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Sphere Decoding with a Probabilistic Tree Pruning
Byonghyo Shim, Member, IEEE, and Insung Kang, Member, IEEE,

Abstract—In this paper, we present a near ML-achieving
sphere decoding algorithm that reduces the number of search
operations in the sphere-constrained search. Specifically, by
adding a probabilistic noise constraint on top of the sphere
constraint, a more stringent necessary condition is provided,
particularly at an early stage, and hence branches unlikely to
be survived are removed in the early stage of sphere search.
The trade-off between the performance and complexity is easily
controlled by a single parameter, so-called pruning probability.
Through the analysis and simulations, we show that the com-
plexity reduction is significant while maintaining the negligible
performance degradation.

Index Terms—Sphere decoding, maximum likelihood decoding,
probabilistic noise constraint, sphere constraint, lattice, prob-
abilistic tree pruning, multiple-input-multiple-output (MIMO)
system

I. INTRODUCTION

The relationship between the transmitted symbol vector and
the received signal vector of the communication system is
commonly described by

yc = Hcsc + vc (1)

where sc is the transmitted symbol vector whose components
are elements of a finite set of complex numbers, yc is the
complex received signal vector, vc is the complex noise
vector whose components are i.i.d. with a circularly symmetric
complex Gaussian distribution, and Hc is a complex channel
matrix. Under the assumption that the channel matrix is
known, the maximum likelihood (ML) decoding problem is
formulated as

max
sc

Pr(yc |Hc, sc). (2)

Equivalently,

min
sc
||yc − Hcsc ||2. (3)

Although the ML decoding is optimal for achieving the
minimum error probability, it has not been paid much attention
due to the exponential complexity in the dimension of the
transmitted symbol vector, which results in an NP-hard prob-
lem [1], [5]. Recently, this problem has been re-visited due
to the lower complexity decoding method proposed by Fincke
and Pohst [1]–[7], popularly referred to as Sphere Decoding
(SD) algorithm. The SD algorithm has received considerable
attention as an effective detection scheme for MIMO systems
in wireless channels [8], [14]–[16].

The principle of the SD algorithm is to search the nearest
lattice point to the received signal vector within a sphere
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radius. A condition that the transmitted symbol vector should
be within a sphere centered at the received signal vector is
called the sphere constraint. By using QR decomposition,
the skewed lattice Hcsc is linearly transformed into another
lattice Rsc. Since R has an upper triangular structure, the
transformed lattice is more suitable for searching. The nearest
lattice point in the transformed lattice to the received signal
vector, i.e., ML solution, is found by enumerating all the
lattice points inside the sphere. Although the SD algorithm
offers significant reduction in computational complexity, it still
requires considerable amount of computations compared with
MMSE or DFE based algorithms [5], [9], [19].

There have been some studies on the modification, mainly
on the change of radius, of the SD algorithm to reduce the
computational complexity. In [7], [9], a simple method to
increase radius search (IRS) was proposed. In this approach,
the SD algorithm starts with an initial radius r1. When the
search fails, the radius is increased to r2 (r2 > r1) and this
search is repeated until the ML solution is found. In [11],
Wanlun and Giannakis improved this method by reusing the
path information of the incomplete tree in case of the search
failure. By identifying the most promising paths according to
the average distance metric whenever the search fails, they
avoided the redundant computation needed for starting the
search again. Gowaikar and Hassibi proposed an algorithm
called increasing radii algorithm (IRA) [12], [13]. While
maintaining the basic structure of IRS, they further provided
the schedule of radii rε,i = i + δε log m for each layer of the
search where ε is the probability that the transmitted symbol
is not in the set being searched and δε is the scaling factor
depending on ε. In the first run, rε1,i (i = 1, · · · , m) are being
used. When search fails, then rε2,i are used with ε2 smaller
than ε1 to generate bigger radius.

