Digital Signal Processing 20 (2010) 1494-1501

Contents lists available at ScienceDirect = Digital
Signal _
Processing

Digital Signal Processing

e

www.elsevier.com/locate/dsp

Fast k-nearest neighbors search using modified principal axis search tree

Yi-Ching Liaw *, Chien-Min Wu, Maw-Lin Leou

Department of Computer Science and Information Engineering, Nanhua University, Chiayi, 622 Taiwan, ROC

ARTICLE INFO ABSTRACT
Artigle history; The problem of k-nearest neighbors (kNN) is to find the nearest k neighbors for a query
Available online 2 February 2010 point from a given data set. Among available methods, the principal axis search tree (PAT)

algorithm always has good performance on finding nearest k neighbors using the PAT
. structure and a node elimination criterion. In this paper, a novel kNN search algorithm
k-nearest neighbors . . L . .
Fast algorithm is proposed. The proposed algorithm stores'prOJectlon values fo; a.ll dgta p(.nnt? in leaf
Principal axes nodes. If a leaf node in the PAT cannot be rejected by the node elimination criterion, data
Search tree points in the leaf node are further checked using their pre-stored projection values to
reject more impossible data points. Experimental results show that the proposed method
can effectively reduce the number of distance calculations and computation time for the
PAT algorithm, especially for the data set with a large dimension or for a search tree with
large number of data points in a leaf node.

Keywords:

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The problem of k-nearest neighbors (kNN) is to find the nearest k neighbors for a query point from a given data set.
This problem occurs in many scientific and engineering applications including pattern recognition [1], object recognition [2],
data clustering [3,4], function approximation [5], and vector quantization [6,7].

The intuitive method of finding the nearest k neighbors for a query point Q from a data set {Xy, Xz, ..., X} of n data
points is to compute n distances between the query point and all data points in the data set. Such method is known as
the full search algorithm (FSA). In general, the squared Euclidean distance is used to measure the distance between two
points, for the query point Q =[q1,q2, ..., qq] with dimension d and a data point X; = [x;1, Xi2, ..., Xjq] from the data set,
the distance between these two points is defined as follows:

d
D(Xi, @ =y _(xij —q))>. (1)

j=1

It is obviously to see that the process of finding nearest k neighbors for a query point using FSA is very time consuming.
To reduce the computational complexity of the kNN finding process, many algorithms [8-17] were proposed. Among these
methods, the principal axis search tree (PAT) algorithm has steadily performance for many types of benchmark data sets
[13-15]. Using the PAT method, a search tree is off-line created according to the projection values of data points onto
principal axes of tree nodes. The kNN finding process for a query point using the PAT method is to delete impossible nodes
from the search tree using a node elimination criterion. Once a node is determined to be deleted, data points belonging to
that node are impossible to be the kNN of the query point and distance calculations between the query point and those

* Corresponding author.
E-mail address: ycliaw@ms1.hinet.net (Y.-C. Liaw).

1051-2004/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.dsp.2010.01.009

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:ycliaw@ms1.hinet.net
http://dx.doi.org/10.1016/j.dsp.2010.01.009
HYPER
Comment on Text
ضابطه ، معيار ، ملاک ، ميزان ، مقياس ، نشان قطعي ، محک

Y.-C. Liaw et al. / Digital Signal Processing 20 (2010) 1494-1501 1495

data points can be omitted. If a leaf node cannot be rejected, distances between the query point and all data points in the
leaf node must be computed.

In this paper, a modified PAT (MPAT) algorithm is proposed to improve the computation time for the PAT method. The
proposed method stores projection values for all data points in leaf nodes. In case a leaf node cannot be rejected using
the node elimination criterion, data points in the leaf node are further checked using their projection values to avoid more
unnecessary distance calculations. Through this additional checking step, the computation time and number of distance
calculations can be effectively reduced.

This paper is organized as follows. In Section 2, the PAT algorithm is briefly reviewed. The modified PAT algorithm
is presented and described in detail in Section 3. Experimental results and conclusions are given in Sections 4 and 5,
respectively.

