ

(Λ is a modulation set) and v ∼ N (0, σ2I) are the transmitted
symbol vector and Gaussian noise vector, respectively, and H
is the channel matrix. Since y is connected to the bit vector
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b through s (i.e., s = f(b) where f is the function mapping
a bit vector into a symbol vector), (1) can be rewritten as

L(bk) = ln
P (bk+)

P (bk−)
+ ln

∑
bk+

P (y | sk+)P (bk̄)∑
bk−

P (y | sk−)P (bk̄)
(2)

where bk̄ = [b1, · · · , bk−1, bk+1, · · · ], bk+ =
[b1, · · · , bk−1, bk+, bk+1, · · · ] and sk+ = f(bk+) (bk− and
sk− are defined in the same way). Since the first term of (2)
corresponds to the a priori information (denoted as LA(bk))
delivered from the channel decoder, the second term of (2)
becomes an extrinsic LLR information LE(bk) of the APP
detector, which is rewritten as [2]

LE(bk) = ln

∑
sk+

exp
(
−∥y−Hsk+∥2

2σ2 + 1
2b

T
k
LA,k

)
∑

sk−
exp

(
−∥y−Hsk−∥2

2σ2 + 1
2b

T
k
LA,k

) (3)

where LA,k = [LA(b1), · · · , LA(bk−1), LA(bk+1), · · · ]T .
The detail of these manipulations is straight forward and can
be found in [3].

As an efficient way to achieve a good approximation of (3),
a non-trivial modification of the sphere decoding (SD) referred
to as the list sphere decoding (LSD) has been suggested [2].
While the SD searches the single best symbol vector, i.e., the
maximum-likelihood (ML) solution sml [4]–[6], the LSD finds
N best symbol vectors and stores them into the list L = {s1 =
sml, s2, · · · , sN} where ∥y − Hsi∥2 ≤ ∥y − Hsj∥2 for
i ≤ j. Once the list search is finished, for each k, L = {s1 =
sml, s2, · · · , sN} is divided into Lk+ and Lk− where Lk+

and Lk− are the set of symbol vector generated from bk+ and
bk−, respectively. Then the LLR of the k-th bit in (3) can be
approximated as

LE(bk) ≈ ln

∑
sk+∈Lk+

exp
(
−∥y−Hsk+∥2

2σ2 + 1
2b

T
k
LA,k

)
∑

sk−∈Lk−
exp

(
−∥y−Hsk−∥2

2σ2 + 1
2b

T
k
LA,k

) . (4)

In spite of the remarkable complexity savings over an ex-
haustive enumeration in (3), computational overhead of this
approach, mainly caused by the LSD operation, is still con-
siderable. It is worth emphasizing that while the goal of
the SD algorithm is to find the best lattice point sml and
thus it is allowed to shrink the sphere radius whenever a
new candidate lattice point satisfying the sphere constraint is
found, such is not possible for the LSD since N best lattice
points should be found and stored in the list. The sphere
radius of the LSD is updated only when the list is filled with
N lattice points and a new candidate replacing the existing
one is found since otherwise N best lattice points cannot
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be obtained. Accordingly, in many realistic scenarios where
the list size N is non-trivial (such as system employing high
order modulation (HOM) and/or search dimension is large),
computational complexity of the N -LSD is quite demanding.

There have been number of studies that attempt to lessen
the complexity of LSD based APP detection. In [2, Eq. (12)],
a max-log approximation of LE(bk) over L was presented.
Focusing on the improvement of the tree-search efficiency,
a modification of the sphere search algorithm was presented
in [7]. In [8] a modified max-log approach searching two
candidates, the ML solution and its binary complement, was
proposed and extensions of this idea were presented in [9].
In these approaches, the cost functions of sml and its binary
complement are used to generate the LLR. In order to alle-
viate the complexity associated with the binary complement
search, various heuristics such as LLR clipping, channel ma-
trix regularization, and imposing constraint on the maximum
computational complexity were exploited. In [15], an approach
to search the lattice point around the ML point was suggested.
This approach, referred to as the shifted spherical list detector,
is based on the ML search followed by the simple lattice
point search. Additionally, extensions of K-algorithm [10] and
M -algorithm [11], [12] for limiting computational complexity
were proposed. Besides, approaches pursuing fixed complexity
in the sphere search were also proposed in [13], [14].

