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Abstract—Single-sensor digital color cameras use a process
called color demosaicking to produce full color images from the
data captured by a color filter array (CFA). The quality of de-
mosaicked images is degraded due to the sensor noise introduced
during the image acquisition process. The conventional solution
to combating CFA sensor noise is demosaicking first, followed
by a separate denoising processing. This strategy will generate
many noise-caused color artifacts in the demosaicking process,
which are hard to remove in the denoising process. Few denoising
schemes that work directly on the CFA images have been pre-
sented because of the difficulties arisen from the red, green and
blue interlaced mosaic pattern, yet a well designed “denoising first
and demosaicking later” scheme can have advantages such as less
noise-caused color artifacts and cost-effective implementation.
This paper presents a principle component analysis (PCA) based
spatially-adaptive denoising algorithm, which works directly on
the CFA data using a supporting window to analyze the local
image statistics. By exploiting the spatial and spectral correlations
existed in the CFA image, the proposed method can effectively
suppress noise while preserving color edges and details. Exper-
iments using both simulated and real CFA images indicate that
the proposed scheme outperforms many existing approaches, in-
cluding those sophisticated demosaicking and denoising schemes,
in terms of both objective measurement and visual evaluation.

Index Terms—Adaptive denoising, Bayer pattern, color filter
array (CFA), demosaicking, principle component analysis (PCA).

I. INTRODUCTION

M OST existing digital color cameras use a single sensor
with a color filter array (CFA) [11] to capture visual

scenes in color. Since each sensor cell can record only one
color value, the other two missing color components at each
position need to be interpolated from the available CFA sensor
readings to reconstruct the full-color image. The color inter-
polation process is usually called color demosaicking (CDM).
Many CDM algorithms [2]–[11], [14]–[17] proposed in the past
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are based on the unrealistic assumption of noise-free CFA data.
The presence of noise in CFA data not only deteriorates the vi-
sual quality of captured images, but also often causes serious
demosaicking artifacts which can be extremely difficult to re-
move using a subsequent denoising process. Note that many
advanced denoising algorithms [19]–[26], which are designed
for monochromatic (or full color) images, are not directly ap-
plicable to CFA images due to the underlying mosaic structure
of CFAs. To overcome the problem, we will propose a principle
component analysis (PCA)-based denoising scheme which di-
rectly operates on the CFA domain of captured images.

Though most existing CDM techniques [3]–[10], [14]–[17]
assume noise-free CFA data, this assumption does not hold
well in practice. For almost all kinds of color imaging devices,
ranging from the low-cost and/or resource-constrained ones
such as wireless camera phones to the high-end ones such as
digital cinema cameras, image corruptive noise is inherent and
can be severe; thus, the restoration of color images from noisy
CFA data is a challenging problem. To suppress the effect of
noise on the demosaicked image, three strategies are possible:
denoising after demosaicking; denoising before demosaicking;
and joint demosaicking-denoising.

An intuitive and convenient strategy to remove noise is to
denoise the demosaicked images. Algorithms developed for
gray-scale imaging, for example [19]–[26], can be applied
to each channel of the demosaicked color image separately
whereas some color image filtering techniques [12], [13]
process color pixels as vectors. The problem of this strategy is
that noisy sensor readings are roots of many color artifacts in
demosaicked images and those artifacts are difficult to remove
by denoising the demosaicked full-color data. In general the
CFA readings corresponding to different color components
have different noise statistics. The CDM process blends the
noise contributions across channels, thus producing compound
noise that is difficult to characterize. This makes the design
of denoising algorithms for single-sensor color imaging very
difficult.

Recently, some schemes that perform demosaicking and de-
noising jointly have been proposed [27]–[34]. In [33], Trussell
and Hartig presented a mathematical model for color demo-
saicking using minimum mean square error (MMSE) estimator.
The additive white noise is considered in the modeling. Ra-
manath and Snyder [34] proposed a bilateral filter based demo-
saicking method. Since bilateral filtering exploits the similarity
in both spatial and intensity spaces, this scheme can handle light
noise corrupted in the CFA image. Hirakawa and Parks [27]
developed a joint demosaicking-denoising algorithm by using
the total least square (TLS) technique where both demosaicking
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and denoising are treated as an estimation problem with the es-
timates being produced from the available neighboring pixels.
The filter used for joint demosaicking-denoising is determined
adaptively using the TLS technique under some constraints of
the CFA pattern. In [28] and [29], Hirakawa et al. proposed two
wavelet based schemes that can perform CDM simultaneously
with denoising. The joint demosaicking-denoising scheme de-
veloped by Zhang et al. [30] first performs demosaicking-de-
noising on the green channel. The restored green channel is
then used to estimate the noise statistics in order to restore the
red and blue channels. In implementing the algorithm, Zhang et
al. estimated the red-green and blue-green color difference im-
ages rather than directly recovering the missing color samples
by using a linear model of the color difference signals. Inspired
by the directional linear minimum mean square-error estima-
tion (DLMMSE) based CDM scheme in [9], Paliy et al. [31],
[32] proposed an effective nonlinear and spatially adaptive filter
by using local polynomial approximation to remove the demo-
saicking noise generated in the CDM process and then adapted
this scheme to noisy CFA inputs for joint demosaicking-de-
noising.