2. The principal axis search tree algorithm

The PAT algorithm [13] includes two processes that are the principal axis search tree construction process and the
k-nearest neighbors search process. The principal axis search tree construction process is to partition a data set into distinct
subsets using the principal component analysis (PCA) technique [18] and a tree structure. The kNN search process is to find
the nearest k neighbors for a query point from the constructed PAT. These two processes are described in the following
subsections.

2.1. Principal axis search tree construction process

The PCA technique is a method for extracting the principal axis from a set of data points. The projection value of a data
point onto the principal axis is the major feature to distinguish the data point from others. In general, data points with
closer projection values will have smaller distance. To divide data points into distinct subsets, the PCA technique is applied
here to extract the principal axis of data points. Once the principal axis of data points is available, projection values of
data points onto the principal axis are evaluated and used for partitioning data points into several groups and each group
contains data points of similar projection values.

To build the PAT for a given data set, we first create the root node for the PAT and assign all data points to it. That is, in
the beginning, there is only one node in the PAT and that node contains all available data points. Let n. be the number of
child nodes in a node. The next step is to partition data points in the root node into n. child nodes.

The partition process of a node is started from checking the number of data points in the node. Let n, be the number of
data points in a node. If n, <nc, data points in the node should not be divided. Otherwise, data points must be partitioned
into n. groups according to their projection values. In case data points in a node must be divided, the principal axis of
data points in the node should be evaluated and recorded for the node. Projection values of data points onto the principal
axis are then computed and used for arranging data points into an increasing sequence of projection values. After that, n.
child nodes are created and each contains about n,/n. data points with a continuous range of projection values. Finally,
child nodes of the node are sorted in ascending order according to their projection values and the minimum and maximum
projection values of data points in a child node are stored in the node.

The above partition process is applied to the root node and recursively applied to each child node of the root node till
terminal nodes (leaf nodes) all with numbers of data points less than n.. After the PAT creation process, each leaf node
records a list of data points. While for an internal node, a principal axis, a list of child nodes, and the minimum and
maximum projection values for every child node must be stored.

2.2. k-nearest neighbors search process

Given a query point Q, our task is to find the nearest k neighbors for Q from the PAT. The search process of kNN is
started from finding a leaf node which has the most similar projection values to those of Q. To find the leaf node, the
projection value of Q onto the principal axis of the root node is first evaluated. Since child nodes of a node are sorted
by projection values, the child node with the range of projection values containing Q’s projection value can be found in
0 (logy n¢) using a binary search algorithm. The similar process is recursively applied to the child node which has the range
of projection values containing Q’s projection value, till a leaf node is reached. Once the leaf node is found, the partial
distortion search (PDS) [9] is applied to find the kNN for Q from the leaf node.

After the leaf node with the most similar projection values to those of Q is searched, the finding process turns to check
ancestors of the leaf node upward from the parent node of the leaf node to the root node. Let N, be an ancestor of the leaf
node. Every child node of N, except the one with the range of projection values containing Q’s projection value should be
checked to see if it can be rejected in the kNN search process of Q. Let g4 be the projection value of Q onto the principal
axis of Ng. The checking sequence of Ng’s child nodes is in increasing order of differences between their projection values
and qq. That is, the child node with the range of projection values closest to q, is first checked and the one with the range
of projection values farthest to q, will be checked last. If a child node cannot be rejected in the checking process, its child
nodes must be recursively checked.

HYPER
Comment on Text
انداختن‌، حذف‌ كردن‌، از قلم‌ انداختن‌

1496 Y.-C. Liaw et al. / Digital Signal Processing 20 (2010) 1494-1501

Before introducing the node checking process, we would like to define the lower bound and the boundary point for a
node first. Since a node has explicit range of projection values onto principal axes of its parent nodes, a node can be seen
as a hypercube. The lower bound of a node can then be defined as the distance from Q to the boundary of the node and
the boundary point for Q to a node is the projection point of Q onto the boundary of the node.