In this paper, we put forth an approach optimizing the
sphere radius for pursuing a reduction of complexity in the
hypersphere search based APP detection, where the benefit of
searching N best lattice points is approximately preserved. To-
wards this end, we divide the proposed method into two stages;
1) the SD based ML detection followed by the optimal sphere
radius R0 selection for the list search and 2) the LSD with
the probabilistic tree pruning. Motivated by the observation
that the effect of symbol vector s whose likelihood P (y | s)
is much smaller than P (y | sml) on LE(bk) is negligible, we
set up a condition for the radius selection and then derive an
optimal (minimal) sphere radius R0 satisfying this condition.
Since the radius is expressed as a function of sml, we employ
the SD in the first stage to search sml and then perform the
LSD using R0. It is worth noting that notwithstanding the use
of tightened sphere radius, necessary condition imposed by
the sphere constraint is not so effective in early layers of the
search. In order to enhance the search efficiency of the LSD,
we incorporate a mechanism pruning unpromising paths from
the early stages of the tree, referred to as the probabilistic
tree pruning [16]. Two key ingredients, radius tightening and
probabilistic tree pruning, work in a complementary fashion;
While the tightened hypersphere radius is effective mainly
in the bottom layers of the search tree, probabilistic tree
pruning is effective in the top layers of the search tree. From
the simulation of IDD scheme on 4 × 4 MIMO channel,
we show that the proposed algorithm, henceforth referred to
as LSD with a probabilistic radius tightening (PRT-LSD),
achieves substantial complexity reduction (47% ∼ 77%) over
the conventional IDD scheme [2] with negligible performance
loss (within 0.2 dB).

The rest of this paper is organized as follows. Section
II provides a brief summary of the IDD system and LSD.

Fig. 1. The basic structure of IDD system.

In Section III, we present details of the proposed PRT-LSD
algorithm including optimal sphere radius analysis and the
list search with the probabilistic tree pruning. In Section
IV, we provide simulation results including bit error rate
(BER) performance, computational complexity, and extrinsic
information transfer (EXIT) chart analysis, and we conclude
our paper in Section V.

II. ITERATIVE DETECTION AND DECODING (IDD)

A. IDD System

Fig. 1 describes the basic structure of the IDD system, where
d and b denote the information bit vector and the encoded and
interleaved bit vector, respectively, and st ∈ Λℓ represents the
transmitted symbol vector whose elements are chosen from
the modulation set Λ with cardinality 2q (i.e., |Λ| = 2q). Since
there exists one-to-one mapping between b = [ b1, · · · , bqℓ ]T
and the symbol vector st = [ s1, · · · , sℓ ]T , the input-output
relationship of the system can be described as

y = Hst(b) + v. (5)

In Fig. 1, the subscript “1” denotes the information associated
with the APP detector, while the subscript “2” denotes the
information associated with the channel decoder. After gen-
erating the extrinsic information LE1(bk), the APP detector
passes the de-interleaved version of this soft information
LA2(bk) into the channel decoder. Using this soft information
as an input, channel decoder calculates its own extrinsic
information LE2(bk). Lastly, interleaved version of LE2(bk),
which serves as LA1

(bk) in the APP detector, is fed back
to the APP detector, thereby finishing an iteration. This job is
repeated until suitably chosen performance criterion is satisfied
or maximal number of iteration is reached [2].

B. List Sphere Decoding

Under the assumption that H is given and the QR-
decomposition (QRD) of the channel matrix H =

[Q U]

[
R
0

]
is applied, the ML solution becomes

sml = arg min
s∈Λℓ

||y −Hs ||2 = arg min
s∈Λℓ

∥y′ −Rs ∥2 (6)
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where y′ = QTy. Further, by denoting a branch metric at
layer ℓ− j + 1 as Bj(s

ℓ
j) = | y′k −

∑ℓ
t=j rk,tst |2, we have

sml = arg min
s∈Λℓ

ℓ∑
j=1

Bj(s
ℓ
j). (7)