Our approach lies on an extension of the approaches in [12],
[13] in the sense that we pursue further reduction of the com-
putational complexity by exploiting an aggressive tree pruning
strategy, which is realized by controlling the sphere radius per
layer. Motivated by the fact that the sphere constraint of the
SD algorithm offers a loose necessary condition, especially
in the early layers of search, we model the contributions
of unvisited layers by random variables and impose pruning
conditions based on the statistics of these random variables.
While the methods in [12], [13] try to obtain the rε,i from
ε, the pruning conditions in this paper are obtained by the
pruning probability which controls the level of pruning. These
additional conditions to the sphere constraint are collectively
called probabilistic noise constraint. The probabilistic noise
constraint tightens the necessary condition in each layer,
particularly in the early layers. As a result, branches that
are unlikely to survive are pruned before they are traced
further into the child nodes. In this general framework, the
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proposed SD algorithm, henceforth referred to as probabilistic
tree pruning sphere decoding (PTP-SD) algorithm, can be
explained as a hybrid of the sphere constraint and the noise
constraint tree search algorithms. In the early layers, the noise
constraint affects more, and in the later layers, the sphere
constraint dominates the search. Further, the SD algorithm is
interpreted as a special case of the PTP-SD algorithm where
the pruning probabilities are set to zero.

This paper is organized as follows. In Section II, the Fincke
and Pohst algorithm and its modified strategy called Schnorr-
Euchner enumeration are briefly reviewed. In Section III, the
proposed PTP-SD algorithm is presented. In Section IV, a
lower bound analysis of the expected complexity for both
SD and PTP-SD algorithms is provided. Section V presents
simulation results for MIMO systems and comparisons with
[13]. It is shown that the PTP-SD algorithm provides consid-
erable complexity reduction with negligible performance loss.
Section VI concludes this paper.

II. SPHERE DECODING

A. Fincke and Phost algorithm

Lattice codes in Fincke and Pohst algorithm are constructed
in an n-dimensional Euclidean space Rn. Hence, the complex
number signal model in (1) needs to be reformulated to a
real number signal model. We define the real signal model
components as follows:

y =
[<(yc)
=(yc)

]
, s =

[<(sc)
=(sc)

]
, v =

[<(vc)
=(vc)

]
,

H =
[<(Hc) −=(Hc)
=(Hc) <(Hc)

]
(4)

where <( · ) and =( · ) are the real and imaginary parts of its
argument. Then the real number signal model is given by

y = Hs + v (5)

where y ∈ Rn, s ∈ Λ ⊂ Zm, v ∈ Rn, and H ∈ Rn×m.
Fincke and Pohst algorithm is summarized as follows: Let

c0 be the radius square of an n-dimensional sphere S(y,
√

c0)
centered at y. The ML solution is the nearest lattice point
to y. In order to find the ML point, instead of searching all
lattice points in Λ, Fincke and Pohst algorithm searches the
lattice points Hs inside of the sphere, i.e., S(y,

√
c0)∩Λ. This

necessary condition on the ML solution can be expressed as

c0 ≥ ||y − Hs ||2. (6)

Note that (6) has no special structure to make the search
convenient. In order to make a structure easy for searching,
we first perform QR-decomposition of H as

H = [Q U]
[

R
0

]
(7)

where R is an m ×m upper triangular matrix with positive
diagonal elements, 0 is an (n−m)×m zero matrix, and Q and
U are n×m and n× (n−m) unitary matrices. Substituting
(7) in (6), we have

d0 ≥ ||y′ − Rs ||2 (8)

where y′= QT y and d0 = c0 − ||UT y||2. We denote
√

d0 as
modified sphere radius. Due to the upper triangular R matrix,
y′ − Rs has a structure enabling the progressive search as



y′1
y′2
...

y′m



−




r1,1 r1,2 · · · r1,m

0 r2,2 · · · r2,m

...
. . .

...
0 0 · · · rm−1,m

0 0 · · · rm,m







s1

s2

...

sm




.