In the beginning of the checking process for Ng, the lower bound and boundary point of N, are set as 0 and Q, respec-
tively. The checking process for the node N, and its descendants is described as follows.

Let N be a node whose child nodes are going to be checked, dig, B, and P be the lower bound, the boundary point, and
the principal axis of N, respectively, b be the projection value of B onto P, and pJ. and pf., individually represent the
minimum and maximum projection values for data points in mth child node of N. The checking sequence of child nodes in
N is in ascending order of differences between their projection values and b and the lower bound of a child node is used to
check whether a child node could be deleted. The lower bound of a child node depends on its projection value. For a child
node m with pJt.. less than b, the lower bound of the child node can be evaluated using the following equation:

2
diy =di+ (b — phax)” @)

While for a child node m having p, = greater than b, the lower bound of the child node is defined as

2
diy = dig + (Pin —b) " 3)

Once the lower bound of a child node is determined, the node elimination criterion (inequality (4)) could be used to
check if the child node can be eliminated or not,

where d; is the distance between Q and the candidate of its kth nearest neighbor. If inequality (4) is satisfied for a child
node m whose pp.. is less than b, the child node and those child nodes with projection values less than pf.. can be
eliminated at a time. In case inequality (4) is satisfied for a child node whose p[7. is greater than b, the child node and
those child nodes with projection values greater than p. can be rejected.

For a child node cannot be rejected using the node elimination criterion and the child node is a leaf node, distances
between Q and all data points in the child node are computed with PDS applied. If a child node m cannot be rejected and
the child node is an internal node, its child nodes should be further checked. In such a case, the boundary point B™ of child
node m is evaluated using Eq. (5) or Eq. (6):

B" =B — (b — pl.y)P, (5)
B" =B+ (p,, —b)P. (6)
Eq. (5) is used for a child node with pf,, less than b and Eq. (6) is applied when a child node with pT. ~greater than b.

3. Modified principal axis search tree algorithm

The kNN finding process for a query point using the PAT method is to reject impossible nodes from a PAT using the node
elimination criterion. If a leaf node cannot be rejected, distances between the query point and all data points in the leaf
node must be computed.

To speed up the search process of the PAT method, if a leaf node cannot be deleted using the node elimination criterion,
our attempt is to check whether a data point in the leaf node is impossible to be the kNN of the query point and could be
rejected instead of computing distances between the query point and all data points in the leaf node directly. To achieve
this goal, projection values for every data point in leaf nodes should be stored during the PAT creation process. Data points
in a leaf node should also be sorted in ascending order according to their projection values.

Once projection values for data points in leaf nodes are available, an inequality similar to inequality (4) can be applied
to reject impossible data points. Let N; be a leaf node whose data points are going to be checked, dig, P, and B be the lower
bound, the principal axis, and the boundary point of N;’s parent, respectively, b be the projection value of B onto P, and p’i
denote the projection value of a data point X; in N; onto P. A data point in N; can be checked using the following inequality
to see whether the data point can be rejected or not,

di <dis + (b—pl)°. (7)

The above data point rejection inequality can be used jointly with inequality (4). That is, in the finding process of
kNN for a query point, inequality (4) is first applied to reject unlikely nodes. For a leaf node which cannot be rejected by
inequality (4), inequality (7) is used to check every data point in the leaf node. If inequality (7) is satisfied for a data point,
the data point can be rejected. Otherwise the distance between the query point and the data point must be computed.

Since data points in a leaf node are arranged in ascending order according to their projection values, once a data point
with a projection value close to b is rejected, data points having projection values of further distance to b than that of
the rejected data point can also be rejected. To reject multiple data points at a time, the most commonly used method

HYPER
Comment on Text
صريح ، روشن ، واضح ، آشکار ، صاف ، ساده

HYPER
Comment on Text
مرز ی، کراني

HYPER
Comment on Text
بترتيب

HYPER
Comment on Text
اولاد

HYPER
Comment on Text
قصد داشتن ،خيال داشتن

HYPER
Comment on Text
،اختصاصا"،انفرادا"،شخصا"