The SD algorithm can be interpreted as a branch and bound
(BB) based tree search algorithm [17]. In the first layer, i.e.,
the bottom row of s, candidates satisfying Bℓ(sℓ) ≤ R2

0 are
found (bounding). Once this step is finished, branching to the
next layer of the best candidate (branching), sℓ−1 satisfying
Bℓ−1(s

ℓ
ℓ−1) + Bℓ(sℓ) ≤ R2

0 is searched. By repeating this
step and updating the radius whenever a new lattice point
Rs is found, the SD algorithm outputs the ML solution sml

for which the cost function ∥y′ − Rs ∥2 =
∑ℓ

j=1 Bj(s
ℓ
j) is

minimized. In short, the salient features of the SD algorithm
are that 1) the lattice point search is limited within the
hypersphere of the radius R0 and 2) R0 is updated imme-
diately after the lattice point satisfying the sphere constraint
(||y′ − Rs ||2 ≤ R2

0) is found. It is worth mentioning that
while the first feature of the SD is still valid for the LSD,
second one is not directly satisfied due to the fact that N best
lattice points should be found in the LSD. As mentioned, the
sphere radius of the LSD is updated only when the list is full
and a new lattice point replacing one in the list is searched.
Hence, for the nontrivial list size N ensuring near-optimal
performance, the required number of computations becomes
far larger than that of the SD algorithm.

C. Radius Selection for LSD

In order to compute the extrinsic LLR in (4), the hyper-
sphere with the radius R0 should contain at least N lattice
points. A simple choice of R0 is to use a multiple of the cost
function of st where st is the transmitted symbol vector. Since
∥y −Hst∥2 = ∥v∥2 where ∥v∥2 ∼ σ2χ2

ℓ is a χ2-distribution
with ℓ degrees of freedom (DOF), E[∥y −Hst∥2] = ℓσ2.
Now by multiplying a fuzzy factor K, one can obtain

R2
0 = ℓσ2K (8)

for searching N lattice points [2]. Unfortunately, computa-
tional complexity of this choice, when combined with the
radius update mechanism of the LSD, will be overwhelming.
Fig. 2 illustrates the LSD operation of the BPSK modulation
when R2

0 = 20 is chosen using K = 5. Since the initial radius
is much larger than the cost function of the fourth best lattice
point with cost 11, we observe that too many radius updates
occur, which clearly gives a negative impact on the search
complexity.

III. LSD WITH A PROBABILISTIC RADIUS TIGHTENING

As discussed, the efficiency of the LSD is tightly coupled
with the choice of the initial radius R0. If R0 is chosen to
be smaller than the cost function of the N -th best candi-
date J(sN ) = ∥y − HsN∥2, the search operation will be
finished without filling the list, deteriorating the accuracy
of the approximation in (4). Whereas, if R0 is chosen to
be much larger than J(sN ), it requires too much search

effort [18]. Since arbitrarily chosen N does not shed light on
the optimal performance/complexity tradeoff, we can easily
infer that searching the fixed number of candidates cannot
be an efficient way in general. For example, if there is a
huge difference between the likelihoods of sml and si, i.e.,
P (y|sml) ≫ P (y|si), then the contribution of P (y|si) on the
LLR is negligible while requiring substantial search effort. In
order to overcome this drawback, we devise a condition to
skip lattice points hardly affecting the LLR and then derive
an optimal sphere radius R0 conforming this condition.

A. Probabilistic Likelihood Constraint

Suppose the list L contains N lattice points after the search,
i.e., L = {s1 = sml, s2, · · · , sN}. Then we want all lattice
points in L to satisfy

ρP (y | sml) ≤ P (y | si) (9)

for some ρ ∈ (0, 1). Since the reliability of the LLR improves
as the list size increases, relatively small ρ is desired for
the performance viewpoint. On the other hand, as the small
list size is preferred for implementation perspective, relatively
large ρ is recommended for pursuing the search efficiency.