The third way to remove noise from CFA data is to implement
denoising before demosaicking. However, due to the underlying
mosaic structure of CFAs, many existing effective monochro-
matic image denoising methods can not be applied to the CFA
data directly. To overcome the problem, the CFA image can
be divided into several sub-images using the approach known
from the CFA image compression literature, e.g., [37]. Since
each of the sub-images constitutes a gray-scale image, it can be
enhanced using denoising algorithms from gray-scale imaging.
The desired CFA image is obtained by restoring it from the en-
hanced sub-images. Nonetheless, such a scheme does not ex-
ploit the interchannel correlation which is essential to reduce
various color shifts and artifacts in the final image [12], [13].
Since the volume of CFA images is three times less than that
of the demosaicked images, there is a demand to develop new
denoising algorithms which can fully exploit the interchannel
correlations and operate directly on CFA images, thus achieving
higher processing rates.

This paper presents a new and efficient scheme for denoising
CFA images. The technique of principle component analysis
(PCA) [38], [39] is employed to analyze the local structure of
each CFA variable block, which contains color components
from different channels. In [26], a PCA-based monochromatic
image denoising scheme was proposed and here we improve the
algorithm and extend it to CFA mosaic images. By adaptively
computing the co-variance matrix of each variable block, the
PCA could transform the noisy signal into another space, in
which the signal energy is better clustered and the noise can
be more effectively removed. Since there can be different and
varying structures in each local training window, to improve
the estimation accuracy of PCA transformation matrix we
select the similar blocks to the underlying one and use them
only, instead of all blocks, for PCA training. Such a training
sample selection procedure can better preserve the image local
structures. The proposed spatially adaptive PCA denoising
scheme works directly on the CFA image and it can effectively
exploit the spatial and spectral correlation simultaneously.

The rest of the paper is structured as follows. Section II briefly
reviews the concept of PCA. Section III presents the PCA-based
denoising algorithm for CFA images. The motivation and de-
sign characteristics are described in detail. In Section IV, ex-
perimental results are provided to demonstrate the efficiency of
the proposed method for single-sensor CFA image denoising.
Finally, conclusions are drawn in Section V.

II. PRINCIPAL COMPONENT ANALYSIS (PCA)

PCA [38], [39] is a classical de-correlation technique which
has been widely used for dimensionality reduction with direct
applications in pattern recognition, data compression and noise
reduction. Denote by an -compo-
nent vector variable and denote by

...
...

...
...

(2-1)

the sample matrix of , where , , is the discrete
sample of variable , . The th row of sample
matrix , denoted by , is the sample
vector of . The mean value of can be estimated as

, and thus, the mean value vector
of is

(2-2)

Subtracting from results in the centralized vector
. The element of is and the sample vector of

is , where .
Accordingly, the centralized matrix of can be expressed as
follows:

...
...

...
...

...
(2-3)

The co-variance matrix of is calculated as
.

The goal of PCA is to find an orthonormal transformation
matrix to decorrelate , i.e., and the co-variance
matrix of is diagonal. Since is symmetrical, its singular
value decomposition (SVD) can be written as

(2-4)

where is the orthonormal
eigenvector matrix and is the di-
agonal eigenvalue matrix with . The
terms and are the eigenvectors
and eigenvalues of . By setting

(2-5)

can be decorrelated, i.e., and
.
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Fig. 1. Single-sensor imaging concept: (a) Bayer CFA pattern; (b) a CFA
image; (c) demosaicked full-color version of (b).

Besides decorrelation, another important property of PCA is
that it is optimal by using a subset of its principal components to
represent the original signal. For example, one could use the first

most important eigenvectors to form the transformation matrix
as , . Then the transformed
dataset will be of dimension . Compared with
the original dataset , which is , the dimension of is
reduced while preserving most of the energy of . This property
is also known as optimal dimensionality reduction [39].