HYPER
Comment on Text
ايا، خواه‌، چه‌

HYPER
Comment on Text
معادله ، برابري

HYPER
Comment on Text
هرگاه ،در صورتيکه ،چنانچه ،مبادا،براى احتياط

HYPER
Comment on Text
خوشنود،راضي‌،متقاعد،قانع‌،سير

HYPER
Highlight

Y.-C. Liaw et al. / Digital Signal Processing 20 (2010) 1494-1501 1497

searchLeaf(N;, Q. dg, b, type)
{
switch (type) {
case ‘L
for (X; = from the last point to the first point in Nj) {
evaluate d =dig + (b — p})?
if (dy < d) terminate the search process of this node.
else compute D(Q, X;) and update d and the kNN set.
}
break;
case ‘R’:
for (X; = from the first point to the last point in Nj) {
evaluate d = dig + (p} — b)?
if (dy < d) terminate the search process of this node.
else compute D(Q, X;) and update d; and the kNN set.
}
break;
case ‘M’:
for (each data point X; in Nj) {
evaluate d = dig + (b — p})?
if (dx < d) delete data point X;.
else compute D(Q, X;) and update dy and the kNN set.
}

Fig. 1. Pseudo-codes of the searchLeaf function.

is to check data points in ascending order of differences between projection values of data points and b. In using such a
method, the data point with the most similar projection value to b must be determined first. This action induces additional
computation load and decreases the speed of finding kNN from a leaf node. To avoid the determination process of the data
point with the most similar projection value to b, leaf nodes are classified into three different types. Data points in leaf
nodes of different types will be checked in different orders.

By observing the relationship between projection values of data points in a leaf node and b, a leaf node can be catego-
rized into one of the following types:

L type: Projection values of data points in the leaf node all smaller than b.

R type: Projection values of data points in the leaf node all greater than b.

M type: Some data points in the leaf node with projection values smaller than b and others not.

Since the minimum and maximum projection values of data points in a child node are already stored in the PAT, the
type of a leaf node can be determined using such information. Let p’min and p{mx represent the minimum and maximum
projection values of data points in leaf node Nj, respectively. The type of leaf node N; can be determined using the following
equation:

L type, for pl . <b,
R type, for b < p! (8)

min’
M type, for p! . <b < ply.

For a leaf node of L type, data points in the leaf node are checked from the last point to the first point. While for a leaf
node of other types, data points are checked in the reverse order. If the type of a leaf node is M type, every data point in
the leaf node is checked using inequality (7) to see if they can be rejected. In case a leaf node is of L or R type, during
the checking process of data points in the leaf node, once a data point is determined could be rejected, all other unchecked
data points in the same leaf node can also be rejected.

Now, we would like to present our proposed algorithm. In our proposed method, the principal axis search tree building
process is similar to that of the original PAT algorithm. The only difference is that the projection values for every data
point onto its parent node are stored in our method. That is, our method requires additional space of O(n) than the PAT
algorithm, where n is the number of total data points. For a query point Q, we use the same node rejection process as
that used in the PAT algorithm [13] to reject impossible nodes. Once a leaf node cannot be rejected in the node rejection
process, a new function called searchLeaf is applied to speed up the kNN search process for the leaf node. The prototype of
the new function is

searchLeaf (N}, Q, dig, b, type),

where five parameters in function searchLeaf represent the leaf node to be processed, the query point, the lower bound of
N;’s parent, the projection value of B onto the principal axis of N;’s parent, and the type of N;, respectively. The pseudo-codes
of the searchLeaf function are listed in Fig. 1.

1498 Y.-C. Liaw et al. / Digital Signal Processing 20 (2010) 1494-1501

Table 1
Average computing time (in milliseconds) and number of distance calculations to find nearest 3 neigh-
bors from data sets with size of 16807 and n; = 1.

Dimension Computing time Number of distance calculations
PAT MPAT PAT MPAT
8 87.5 87.5 295 275
12 179.7 178.2 565 541
16 259.4 259.4 746 718
20 360.9 359.4 946 914
24 443.8 442.2 1064 1028
28 557.8 554.7 1243 1202
Table 2

Average computing time (in milliseconds) and number of distance calculations to find nearest 3 neigh-
bors from data sets with size of 33614 and n; = 2.