In order to search for the symbols satisfying (9), it is
necessary to set an initial radius defined by ρ. Recalling that
P (y | si) = 1√

2πσ2
exp(−J(si)

2σ2 ), (9) can be rewritten as

J(si) ≤ J(sml)− 2σ2 ln ρ, i = 1, 2, · · · , N. (10)

Since all lattice points in L need to satisfy (10), the desired
initial radius R0 satisfies

R0 =
√
J(sml)− 2σ2 ln ρ. (11)

Note that two parameters required for R0 computation are
J(sml) and ρ. While J(sml) is computed from the SD algo-
rithm directly, bound of ρ needs to be obtained analytically.
In particular, in order to minimize the complexity as well as
the performance loss, it is desirable to obtain an upper bound
of ρ.

B. Upper Bound of ρ

Our goal in this subsection is to obtain an upper bound of ρ
used in the computation of R0. First, it is clear from (9) that

Nρg(ωml) ≤
N∑
i=1

g(ωi). (12)

where ωi = J(si)
σ2 = ∥y−Hsi∥2

σ2 and g(x) = exp
(
−x

2

)
and

thus P (y|si) =
1√

2πσ2
g(ωi). From (12), we have

Nρg (ωml) ≤
N∑
i=1

E [g (ωi)] (13)

where E[g(ωi)] is given by

E[g(ωi)] =

∫
ωi

g(ωi)fG(g(ωi))dωi (14)

=

∫
ωi

g(ωi)fΩi(ωi)dωi (15)
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Fig. 2. Illustration of the conventional LSD search in a tree structure with N = 4 and BPSK modulation. Numbers inside the bottom rectangle denote the
cost functions associated with lattice points in L. Note that white nodes are skipped since they violate the hypersphere condition.

where fG(·) and fΩi(·) are the probability density functions
(PDF) of g(·) and ωi, respectively, and (15) is because g(·) is
one-to-one function. From (13) and (15), the upper bound of
ρ becomes

ρ ≤ 1

Ng (ωml)

N∑
i=1

∫
ωi

g(ωi)fΩi(ωi)dωi. (16)

Now, what remains is the evaluation of the integral in (16).
First, by denoting µi = H(st − si), ωi is expressed as

ωi =
∥y −Hsi∥2

σ2
=

∥H(st − si) + v∥2

σ2

=
∥µi + v∥2

σ2
. (17)

Then ωi is a noncentral χ2-distribution with PDF

fΩi(ωi ; ν, λi) =

1

2
exp

(
−ωi + λi

2

)(
ωi

λi

) ν−2
4

I ν
2−1

(√
λiωi

)
, (18)

where ν = ℓ is the DOF, λi =
∥∥µi

σ

∥∥2 is the noncentrality
parameter and Ia(·) is a modified Bessel function of the first
kind [19]. Using the PDF of the noncentral χ2-distribution,
the integration in the right-hand side of (16) becomes∫

ωi

g(ωi)fΩi(ωi)dωi =

∫ ∞

0

g(ωi)

2
exp

(
−ωi + λi

2

)
·(

ωi

λi

) ν−2
4

I ν
2−1

(√
λiωi

)
dωi. (19)

Unfortunately, it is not easy to get a closed form solution of
this integral. In this work, we use Patnaik’s approximation for
the noncentral χ2-distribution [20] to evaluate (19). Patnaik’s
method is a simple yet an accurate way of approximating
noncentral χ2-distribution fΩi(ωi ; ν, λi) with ν and λi into

the product of a constant ci = (ν+2λi)
(ν+λi)

and the central χ2-
distribution fXi(xi; ki) given by

cifXi
(xi; ki) =

ci

2ki/2Γ(ki

2 )
x

ki
2 −1
i exp

(
−xi

2

)
(20)

where ki = (ν+λi)
2

(ν+2λi)
is the DOF and Γ(·) is the Gamma

function [19]. Using Patnaik’s approximation, (19) becomes∫
ωi

g(ωi)fΩi
(ωi)dωi ≈

∫ ∞

0

g(xi)cifXi
(xi; ki)dxi

=
ci

2ki/2 Γ
(
ki

2

) ∫ ∞

0

x
ki
2 −1
i e−xidxi

=
ci

2ki/2
(21)

where (21) is from the definition of the gamma function
Γ (k) =

∫∞
0

xk−1e−xdx. Combining (16) and (21), one can
obtain the upper bound of ρ as

ρ / 1

Ng (ωml)

N∑
i=1

ci
2ki/2

=
1

Ng(ωml)

N∑
i=1

ϵi

= ϱ exp

(
J(sml)

2σ2

)
(22)

where ϵi =
ci

2ki/2
and ϱ = 1

N

∑N
i=1 ϵi.