Hence, (8) can be expressed as

d0 ≥
m∑

j=1

( y′j −
m∑

k=j

rj,ksk )2 (9)

= (y′m − rm,msm)2 + (y′m−1 −
m∑

k=m−1

rm−1,ksk)2 + · · · .

In the Viterbi algorithm parlance, terms in the righthand side
correspond to the branch metrics. Since it is natural to start
the search from the bottom layer and trace upward, with a
reference of the bottom layer as the first layer, the recursive
relationship becomes

Pm+1 = 0 (10)
Pk = Pk+1 + Bk, k = m,m− 1, · · · , 1 (11)

Bk = ( y′k −
m∑

j=k

rk,j sj )2 (12)

where Pk is the (m − k + 1)-th layer path metric and Bk

is the (m − k + 1)-th layer branch metric. Since Pk and Bk

are functions of sk, · · · , sm, we hereby denote Pk(sm
k ) and

Bk(sm
k ) when an explicit dependency is desired.

For the first layer (the bottom layer), the necessary condition
for Rs being inside the new sphere, S(y′,

√
d0), is

(y′m − rm,msm)2︸ ︷︷ ︸
path metric Pm = branch metric Bm

≤ d0. (13)

The corresponding range of sm is
⌈

y′m −√d0

rm,m

⌉
≤ sm ≤

⌊
y′m +

√
d0

rm,m

⌋
(14)

where d · e and b · c are the ceiling and floor of its argument.
In general, the necessary condition for the (m−k+1)-th layer
is

Pk = Pk+1 + Bk(sm
k ) ≤ d0. (15)

Substituting (12) into (15), we have

 y′k −

m∑

j=k+1

rk,j sj − rk,k sk




2

≤ d0 − Pk+1. (16)

The corresponding range of sk is expressed as

sk,min ≤ sk ≤ sk,max (17)
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where

sk,min =




1
rk,k

(y′k −
m∑

j=k+1

rk,j sj −
√

d0 − Pk+1 )




(18)

sk,max =

 1
rk,k

(y′k −
m∑

j=k+1

rk,j sj +
√

d0 − Pk+1 )

 . (19)

The lattice points satisfying (17) are searched to find ML
solution. If no lattice point satisfying (17) for all k is found,
the search can restart with a larger sphere radius. Clearly, how
to choose an initial sphere radius will affect the complexity
and performance. Refer [7], [9] for more detail.

B. Schnorr-Euchner Enumeration

In [1], [2], searching order in each layer is based on the lex-
icographic ordering called Pohst enumeration, which checks
the candidate in the order of sk,min, sk,min + 1, · · · , sk,max.
The complexity can be further reduced by Schnorr-Euchner
enumeration [4]–[6], where the candidates are sorted and ex-
amined based on their path metric values. Recall that the path
metric is expressed as Pk = Pk+1 +Bk and Pk+1 is common
for all child nodes having the same parent, so the ordering is
effectively based on the branch metric Bk(sm

k ). The unknown
in the branch metric Bk(sm

k ) is sk ∈ {sk,min, · · · , sk,max}
with the cardinality to be Ns = sk,max − sk,min + 1. The
candidates ordered by Schnorr-Euchner strategy are denoted
as

so
k,1, so

k,2, · · · so
k,Ns

(20)

where i > j implies that Bk(so
k,i) ≥ Bk(so

k,j). The starting
point is given by

so
k,1 =




1
rk,k


y′k −

m∑

j=k+1

rk,j sj




 (21)

where d · c is a rounding operator. In a nutshell, the Schnorr-
Euchner (SE) enumeration has three distinct advantages over
the Pohst enumeration. First, since the search starts from the
candidate minimizing the branch metric, it is likely to find
the right path earlier than the Pohst enumeration. Second, if
the condition in (15) fails for so

k,i, then the condition will
also fail for so

k,j , j > i. That is, we can skip the search for
the rest of candidates in the layer, thereby saving complexity
considerably. Finally, the initial lattice point we obtain from
the SE enumeration is invariant if we set the sphere radius
sufficiently large. Therefore, the SD algorithm is free from
the initial radius selection. The initial point found by the SE
enumeration is called Babai point [17]. Once the Babai point
is found, the distance from the received signal vector to the
Babai point is used as a new sphere radius.