Dimension Computing time Number of distance calculations
PAT MPAT PAT MPAT
8 123.5 117.2 561 478
12 271.9 259.4 1131 993
16 412.5 392.2 1534 1359
20 564.1 535.9 1926 1712
24 748.4 709.3 2337 2077
28 910.9 864.0 2664 2377

4. Experimental results

To evaluate the performance of the proposed algorithm, the uniform Markov sequence [15,19], one set of images, and
the Statlog data set from Ref. [20] were used. In Example 1, the uniform Markov source was used to generate data sets
of various dimensions. In Example 2, codebooks with various sizes were generated using the Generalized Lloyd Algorithm
(GLA) [21] from one set of images. In the third example, the real data set Statlog with size of 6435 and dimension of 36
was used.

The proposed algorithm MPAT was compared to the PAT algorithm [13] in terms of the average number of distance
calculations and computing time per data point. For these two algorithms, search trees were both constructed with n, =7,
where n. is the number of child nodes. All computing was performed on a Pentium Dual-Core E5200 with a clock rate of
2.5 GHz and memory of 2 GB. All programs were implemented as console applications of Microsoft Visual Studio 2008 and
executed under Windows XP Professional SP3. The preprocessing time for constructing the search tree and evaluating the
principal axes of nodes and the projection values of data points was not included in the computing time.

4.1. Example 1: Uniform Markov sequence

In this example, several data sets with dimensions ranging from 8 to 28 were generated from the uniform Markov
sequence, which is in the range of —10 to 10, with a = 0.9, where a is the correlation coefficient. The uniform Markov
sequence {y;} was generated using the following equation:

Yis1 =ayi+u, (9)
where u is a random number from uniform distribution and yg = 0.

To see the influence for the number of data points in the leaf node (n;) on the performance of the proposed algorithm,
several data sets with different n; were generated from the uniform Markov sequence. It is noted that there are only six
possible values of n; exist for the case of n. = 7. The average query time and number of distance calculations per data point
were calculated using 1000 query points. Each query point was obtained using the mean value of four data points selected
randomly from the corresponding data set.

Tables 1-6 show the average query time and number of distance calculations per data point for using the PAT and MPAT
algorithms to find nearest 3 neighbors of 1000 query points from data sets with n; = 1-6, respectively. From these tables,
we may find that our method outperforms the PAT method in all cases. Compared with the PAT algorithm, our approach
can reduce the computing time by up to 10%. In terms of number of distance calculations, our approach can reduce the
distance calculation by 3-22%. It is noted that the improvement of our method to the PAT method is more remarkable for
the case of a larger n; present or a data set with higher dimension.

Table 7 gives the percentages of leaf node types. From this table, we can find that the sum of percentages of L and
R types is raised when the number of n; increase. This is the reason that the improvement of our method over the PAT
method is more remarkable when a larger n; present. From Table 7, we can also see that the percentage of L type is greater
than others. That is caused by the traverse order of child nodes is started from the one with projection values less than that
of Q in PAT algorithm.

Y.-C. Liaw et al. / Digital Signal Processing 20 (2010) 1494-1501 1499

Table 3
Average computing time (in milliseconds) and number of distance calculations to find nearest 3 neigh-
bors from data sets with size of 50421 and n; = 3.

Dimension Computing time Number of distance calculations
PAT MPAT PAT MPAT
8 151.6 139.1 759 619

12 364 339.1 1625 1382
16 567.2 529.7 2316 1993
20 770.3 717.2 2859 2474
24 992.2 923.5 3420 2961
28 1209.4 1120.3 3883 3367

Table 4

Average computing time (in milliseconds) and number of distance calculations to find nearest 3 neigh-
bors from data sets with size of 67228 and n; = 4.