C. Radius Selection for PRT-LSD

By combining the desired initial radius R0 and the upper
bound of ρ in (22), we have

R0 =
√
J(sml)− 2σ2 ln ρ

' σ

√
ln

(
1

ϱ2

)
. (23)
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Since any hypersphere radius satisfying this bound satisfies
the condition in (10) as well, we choose the lower bound
(minimum value) of R0 in (23) as the radius for the list sphere
search. It is worth making some qualitative remarks on the
radius we obtained in (23).

• List sphere search can be initiated immediately after ob-
taining the ML solution sml. Regarding µi = H(st − si)
(used for the computation of ci and ki), since st is
unknown, µi cannot be directly computed and hence we
need to use an approximation µi ≈ H(sml − si).

• We can deduce from (23) that the range of R2
0 is

[σ2 ln(1/ϱ2) ∞) which is automatically adjusted to the
system setup and the channel condition.

• R0 of the PRT-LSD is unrelated to the list size N and
thus it is possible that the search is finished without filling
the list.

D. LSD with Probabilistic Tree Pruning

The LSD should reject symbol vectors violating the hyper-
sphere condition given by

∥y′ −Rs ∥2 =
ℓ∑

j=1

Bj(s
ℓ
j) ≤ R2

0. (24)

In practice, only contributions of already visited layers can be
counted and hence the actually used condition in the ℓ−j+1-th
search layer becomes

P ℓ
j (s

ℓ
j) = Bj(s

ℓ
j) + · · ·+Bℓ(s

ℓ
ℓ) ≤ R2

0 (25)

where P ℓ
j (s

ℓ
j) is the current path metric. Since the partial path

metric is compared with the hypersphere radius, tree pruning
is not quite effective in the top layers of the search tree.
In order to compensate the unvisited node contribution and
thereby improve the pruning capability of the sphere search,
probabilistic tree pruning was introduced [16], [21]. The key
idea behind the probabilistic tree pruning is to estimate the
noncausal path metric under a benign scenario where the rest
of the search is perfect (si = st,i, i = m, · · · , ℓ). In this
scenario, the branch metric Bi, i ∈ {1 · · · , j − 1} is modeled
as the square of the Gaussian noise as

Bm(sℓm) = ( ym −
ℓ∑

i=m

rm,i si )
2 = v2m, m = 1, · · · , j − 1 (26)

where vm is the m-th component of v. With this setup, the
modified sphere condition becomes

ℓ∑
m=1

Bt(s
ℓ
m) = P ℓ

j (s
ℓ
j) +

j−1∑
m=1

v2m ≤ R0. (27)

Since v1, · · · , vj−1 are values from i.i.d. Gaussian distribution,∑j−1
m=1 v

2
m becomes the χ2-random variable with j − 1 DOF.

Denoting Φj−1 =
∑j−1

m=1 v
2
m, (27) can be rewritten as

P ℓ
j (s

ℓ
j) + Φj−1 ≤ R0. (28)

Note that we cannot directly use (28) for the sphere search
since Φj−1 is a random variable. As a way to get around
this problem, we examine the probability that the rest of

the tree is detected perfectly so that the remaining portion
is a pure noise contribution. If the probability of this event
(i.e., P (Φj−1 + P ℓ

j (s
ℓ
j) ≤ R0)) is smaller than a pre-defined

threshold Pϵ so called a pruning probability, we treat this event
as unpromising one and prune all subtrees starting from this
node. This condition can be expressed as [16]

P (Φj−1 ≤ R0 − P ℓ
j (s

ℓ
j)) ≤ Pϵ. (29)

When applying the probabilistic tree pruning into the LSD,
however, the branch metric in (26) becomes overly conser-
vative choice since the LSD searches for N -best candidates
(s1 = sml, s2, · · · , sN ). Therefore, instead of using perfect
symbol detection assumption, we employ noise plus detection
error model as