III. SPHERE DECODING WITH A PROBABILISTIC TREE
PRUNING

A. Sphere Constraint

In the SD algorithm, the branches with path metrics larger
than the given radius square are never searched, which reduces

the complexity of the SD algorithm over an exhaustive search
significantly. However, the necessary condition given by (9)
is too loose for bottom layers. For an example, see (13)
where only a single term needs to be less than or equal
to d0. As a result, branches more likely outside the sphere
are retained until the search proceeds to the upper layers.
Figure 1 illustrates a tree search for BPSK symbols where
the search starts with an initial radius of d0 = 100. In this
example, all four nodes of the second layer (k = 3) are being
searched even though the branches having the path metric 8 is
highly likely to be outside of the sphere. When the dimension
of the transmitted symbol vector and/or the constellation of
the transmitted symbol vector component becomes large, the
situation would be exacerbated [9], [10], [19].

B. Probabilistic Noise Constraint

Recall that the SD algorithm enumerates all the candidates
sm
1 satisfying

B1 + B2 + · · ·+ Bm ≤ d0. (22)

However, only the contributions of visited layers are counted
in the (m− k + 1)-th layer search as

Bk + · · ·+ Bm ≤ d0 (23)

The key idea behind the probabilistic noise constraint is to
use (22) instead of (23) for all layers in the search. Note,
however, the branch metrics B1, · · · , Bk−1 are unavailable in
the (m − k + 1)-th layer. Assuming perfect decoding, these
branch metrics are modeled by the noise statistics as

Bi = ( y′i −
m∑

j=i

ri,j sj )2 = v2
i for i = 1, · · · , k− 1, (24)

where vi is the i-th component of the noise vector v. From
(11) and (24), the new necessary condition becomes

m∑

i=1

Bi = Pk +
k−1∑

i=1

v2
i ≤ d0. (25)

Since v1, · · · , vk−1 are values from i.i.d. Gaussian distribu-
tion,

∑k−1
i=1 v2

i becomes the chi-square random variable with
k − 1 degrees of freedom. Denoting ψk−1 =

∑k−1
i=1 v2

i , we
have

Pk(sm
k ) + ψk−1 ≤ d0. (26)

In order to formulate a probabilistic pruning method using
a tightened necessary condition, we introduce a concept of
pruning probability. On each node visited, we examine the
probability that the rest of the tree is decoded perfectly so
that the remaining portion is a pure noise contribution. If
the probability of this event is too small and thus less than
a threshold, then we regard this event as a rare one and
prune the subtree starting from the the node. This concept
is mathematically equivalent to

Pr(ψk−1 ≤ d0 − Pk(sm
k )) < Pε (27)

where Pε is the pruning probability. Rewriting (27),
Fψk−1(d0 − Pk(sm

k )) < Pε where F (ψ; k) = γ( k/2,ψ/2 )
Γ(k/2) is
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Fig. 1. Illustration of sphere decoding in a binary tree employing depth-first search and SE enumeration. The numbers labelled for each node are the path
metrics. Note that the white nodes are skipped since they are outside of sphere constraint.

the cumulative distribution function of ψk, where Γ(k) and
γ(k, x) are Gamma function and incomplete Gamma function,
respectively [18]. Thus, we have

d0 − Pk(sm
k ) < F−1

ψk−1
(Pε). (28)

The (m− k + 1)-th layer pruning parameter, βk−1, is defined
by

βk−1 = F−1
ψk−1

(Pε). (29)

Rearranging the terms, we have

Pk( sm
k ) > d0 − βk−1. (30)

If the path metric of a node is larger than d0 − βk−1

then the combination of this path metric and unvisited noise
contribution is unlikely to satisfy the sphere constraint. Thus,
we prune all branches under the node. The tightened necessary
condition is given by