The optimal dimensionality reduction property of PCA can
be used for noise removal. Generally speaking, the energy of a
signal will concentrate on a small subset of the PCA transformed
dataset, while the energy of noise will evenly spread over the
whole dataset. Therefore, by preserving only the most impor-
tant subset of the transformed dataset and then conducting the
inverse PCA transform, the noise could be significantly reduced
while the signal being well recovered. In Section III, this idea
will be used to build the proposed direct CFA image denoising
solution.

III. PCA-BASED DENOISING OF CFA MOSAIC IMAGES

A. CFA Sensor Noise
Without loss of generality, the widely used Bayer pattern [1]

is considered in this paper and the algorithm can be easily ex-
tended to other CFAs. In the Bayer pattern [Fig. 1(a)], the red

, green and blue samples are interlaced, with the
double sampling frequency of the green channel compared to
the red and blue channels. The purpose of CDM is to interpolate
the two missing color components at each pixel location in the
CFA image, thus restoring the full-color image from the CFA
sensor readings. Fig. 1(b) shows a CFA image and Fig. 1(c) de-
picts the corresponding demosaicked image.

Most CDM algorithms [2]–[10], [14]–[17] operate on the
assumption of noise-free CFA data. This assumption, however,
is invalid in practice. Digital color imaging devices, ranging
from the low cost and/or resource constrained ones (e.g.,
wireless camera phones) to the high-end ones (e.g., digital
cinema cameras) produce images with modest to severe noise,
making digital photographs not always visually pleasing. It
is accepted that the corrupted noise in charge-coupled device
(CCD) and complementary-symmetry/metal-oxide semicon-
ductor (CMOS) sensors is signal-dependent [27], [35], [36].
Foi et al. [35] pointed out that the noise variance depends on
the signal magnitude, while Poisson, film-grain, multiplicative
and speckle models can be used to model the noise. In [27], Hi-
rakawa modeled the raw sensor output as ,

where is the desired noiseless signal, is unit
Gaussian white noise and and are sensor dependent
parameters. Although this noise model may fit some sensors
better, the design of denoising algorithms may be complex and
the computational cost may be very expensive.

One simple and widely used noise model is the signal-inde-
pendent additive noise model . It is a special case of
the signal-dependent noise model with and commonly
used to approximate the Poisson noise in CCD/CMOS sensors.
Since the additive noise model is simple to use in the design and
analysis of denoising algorithms, it has been widely used in the
literature [19]–[26]. The signal-dependent noise characteristic
can be compensated by estimating the noise variance adaptively
in each local area [33].

In [30], Zhang et al. proposed a channel-dependent additive
noise model, which is a tradeoff between the signal-dependent
noise model and the signal-independent additive noise model,
by considering the different types of color filters in the CFA

(3-1)

where , , and are the noise signals in the red, green and
blue locations of the CFA image (referring to Fig. 1). The terms
, , and are the desired sample values to be recovered from

their noisy versions , , and . The second order statistics of
, , and , i.e., the corresponding standard deviations ,
and , may be different but the noises are assumed to be

mutually uncorrelated.
We adopt the channel-dependent model in the design of the

proposed CFA image denoising algorithm. It allows the noise
statistics to vary in different channels because a given type of
sensors behaves differently in different wavelengths. On the
other hand, in channel-dependent noise model the sensor noise
is independent of signal within each channel to simplify the
denoising algorithm. This simplification does not materially
degrade the visual quality of denoised images because the
signal to noise ratio (SNR) is high anyway when the signal
amplitude is high.

B. CFA Block-Based Spatially Adaptive PCA

A conventional solution to removing the effect of noise on
the demosaicked full color image is to denoise after CDM.
However, if noise is untreated in the demosaicking step, the
noise caused color artifacts can be very hard to remove in
the subsequent denoising process. The CDM process will
complicate the noise characteristics by blending the noise
across channels. Some joint demosaicking-denoising schemes
have been reported [27], [30]. Since both demosaicking and
denoising can be viewed as to estimate a sample from its
neighbors, Hirakawa and Parks [27] adaptively computed a
filter to accomplish the two tasks simultaneously by using the
TLS technique under some constraints of the CFA pattern.
Zhang et al. [30] first estimate the color difference signal from
the noisy CFA image and then reconstruct the green channel
by using a specific wavelet denoising algorithm. The red/blue
channel is then readily recovered. Both the two schemes per-
form better than many demosaicking first and denoising later
methods.
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Fig. 2. Illustration of the variable block and training block in the spatially adap-
tive PCA-based CFA image denoising.