Bm(sℓm) =

∣∣∣∣∣ ym −
ℓ∑

i=m

rm,i si

∣∣∣∣∣
2

=

∣∣∣∣∣
ℓ∑

i=m

rm,i(st,i − si) + vm

∣∣∣∣∣
2

=

∣∣∣∣∣
ℓ∑

i=m

rm,iei + vm

∣∣∣∣∣
2

≈ |δm + vm|2 (30)

for m = 1, · · · , j−1 where st,i is the i-th component of st and
δ = R(sml − s) where (30) is from R(st − s) ≈ R(sml − s).
Using (30), modified sphere condition of the LSD becomes

ℓ∑
m=1

Bm(sℓm) = P ℓ
j (s

ℓ
j) +

j−1∑
m=1

|δm + vm|2 ≤ R2
0. (31)

Let Φ′
j−1 =

∑j−1
m=1

(
δm+vm

σ

)2
then Φ′

j−1 becomes the non-
central χ2-random variable with j − 1 DOF and (31) can be
rewritten as

P ℓ
j (s

ℓ
j)

σ2 +Φ′
j−1 ≤ R2

0

σ2 . Similar to (29), the pruning
condition can be expressed as

P

(
Φ′

j−1 ≤
R2

0 − P ℓ
j (s

ℓ
j)

σ2

)
≤ Pϵ. (32)

Since the left-hand side of (32) is the cumulative density
function (CDF) of noncentral χ2-random variable with DOF
j − 1, we have

R2
0 − P ℓ

j (s
ℓ
j) ≤ βj−1 = σ2F−1

Φ (Pϵ ; j − 1, λ) (33)

where F−1
Φ (Pϵ ; j − 1, λ) is the inverse CDF of noncentral

χ2-distribution and λ =
∑j−1

i=1

(
δi
σ

)2
. Similar to (20), using

Patnaik’s approximation [20], the noncentral χ2-distribution
is approximated as

ηfX(x;κ) =
η

2κ/2Γ(κ2 )
x

κ
2 −1 exp

(
−x

2

)
(34)

where η = (j−1+2λ)
(j−1+λ) , κ = (j−1+λ)2

(j−1+2λ) and fX(x;κ) is the χ2-
distribution with DOF κ and thus the pruning condition in (33)
becomes

R2
0 − P ℓ

j (s
ℓ
j) < σ2F−1

X (Pϵ / η ; κ) = β′
j−1. (35)
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Equivalently,

R2
0 − β′

j−1 < P ℓ
j (s

ℓ
j). (36)

The pruning condition in (36) can be interpreted as follows;
if the path metric in layer ℓ− j +1 is larger than R2

0 − β′
j−1,

then the rest of search is unlikely to satisfy the hypersphere
condition even for an ideal scenario where the contribution
of remaining nodes is noise only. Therefore, whenever a path
sℓj satisfies this pruning condition, we immediately remove
the subtree of the node and hence can avoid a waste of
computations.

The illustration of a binary tree search for the proposed
PRT-LSD algorithm is shown in Fig. 3. With ϱ = 0.004, one
can get R2

0 = 11. Although cost functions of the final lattice
points are 7, 8, 10 and 11 (same as the example in the Fig. 2),
we can observe that lots of unpromising nodes are skipped due
to the use of tight radius. As will be shown in the simulation,
the benefit of the probabilistic radius tightening is pronounced
when the system parameters become large.

IV. SIMULATION AND DISCUSSIONS

A. Simulation Setup

In this section, we observe the performance and complexity
of the proposed PRT-LSD algorithm along with previously
proposed APP detection approaches. We also provide an
extrinsic information transfer (EXIT) chart analysis [22] to
validate near-optimality of the proposed method.