Pk(sm
k ) ≤ d0 − βk−1 = d̃0(k). (31)

This tightening of the necessary condition by the addition of
βk−1 is called the probabilistic noise constraint. Analogous to
(16), the necessary condition for the branch metric Bk(sm

k )
becomes

Bk(sm
k ) ≤ d̃0(k)− Pk+1(sm

k+1). (32)

It might be worth to make some qualitative remarks on the
PTP-SD algorithm.
• Both contributions of visited layers and unvisited layers,

Pk(sm
k ) and ψk−1, are considered in the search.

• When the per-layer pruning parameter (βk−1) increases,
the effective sphere radius (d̃0(k)) decreases as seen in
(31). Since βk−1 is an increasing function of Pε, this
indicates that larger βk−1 involves more aggressive tree
pruning.

• The SD algorithm can be explained as a special case of
the proposed PTP-SD algorithm where Pε = 0 and hence
βk−1 = 0 ∀ k.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ψ

F
 (

 ψ
 ;
 k

 )

k = 1
k = 3
k = 5
k = 7

β
1
 

β
3
 

ε 

β
5
 

β
7
 

P 

Fig. 2. βk and the CDF of ψk

• For the given pruning probability, βk−1 would be larger
leading to tighter sphere constraints in the early layers
because ψk−1 has larger degrees of freedom in the early
layers. This effect will diminish as βk−1 would get
smaller in the later layers (see Fig. 2).

• The number of additional operations required for the
PTP-SD algorithm is minimal. At most m values of
βk−1 are needed and they can be tabulated prior to
the operation. Also, only single subtraction operation is
required per layer to obtain d̃0(k).

The PTP-SD algorithm is described in Table I and the illus-
tration of a binary tree search is shown in Fig. 3. Comparing
with Fig. 1, we observe that more branches in the early layers
are removed from the search. For example, branches with large



IEEE TRANSACTION ON SIGNAL PROCESSING 5

path metrics (such as the branch with the path metric 8 in the
second layer) is removed from the tree before it is further
expanded into the third layer.

IV. COMPLEXITY ANALYSIS

In this section, we provide a complexity analysis of the
SD and PTP-SD algorithms. Our analysis is different from
[9] and similar to [19] in a sense that we obtain lower
bounds of the algorithms. The reason is that 1) the expected
complexity includes complicated integrals so that it is not
easy to evaluate the behavior quickly and 2) we are mainly
interested in the complexity comparison between the SD and
PTP-SD algorithms. Thus, instead of obtaining an asymptotic
rate for complexity as described in [19], we obtain a simple
expression having an explicit dependency of the sphere radius
to evaluate complexity difference between SD and PTP-SD. In
deriving the complexity, we do not count QR decomposition
complexity and only consider the complexity of the sphere
search. Nevertheless, since QR decomposition complexity is
well-known1, one can easily include this complexity into the
analysis. In addition, since the operations per node (branch
metric computations and comparisons) are equal for both
algorithms except one subtraction per layer to compute d̃0(k),
we consider the number of nodes visited N as a metric for
the complexity, which is given by

N = N1 + N2 + · · ·+ Nm (33)

=
m∑

l=1

∑
sm

l

1{Pl( sm
l ) < d0} (34)

where Nl is the number of nodes visited at the (m− l + 1)-
th layer and 1{X < α} is the indicator function equal to 1 if
X < α and 0 otherwise.