The other strategy to remove noise from CFA data is to im-
plement denoising before demosaicking. Some apparent advan-
tages of this pipeline are that it can reduce the noise-caused color
artifacts, and the denoising and demosaicking algorithms can
be independently designed. The difficulty of this strategy lies
in the red, green and blue interlaced CFA pattern, which blocks
the application of many existing effective monochromatic image
denoising methods. One simple solution is to partition, for ex-
ample, the big Bayer pattern CFA image into one red, one blue
and two greens sub-images and then denoise them separately as
gray level images. This solution, however, does not exploit the
spectral correlation within red, green and blue channels.

To fully exploit the correlation among the three color chan-
nels, we propose a spatially adaptive denoising algorithm that
works directly on CFA mosaic images using the PCA technique
introduced in Section II. In [26], Muresan and Parks proposed a
PCA-based denoising algorithm for monochromatic images. In
this paper, we improve the algorithm and extend the PCA-based
denoising to mosaic CFA images by considering the special
structures of CFA patterns. Following the underlying layout of
the CFA, such as the Bayer pattern considered throughout this
paper, we define a block which consists of at least one red, one
green and one blue sample. We call this block the variable block
because the elements in this block will be used as the variables
in PCA training. For example, Fig. 2 shows the variable block
with four elements: one red, one blue and two green samples.
We stretch the block to a column vector and denote it as

(3-2)

Please note that this four-element variable block is used here
for the sake of simplicity of the discussion to be followed.
In practical implementations, this block can be bigger, for
example, 4 4, 6 6, etc.

Variable vector will be associated with a block which con-
tains enough samples for training. This training block should be
much bigger than the variable block in order to ensure that the
statistics of the variables can be reasonably calculated. Wher-
ever any part of the training block can match the variable block,
the pixels of that part will be taken as the samples of the variable

vector. For instance, in Fig. 2, there are nine samples for each
element of . Specifically, variable is associated with green
samples at locations (1,1), (1,3), (1,5), (3,1), (3,3), (3,5), (5,1),
(5,3), and (5,5). The samples of other variables can be obtained
correspondingly. It is reasonable to assume that those samples
are independent draws of the variable because they are acquired
at different spatial locations. Let be the row vector con-
taining all the samples associated with whereas , , and

denote similar row vectors for , and , respectively.
The whole dataset of will be .

Denote by , , , and the mean values of vari-
ables , , and , respectively. Those mean values can
be estimated as the average of all the samples in , ,
and , respectively. The mean vector of can be denoted as

. is centralized as
and
is accordingly the centralized dataset of .

With the additive noise model, the variable of noisy observa-
tion of can be expressed as follows:

(3-3)

where is the noise variable
vector. Zero mean noise characteristics dictate that the mean
vector of is the same as that of , i.e., .
Note that, in practice, is calculated from the samples of , but
not . The centralized vector of is then .

Similar to , we denote by
the dataset of additive channel-dependent noise , where
and come from green channel noise , comes from
red channel noise and from blue channel noise . The
available measurements of noiseless dataset is then

. We subtract the mean value from to get the centralized
dataset of

(3-4)

Now the problem transforms to estimate from the noisy
measurement . Suppose we have got the estimated dataset of

, denoted by , then the samples in the training block are
denoised. The central part of the training block can be extracted
as the denoising block because boundary samples do not usually
contribute to the denoising performance as much as the samples
from the central part. The whole CFA image can be denoised by
moving the denoising block from top left to bottom right. The
way of removing the noise from using PCA techniques will
be discussed in the following.

C. Denoising in PCA Domain

As mentioned in Section II, the optimal dimension reduction
property of PCA can be used to reduce noise. By computing the
covariance matrix of , the optimal PCA transformation ma-
trix for can be obtained by using (2-4) and (2-5). However,
the available dataset is noise corrupted so that cannot be
directly computed. Fortunately, can be estimated using the
linear noise model .
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Assuming that training samples are available for each el-
ement of , the covariance matrix of can be estimated using
maximal likelihood estimation (MLE)

(3-5)

Since the signal and noise are uncorrelated, items
and will be nearly zero matrices which reduces the above
expression of to the following:

(3-6)

where and are the co-
variance matrices of and , respectively.