The simulation setup is based on the 16-QAM transmission
with gray mapping. The signal is transmitted over 4 × 4
MIMO system in Rayleigh fading channel where elements of
the channel matrix H are modeled by independent Gaussian
random variable. The half rate turbo coding with feedback
polynomial 1+D+D2 and feedforward polynomial 1+D2 is
used to encode a binary sequence d, and a random interleaver
is employed to generate the interleaved bit sequence b. For
each code block, four IDD operations are performed with eight
iterations within the Turbo decoder. As a metric for measuring
performance and complexity, the bit error rate (BER) and the
average number of visited nodes are employed. In addition,
at least 50, 000 channel realizations are tested for each SNR
point and channel is assumed to be known at the receiver. For
comprehensive view, we perform simulations on the following
algorithms:

1) N -LSD [2] : set the initial radius with K = 5 in (8).
R0 is updated with the maximal cost function in L only
when the list is filled. In case the search is done without
filling the list, it is repeated with an increased radius
(K := K + 1).

2) modified N -LSD using an increasing radii algorithm
(IRA-LSD) : set the initial radius R0 based on ϵ and δ
[23]. When the search is finished without filling the list,
R0 is re-computed with smaller ϵ and then the search is
repeated.

3) M -algorithm [12] : choosing M best paths for each layer
(use M = N and M = 5).

4) Single tree search (STS) [9] : set initial radius R0 = ∞
and update R0 to the cost function of Babai point. sml
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Fig. 4. Performance and complexity of 4× 4 MIMO system with 16-QAM
modulation (N = 50).

as well as its binary complement is found concurrently.
Also, LLR-correction technique is applied [28].

5) MMSE-based demodulator [29] : perform MMSE detec-
tion followed by per-layer LLR computation.

6) PRT-LSD : set R0 based on (23) with four distinct
pruning probabilities Pϵ = {0, 0.01, 0.05, 0.1}.

B. Performance and Complexity

Fig. 4(a) shows the BER performance of the APP detec-
tion schemes for 16-QAM transmission. In this simulation,
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Fig. 3. Illustration of the proposed PRT-LSD search in a tree structure with N = 4 and BPSK modulation. Numbers inside the bottom rectangle denote the
cost functions associated with lattice points in L.

N = 50 is used for the N -LSD algorithm and its varia-
tions. Although there is a slight difference in performance
between the conventional LSD (N -LSD and IRA-LSD) and
the proposed PRT-LSD in low SNR regime (BER > 10−2),
the difference becomes negligible in the waterfall regime.
Interestingly, the performance curves of the LSD and PRT-
LSD for Pϵ = 0.01, 0.05 lie on top of each other for most
SNR regime under test so that there is no virtual loss in
performance. Even with Pϵ = 0.1, the performance loss of
the PRT-LSD over the conventional LSD is only about 0.1
dB.

Fig. 4(b) plots the average number of visited nodes per
search. Except for M -algorithm having constant complexity,
all techniques based on the modification of sphere search
show a tendency that the complexity is getting smaller as the
SNR increases. Due to the overhead to find N -best lattice
points without proper control of the hypersphere radius, the N -
LSD shows worst complexity among sphere search techniques.
Since the IRA-LSD is being operated with relatively small
initial radius, its complexity is smaller than the N -LSD,
achieving moderate complexity reduction (e.g., 16% and 20%
reduction at 9 dB and 14 dB of SNR respectively). Owing
to the inclusion of the optimal initial radius together with the
probabilistic tree pruning mechanism, the complexity reduc-
tion of the PRT-LSD is noticeably better so that it achieves
43% and 80% reduction over the N -LSD for Pϵ = 0.1.

In Fig. 5, we plot the performance of the N -LSD and the
proposed PRT-LSD for N = 10, Nd = 2, 000 and maximum
2 iterations. For both algorithms, we see the reduction in
complexity and degradation in performance, mainly due to the
small list size and the code block length. We can, however,
see that computational benefit of the PRT-LSD over the LSD
is maintained.