A. SD Complexity

Before developing the expression in (34), we consider a
system model with a real and square matrix H given by

y = Hs̃ + v (35)

where H ∈ Rm×m has i.i.d. entries ∼ N(0, σ2
h), v ∈ Rm

has i.i.d. entries ∼ N(0, σ2
v), and s̃ is the transmitted symbol

vector whose entries are i.i.d. and from the equiprobable set
S= {−L−1

τ ,−L−3
τ , · · · L−3

τ , L−1
τ }. Note that τ is a constant

to make E(|s̃1 +js̃2|2) to unity in complex modulation where
s̃1, s̃2 ∈ S . For example, τ = 1√

2
for QPSK and τ = 1√

10
for

16-QAM.
From this system model, the received SNR, denoted as ξ,

becomes

ξ =
E( ||Hs̃||2 )
E( ||v||2 )

=
E(̃sTHTHs̃)

E(vtv)
=

m2σ2
h

2mσ2
v

. (36)

1In QR-decomposition, a real matrix H is factored as orthogonal matrix Q
and upper triangular matrix R. In order to perform QR-decomposition, mod-
ified Gram-schmidt orthogonalization, Householder reflection, or sequence of
Givens rotations is popularly used. Refer [20]-[23] for detailed description of
the algorithm.

Hence,

σ2
h =

2ξσ2
v

m
. (37)

In addition, from (35), we have

||y − Hs || = ||H(̃s− s) + v ||
= ||R(̃s− s) + QTv || = ||R(̃s− s) + ṽ ||

where ṽ =QTv. Due to the use of the unitary matrix Q, the
statistics of ṽ remain unchanged. Defining the partial norm of
a vector x as ||x ||ml = (

∑m
i=l |xi|2)1/2, the path metric in

(11) becomes Pl = (||R(̃s− s) + QTv ||ml )2 and hence is a
function of random vectors sm

l , s̃m
l , and ṽm

l .

Lemma 1: The expected complexity at the (m − l + 1)-th
layer E[Nl] is lower bounded by

E[Nl] ≥ Lm−l+1 max
(

0, 1− E[Pl(̃sm
l , ṽm

l , sm
l )]

d0

)
(38)

Proof: In this proof, we slightly abuse the notations and
use bold face to emphasize random variables. From (34), we
have

E[Nl] = E[
∑
sm

l

1{Pl (̃sm

l ,ṽm

l ,sm
l ) < d0} ]

=
∑
sm

l

E[1{Pl (̃sm

l ,ṽm

l ,sm
l ) < d0} ]

(a)
= Lm−l+1

∑
sm

l

1
Lm−l+1

Pr(Pl(̃sm
l , ṽm

l , sm
l ) < d0)

(b)
= Lm−l+1Pr(Pl( s̃m

l , ṽm
l , sm

l ) < d0 ) (39)

where (a) is from

E[1{f(x,y) < α}] = Pr( f(x, y) < α ) (40)

and (b) is because Pr(sm
l ) = 1

Lm−l+1 and

Pr( g(x,y) < α) =
∑

y

Pr(g(x, y) < α) Pr(y)

Using the Markov inequality Pr(x ≥ α) ≤ E[x]
α , we have

Pr(x < α) ≥ max
(

0, 1− E[x]
α

)
. (41)

Notice that the max operation is being used to ensure a non-
negative bound for the probability. Using (39) and (41), we
have

E[Nl] ≥ Lm−l+1 max
(

0, 1− E[Pl(̃sm
l , ṽm

l , sm
l )]

d0

)

Our next step is to get the bound for E[Pl(̃sm
l , ṽm

l , sm
l )].

Lemma 2: E[ (s̃− s)2 ] = 2
3τ2 (L2 − 1)

Proof: One can easily show this by using the uniformity
of s̃ and s.

Lemma 3: E[Pl(̃sm
l , ṽm

l , sm
l )] is bounded by

E[Pl(̃sm
l , ṽm

l , sm
l )] ≤ (m− l + 1)

(
2m

3τ2
(L2 − 1)σ2

h + σ2
v

)
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TABLE I
PTP-SD ALGORITHM

Input: d0, β(k) ∀k , y′, and R
Output: ŝ
Variable: k denotes the (m− k + 1)-th layer being examined

ik denotes the lattice point index sorted by the SE enumeration in the (m− k + 1)-th layer.
1 : Set k = m, d̃0(m) = d0 − βm−1, Pm+1 = 0.
2 : Compute sk,max and sk,min by (18) and (19) with d0 replaced by d̃0(k).