Dimension Computing time Number of distance calculations
PAT MPAT PAT MPAT

8 178.1 164 978 782

12 431.2 398.5 2085 1745
16 693.8 639.1 2974 2514
20 968.8 892.2 3813 3249
24 1250.0 1145.3 4548 3879
28 1545.4 1412.5 5227 4466

Table 5

Average computing time (in milliseconds) and number of distance calculations to find nearest 3 neigh-
bors from data sets with size of 84035 and n; = 5.

Dimension Computing time Number of distance calculations
PAT MPAT PAT MPAT

8 200 182.8 1134 892
12 518.8 476.6 2572 2129
16 825 756.2 3662 3077
20 1137.5 1037.5 4622 3904
24 1462.5 1331.2 5495 4651
28 1809.4 1640.7 6334 5372

Table 6

Average computing time (in milliseconds) and number of distance calculations to find nearest 3 neigh-
bors from data sets with size of 100842 and n; =6.

Dimension Computing time Number of distance calculations
PAT MPAT PAT MPAT
8 214.1 193.8 1267 990

12 568.8 518.7 2918 2398
16 932.9 848.4 4273 3565
20 1292.2 1168.8 5394 4525
24 1671.8 1507.8 6471 5437
28 2050.0 1843.7 7391 6232

Table 7

Percentages of different leaf node types in finding nearest 3 neighbors from data sets with various n;
and dimension = 16.

Size (n;) Type of a leaf node

L type M type R type
16807 (n;=1) 47.8% 26.0% 26.2%
33614 (n =2) 44.0% 22.6% 33.3%
50421 (n;=3) 42.8% 21.7% 35.5%
67228 (nj=4) 41.7% 21.3% 37.0%
84035 (nj=5) 41.4% 21.1% 37.5%

100842 (n; =6) 41.4% 20.9% 37.7%

HYPER
Comment on Text
برحسب درصد ، صدي چند ، قسمت ، مقدار ، در صد

1500 Y.-C. Liaw et al. / Digital Signal Processing 20 (2010) 1494-1501

Table 8
Average computing time (in milliseconds) and number of distance calculations to find the nearest neigh-
bor from data sets with various n;.

Size (n;) Computing time Number of distance calculations
PAT MPAT PAT MPAT
2401 (m;=1) 421 42.0 88 84
4802 (n; =2) 57.8 54.7 176 155
7203 (n; =3) 67.2 65.6 244 208
9604 (n; =4) 87.5 84.4 328 276
12005 (n; =5) 110.9 106.3 406 339
14406 (n; = 6) 125.0 117.2 446 368
Table 9

Average computing time (in milliseconds) and number of distance calculations to find nearest 3 neigh-
bors from the Statlog data set using two algorithms.

Algorithms Computing time Number of distance calculations
PAT 2313 489
MPAT 220.3 433

4.2. Example 2: Codebooks

In this example, data sets, which consist of 2401 to 14406 data points with dimension 16, were generated from six
images (“Lena,” “Peppers,” “Baboon,” “Airplane,” “Island,” and “Parrot”) using GLA [21]. Each data point is a non-overlapping
4 x 4 pixel block obtained from these images.

The average query time and number of distance calculations were determined using 2000 query points selected randomly
from these six training images. Table 8 shows the average query time and number of distance calculations per data point to
find the nearest neighbors for 2000 query points and reveals that our method outperforms the PAT method in all cases for a
data set from real images. Comparing with the PAT method, MPAT can reduce the computing time and number of distance
calculations per data point by up to about 6.2% and 17.5%, respectively.

4.3. Example 3: The Statlog data set

In this example, the Statlog data set [20], which consists of spectral values from a satellite image, will be used to estimate
the performance of PAT and MPAT algorithms. The Statlog data set includes 6435 data points of dimension 36. The value
for each component of a data point is in the range of 0 to 255. The average query time and number of distance calculations
per data point were calculated using 2000 query points. Each query point was obtained using the mean value of four data
points selected randomly from the Statlog data set. Table 9 gives the computing time and number of distance calculations
per data point to find three nearest neighbors for two algorithms. From Table 9, we can see that the MPAT method is still
better than the PAT method both in terms of the computing time and number of distance calculations. Compared to the
PAT method, MPAT can reduce the computing time and number of distance calculations per data point in average by about
5% and 11%, respectively.