Estimating from requires is known. With the noise
vector and the fact that the four
elements of are uncorrelated with each other, we have

(3-7)

where , , and are the standard deviations of the channel-
dependent noise , and in (3-1). With (3-6) and (3-7), the
covariance of can be calculated as . Thus, there
can be some negative values of in the diagonal positions. In
the implementation, we will replace the negative values with
zero or a small positive number, e.g., 0.0001.

Now we can decompose by using (2-4) as

(3-8)

where is the 4 4 orthonormal
eigenvector matrix and is the
diagonal eigenvalue matrix with . The
orthonormal PCA transformation matrix for is then

(3-9)

It should be noted that if the noise levels of , , and are
the same, i.e., , then will be an identity matrix
with a scaling factor . In this case, it can be proved that the
SVD of and will give the same eigenvector matrix
and, hence, the same PCA transformation matrix . However,
when , , and are different, can not be scaled to an
identity matrix and, therefore, and will yield different
eigenvector matrices by SVD.

Applying to the noisy dataset resulting in the
following:

(3-10)

where is the decorrelated dataset for signal and
is the transformed noise dataset for noise. Since

signal and noise are uncorrelated, the covariance matrix
of is

(3-11)

where

(3-12)

(3-13)

are the covariance matrices of and , respectively.
In the PCA transformed domain in (3-10), most energy

of concentrates on the several most important components,
i.e., the first several rows of whereas the energy of noise
is distributed in much more evenly. Therefore, resetting the
last several rows (the least important components) of as zeros
will preserve well the signal while removing the noise .
This operation is actually based on the optimal dimension reduc-
tion property of PCA, as discussed in Section II. We denote by

the dimension reduced (by resetting the last several rows as
zeros) dataset of , and can be written as ,
where and represent, respectively, the dimension re-
duced datasets of and . Similarly, the corresponding co-
variance matrices, denoted as , , and , are related as

.

The noise in dimension reduced dataset can be further
suppressed by using linear minimum mean squared-error esti-
mation (LMMSE). The LMMSE of , i.e., the th row of ,
is obtained as

(3-14)

where . Applying (3-14)

to each nonzero row of yields the full denoised dataset .
Now, the denoised result of the original dataset , i.e., the es-
timation of unknown noiseless dataset , can be obtained by
transforming back from PCA domain to time domain as
follows:

(3-15)

Reformatting results in the denoised CFA block.
In the proposed PCA-based CFA image denoising algorithm,

we need to set two parameters: the sizes of variable block and
training block. (The denoising block can be set as the same as or
smaller than the variable block.) Different settings of the two pa-
rameters lead to different results and have different complexity.
If the resolution of the image is low, the size of the variable block
should be relatively small because the spatial correlation of low
resolution images will also be low. Empirically, we found that
setting the variable block as 4 4, 6 6 or 8 8 can achieve
good results for most of the testing images. The size of training
block can be 16 (or higher) times that of the variable block, e.g.,
24 24 or 30 30 for a 6 6 variable block.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 10, 2009 at 01:06 from IEEE Xplore.  Restrictions apply. 



802 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 4, APRIL 2009

Fig. 3. First row, left to right: Smooth area of an original image; the noisy CFA image of it; the PCA-based denoising result and the finally demosaicked image.
Similarly, the second row shows an example of the phantom artifacts along edge boundaries with smooth background.

D. CFA Image Decomposition and Training Sample Selection

The PCA-based denoising scheme described in the previous
sections can be directly applied to the noisy CFA image for
noise suppression. Although the noise can be effectively re-
moved, in the experiments we found two problems of the pro-
posed method. First there can be some visible noise residual
in the smooth areas. Second there can be some phantom arti-
facts along edge boundaries with smooth background. Fig. 3(a)
and (b) shows two examples respectively. In the first row, Fig. 3
(a-1)–(a-4) shows the cropped smooth area of an original image,
the noisy CFA image of it, the denoised CFA image by the pro-
posed PCA-based denoising scheme and the demosaicking re-
sult of the denoised CFA (the demosaicking scheme [9] is used
here), respectively. In the second row, Fig. 3 (b-1)–(b-4) shows
an example of the phantom artifacts along the boundary between
edges and smooth background. Such noise residual and phantom
artifacts make the reconstructed color image visually unpleased
in some areas.