Since sorting is heuristic yet effective way to improve the
computational complexity of sphere search [27] and list sphere
search [24], it is of interest to investigate the performance

and complexity when the sorted QR decomposition is applied.
Towards this end, we combine the permutation matrix P and
the channel matrix H so that the main diagonal entries of
R after the QR-decomposition (HP = QR) are sorted in
an ascending order. Additionally, since poorly conditioned
channel realizations might incur an increase in complexity due
to the severe drop in the effective SNR, the regularization can
be applied on top of the sorted QR-decomposition (readers are
referred to [25] for more details) as[

H
αI

]
P = QR, (37)

where α is a suitably chosen regularization parameter [25].
Fig. 6 compares the performance and the complexity of the
algorithms with the conventional QR decomposition and those
with the MMSE-SQRD for 16-QAM transmission. We see that
by employing the MMSE-SQRD preprocessing, considerable
reduction in complexity can be achieved for all algorithms.
Although the complexity gain of the MMSE-SQRD is slightly
favorable to the N -LSD, the overall gain of the PRT-LSD
over the N -LSD remains almost unchanged. To be specific,
complexity gain of the PRT-LSD over the N -LSD at 9 dB and
14 dB is 34% and 78%, respectively.

C. EXIT Chart Analysis

We finally check the near optimality of our method using
an EXIT chart analysis. EXIT chart is a useful tool to analyze
convergence behaviors of soft-input/soft-output (SISO) based
iterative decoding schemes [22], [30]. By comparing the EXIT
charts of the conventional LSD and proposed method, we can
observe the similarity in convergence behavior.

The mutual information IE between the information bit
vector d and extrinsic output of the SISO operators (i.e., APP
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Fig. 5. Performance and complexity of PRT-LSD when N = 10 using
16-QAM transmission.

detector and Turbo decoder) is defined as [26], [30]

IE =
1

2

∑
d=−1,1

∫ ∞

−∞
pE (ξ|d) ·

log2
2pE (ξ|d)

pE (ξ|d = −1) + pE (ξ|d = 1)
dξ (38)

where pE (ξ|d) =
exp (−(ξ−(σ2

E/2)·d)2/2σ2
E)√

2πσE
(0 ≤ σE ≤ 1).

Applying the symmetry condition pE (ξ|d) = pE (−ξ| − d)
[31] and consistency condition pE (ξ|d) = pE (−ξ|d)·exp (dξ)
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Fig. 6. Performance and complexity of 4 × 4 system with 16-QAM
transmission with MMSE-SQRD employed (N = 50).

[30], (38) can be simplified to [32]

IEθ,τ
≈ 1− 1

Nd

Nd∑
i=1

log2
(
1 + exp (−di · LEθ,τ

(di))
)

(39)

where di is the i-th bit of the information bit vector d, LEθ,τ

is the extrinsic LLR value (τ denotes the number of iterations
and θ = 1 and 2 denote the information associated with APP
detector and Turbo decoder, respectively). By computing (39)
for each iteration and generating two-dimensional plot, we
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obtain the EXIT chart.
In our simulation, we plot the EXIT charts of algorithms

under test for 16-QAM transmission in the waterfall regime
(SNR = 11.5 dB). Fig. 7 shows the trajectory of IEθ,τ

for the inner iteration of the Turbo decoder with 16-QAM
transmission. Although there is a slight gap in trajectory
between the N -LSD and PRT-LSD for the 1st and 2nd
iteration, the trajectories become almost identical after the 3rd
iteration. Similar behavior can be observed for the STS and
M -algorithm as well.

V. CONCLUSIONS

In this paper, we proposed a low-complexity list sphere
decoding referred to as the LSD with a probabilistic radius
tightening (PRT-LSD). Key features of the PRT-LSD are 1)
the selection of the hypersphere radius R0 for pruning lattice
points with vanishing likelihood and 2) the LSD with the
probabilistic tree pruning. Our derivation of the hypersphere
radius is based on the observation that contribution of the
lattice points with small likelihood on the extrinsic information
is negligible. We observed from simulations of the MIMO
channel that the tightened sphere radius, in conjunction with
the probabilistic tree pruning, is very effective in reducing
the computational complexity of IDD. Further, we showed
from the EXIT chart analysis that the characteristics of the
conventional N -LSD and proposed method are quite similar,
in particular for two or more iterations. Although the validity
of the proposed method was primarily investigated in the LSD,
we expect that the effectiveness of the proposed method will
be maintained for other depth-first tree search algorithms. We
also expect that complexity gain of the proposed method will
be more significant for future wireless systems with large
transmit/receive antennas.
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