5. Conclusions

In this paper, we have presented a new kNN search algorithm to reduce the computation time for the PAT algorithm. The
proposed algorithm stores projection values for all data points in leaf nodes. If a leaf node in the PAT cannot be rejected by
the node elimination criterion of the PAT, data points in the leaf node are further checked using their projection values to
reject more impossible data points. Experimental results show that our proposed method can effectively reduce the number
of distance calculations and computation time for the PAT algorithm, especially for the data set with a large dimension or
for a search tree with large number of data points in a leaf node. Comparing with the PAT algorithm, the proposed algorithm
can reduce the computing time and number of distance calculations by up to 10% and 22%, respectively, for a data set is
from the uniform Markov sequence. When using real images as the data set, the computing time and number of distance
calculations can be reduced by up to 6.5% and 17.5%, respectively. While using the Statlog data set, the proposed method
can reduce the computation time and number of distance calculations by 5% and 11%, respectively.

Acknowledgment

This work was supported by a grant from National Science Council of Taiwan, ROC under grant No. NSC-98-2221-E-343-
008.

HYPER
Comment on Text
مجدد

HYPER
Comment on Text
در صورتيکه ، هنگامي که ، حال آنکه ، مادامي که ، در حين ، تا موقعي که

Y.-C. Liaw et al. / Digital Signal Processing 20 (2010) 1494-1501 1501

References

[1] S. Theodoridis, K. Koutroumbas, Pattern Recognition, Academic Press, USA, 2003.
[2] H. Murase, S.K. Nayar, Visual learning and recognition of 3D objects from appearance, Int. J. Comput. Vision 1 (1995) 5-24.
[3] V. Roth,]. Laub, M. Kawanabe, J.M. Buhmann, Optimal cluster preserving embedding of nonmetric proximity data, IEEE Trans. Pattern Anal. Mach.
Intell. 12 (2003) 1540-1551.
[4] Y.C. Liaw, Improvement of the fast exact pairwise-nearest-neighbor algorithm, Pattern Recognition 5 (2009) 867-870.
[5] C.Y. Chen, C.C. Chang, R.C.T. Lee, A near pattern-matching scheme based on principal component analysis, Pattern Recognition Lett. 4 (1995) 339-345.
[6] Y.C. Liaw, J.Z.C. Lai, Winston Lo, Image restoration of compressed image using classified vector quantization, Pattern Recognition 2 (2002) 329-340.
[7] A. Gersho, R.M. Gray, Vector Quantization and Signal Compression, Kluwer Academic Publishers, Boston, 1991.
[8] D.-Y. Cheng, A. Gersho, B. Ramamurthi, Y. Shoham, Fast search algorithms for vector quantization and pattern matching, in: IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, 1984, pp. 9.11.1-9.11.4.
[9] C.D. Bei, RM. Gray, An improvement of the minimum distortion encoding algorithm for vector quantization, IEEE Trans. Commun. 10 (1985) 1132-
1133.
[10] B.S. Kim, S.B. Park, A fast k nearest neighboring finding algorithm based on the ordered partition, IEEE Trans. Pattern Anal. Mach. Intell. 6 (1986)
761-766.
[11] L. Mico, J. Oncina, R.C. Carrasco, A fast branch and bound nearest neighbor classifier in metric spaces, Pattern Recognition Lett. 7 (1996) 731-739.
[12] S.A. Nene, S.K. Nayar, A simple algorithm for nearest neighbor search in high dimensions, IEEE Trans. Pattern Anal. Mach. Intell. 9 (1997) 989-1003.
[13] J. McNames, A fast nearest-neighbor algorithm based on a principal axis search tree, [EEE Trans. Pattern Anal. Mach. Intell. 9 (2001) 964-976.
[14] Ben Wang, John Q. Gan, Integration of projected clusters and principal axis trees for high-dimensional data indexing and query, in: Lecture Notes in
Computer Science, vol. 3177, Springer, Berlin, 2004, pp. 191-196.
[15] J.Z.C. Lai, Y.C. Liaw,]. Liu, Fast k-nearest-neighbor search based on projection and triangular inequality, Pattern Recognition 40 (1) (2007) 351-359.
[16] J.S. Pan, Z.M. Lu, S.H. Sun, An efficient encoding algorithm for vector quantization based on sub-vector technique, IEEE Trans. Image Process. 12 (3)
(2003) 265-270.
[17] Shu-Chuan Chu, Zhe-Ming Lu, Jeng-Shyang Pan, Hadamard transform based fast codeword search algorithm for high-dimensional VQ encoding, Inf.
Sci. 177 (3) (2007) 734-746.
[18] LT. Jolliffe, Principal Component Analysis, Springer, New York, 2002.
[19] W.H. Cooley, PR. Lohnes, Multivariate Data Analysis, Wiley, New York, 1971.
[20] Statlog (Landsat Satellite) data set, http://archive.ics.uci.edu/ml.
[21] Y. Linde, A. Buzo, R.M. Gray, An algorithm for vector quantizer design, IEEE Trans. Commun. 28 (1) (1980) 84-95.