The noise residual in the smooth areas is mainly caused by
the relatively low local signal to noise ratio or contrast. Since
there are no strong edge structures in the smooth areas, there
are fewer significant principal components in the PCA domain,
and, hence, the discrimination between noise and signals is not
as effective as that in the areas with strong edges. In addition,
the training samples for the red, green and blue variables are
collected from the local window according to the Bayer pattern.
The mean values of the variables are computed as the average
of the samples and then subtracted from the sample matrix for
covariance calculation. However, in this way, the neighboring
red and green pixels will not contribute to the mean value es-
timation of the blue variable, and so do for red and green vari-
ables. The biases in mean value estimation will lead to estima-

tion bias of co-variance matrix and, hence, the PCA transfor-
mation matrix.

The reason for the phantom artifacts along edge bound-
aries with smooth background is as follows. The proposed
PCA-based denoising algorithm will use a local training block
to estimate the PCA transformation matrix. All the possible
samples in the training block are used in the calculation. How-
ever, sample structures may change within a block, especially if
the block contains object boundaries with smooth background.
Involving such samples in the PCA training may lead to much
bias in the estimation of PCA transformation matrix and con-
sequently reduce the denoising performance, e.g., generating
many phantom artifacts.

To overcome the above two problems, we propose two
preprocessing steps before applying the PCA-based denoising.
First, we decompose the noisy CFA image into two parts: the
low-pass smooth image and the high-pass image. Denote by
the noisy CFA image. We use a 2-D Gaussian low-pass filter

to smooth

(3-16)

The high-pass image is then obtained as

(3-17)

With a suitable scale parameter in the Gaussian filter, the
low-pass image will be almost noiseless and most of the noise
is contained in the high-pass output , which also contains the
image edge structures to be preserved. Since is almost noise-
less, we do not make further processing on it. The PCA-based
CFA denoising scheme will be applied to the high-pass image

, where the noise will be dominant in the smooth areas and
they can then be better suppressed by LMMSE filtering in the
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Fig. 4. First row, from left to right: Smooth area of an original image; the denoised and demosaicked image without image decomposition and training sample se-
lection; the denoised and demosaicked image with image decomposition and training sample selection. Similarly, the second row shows the results on the boundary
between edges and smooth background.

Fig. 5. Images used in the experiment. (a) Test image fence; (b) test image houses; (c) a real CFA image resolution captured by single-sensor camera.

PCA domain. Denote by the denoised image of , the final
denoised CFA image is obtained as . It can be
validated that in a local window of , the mean value of red,
green or blue variable will be nearly zero for smooth areas. In
some sense, the Gaussian smoothing operation can be viewed
as a procedure to better estimate the mean values of red, green
and blue variables so that the noise residual in smooth areas can
be reduced effectively.

Now let’s focus on how to reduce the phantom artifacts
around edge boundaries with smooth background. As men-
tioned before, such artifacts are caused by the inappropriate
training samples in the training block. Intuitively, one solution
to this problem is to select the similar blocks to the underlying
variable block and use them only but not all the blocks for
PCA training. Such a training sample selection procedure can
better estimate the co-variance matrix of the variable block and,
hence, lead to a more accurate PCA transformation matrix.

Finally, image local edge structures can be better preserved by
removing the phantom artifacts.

Denote by the variable block in and by the associated
training dataset generated from the training block centered on

(refer to Section III-B). Each column of matrix can be a
sample vector of . In the method described in Section III-C,
the whole dataset is used for training. Here we select the
best samples from for PCA transformation. Denote by ,

, the th column of , and denote by the
sample vector containing the samples at the variable block .
The noiseless counterparts of and are denoted as and

, respectively. The length of vectors is . The distance
between and can be computed as

(3-18)
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Fig. 6. Denoising results of CFA image “fence.” (a) Original CFA image; (b) noisy CFA image (� � ��, � � ��, � � ��); difference between the denoised
and original CFA images by using methods (c) in [24] (as a whole image, ���	 � �
�
� ��); (d) in [24] (as four sub-images, ���	 � ���

 ��); (e) in [25]
(as a whole image, ���	 � ����� ��); (f) in [25] (as four sub-images, ���	 � ����
 ��); and (g) the proposed adaptive PCA-based CFA denoising method
����	 � ����
 ���.

where . Obviously, the smaller the
distance is, the more similar is to .

Therefore, we select the training samples based on its as-
sociated distance . If

(3-19)

then will be selected as one training sample of , where is
a preset threshold and it can be set about 5 in implementation.
Suppose totally samples are selected. In practice, we need a
large enough to guarantee a reasonable estimation of covari-
ance matrix of . Therefore, if , we will use the first
100 that give the smallest distance as the training samples.
Denote by the dataset composed of the selected sample

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 10, 2009 at 01:06 from IEEE Xplore.  Restrictions apply. 


