Yi-Ching Liaw was born in Taiwan, in 1970. He received his B.S., M.S., and Ph.D. degrees in Information Engineering and Computer Sci-
ence all from Feng-Chia University, Taiwan, in 1992, 1994, and 2004, respectively. From 1999 to 2004, he was an engineer with Industrial
Technology Research Institute, Hsinchu, Taiwan. In 2005, he joined the Department of Computer Science and Information Engineering,
Nanhua University, Chiayi, Taiwan as an assistant professor. Since 2008, he has been an associate professor at the same department. His
current research interests are in data clustering, fast algorithm, image processing, video processing, and multimedia system.

Chien-Min Wu was born in Taiwan, ROC, in 1966. He received the B.S. degree in automatic control engineering from the Feng-Jea
University, Taichung, Taiwan, in 1989, the M.S. degree in electrical and information engineering from Yu-Zu University, Chung-Li, Taiwan,
in 1994, and the Ph.D. degree in electrical engineering from National Chung Cheng University, Chia-Yi, Taiwan, in 2004. In July 1994, he
joined the Technical Development Department, Philips Ltd. Co., where he was a Member of the Technical Staff. Currently, he is also a
faculty member of the Department of Computer Science and Information Engineering, NanHua University, Dalin, Chia-Yi, Taiwan, ROC. His
current research interests include ad hoc wireless network protocol design, IEEE 802.11 MAC protocols, and fast algorithm.

Maw-Lin Leou was born in Taiwan, in 1964. He received the B.S. degree in communication engineering from National Chiao-Tung
University, Taiwan in 1986, the M.S. degree in electrical engineering from the National Taiwan University in 1988, and the Ph.D. degree in
electrical engineering from the National Taiwan University in 1999. From 1990 to 1992 he was with the Telecommunication Labs., Ministry
of Transportation and Communications in Taiwan, as an Assistant Researcher. From 1992 to 1999, he was an instructor in the Department
of Electronic Engineering, China Institute of Technology, Taiwan. From 1999 to 2005, he was an associate professor in the Department
of Electronic Engineering, Nan-Jeon Institute of Technology, Taiwan. Since 2005, he is a faculty member in the Department of Computer
Science and Information Engineering, NanHua University, Taiwan. His current research interests include adaptive arrays, adaptive signal
processing, wireless communication, and fast algorithm.

http://archive.ics.uci.edu/ml

	Fa2012124204536
	Fast k-nearest neighbors search using modified principal axis search tree
	Introduction
	The principal axis search tree algorithm
	Principal axis search tree construction process
	k-nearest neighbors search process

	Modified principal axis search tree algorithm
	Experimental results
	Example 1: Uniform Markov sequence
	Example 2: Codebooks
	Example 3: The Statlog data set

	Conclusions
	Acknowledgment
	References