Ns = sk,max − sk,min + 1.
Compute the branch metrics Bk(sm

k ) = Bk(sk, sm
k+1) ∀ sk ∈ [sk,min, sk,max] by (12).

Obtain the sorted sk,ik by the SE enumeration.
Set ik = 0.

3 : ik = ik + 1.
If ik > Ns, go to 4.
Else, go to 5.

4 : k = k + 1.
If k = m + 1, output the latest s and terminate.
Else, go to 3.

5 : Update the path metric Pk(sk,ik , sm
k+1) = Pk+1 + Bk(sk,ik , sm

k+1).
If k = 1, go to 6.
Else, k = k − 1, d̃k = d0 − βk−1 go to 2.

6 : If P1 < d0, save s and update d0 = P1.
Go to 3.

done

(β = 0)
k = 1

(β = 1)
k = 2

(β = 3)
k = 4

(β = 2)
k = 3

13 17 1210 1011 15

9 8

4

9

13

d = 100

d = 9

d = 10
7

8 9

2

10 12 13

10

3

8 8

912

16141112 15

Fig. 3. Illustration of PTP-SD in a binary tree.

Proof: See Appendix A.

Using the lemmas we have developed so far, we obtain the
lower bound of the expected complexity of the SD algorithm
in the following theorem.

Theorem 4: The expected complexity E[N ] is lower
bounded by

E[N ] ≥
m∑

l=1

Lm−l+1 ·

max

(
0, 1− (m− l + 1)( 4ξ

3τ2 (L2 − 1) + 1)σ2
v

d0

)
(42)

Proof: Using Lemma 1 and 3, and also noting that

max(0, 1− y) ≤ max(0, 1− x) for x ≤ y, we have

E[Nl] ≥ Lm−l+1 max
(

0, 1− E[Pl(̃sm
l , ṽm

l , sm
l )]

d0

)

≥ Lm−l+1 max

(
0, 1− (m− l + 1)

(
2m
3τ2 (L2 − 1)σ2

h + σ2
v

)

d0

)
.

Using (37), we further have

E[Nl] ≥ Lm−l+1 max

(
0, 1− (m− l + 1)( 4ξ

3τ2 (L2 − 1) + 1)σ2
v

d0

)

Finally, since E[N ] =
∑m

l=1 E( Nl ), we get (42).
From Theorem 4, we observe that the key factors affect-

ing the complexity are the received SNR ξ, the number of
modulation levels L, the matrix size m, and the sphere radius
d0. The fact that the complexity of the sphere decoding is a
decreasing function of the received SNR is matching with our
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intuition. In high SNR, the sphere decoding algorithm might
track the ML path directly so that the solution can be found
with minimal complexity2. In low SNR, however, the sphere
decoding algorithm will search most of the nodes in the tree
so that the resulting complexity becomes exponential.

It is interesting to mention that the complexity is a function
of the radius d0. From the receiver design viewpoint, the
number of levels, the matrix size, and the SNR are parameters
dependent on the transmitter and the channel characteristics.
Thus, a judicious control of the radius might be a useful way
to improve the complexity. Suppose the radius d0 is very large

d0 À m(
4ξ

3τ2
(L2 − 1) + 1)σ2

v (43)

then the complexity would be

E[N ] ≥
m∑

l=1

Lm−l+1(1− ε) = (1− ε)
Lm+1 − L

L− 1
(44)

for ε =
m( 4ξ

3τ2 (L2−1)+1)σ2
v

d0
¿ 1. Evidently, the complexity

would be exponential. On the contrary, we expect the small
complexity when d0 is small3. But this case would have no
meaning since no valid lattice point might exist inside the
sphere.

B. PTP-SD Complexity

Our goal in this subsection is to obtain an analytical bound
of the PTP-SD algorithm analogous to Theorem 4. First, we
take a look at the expression for the number of nodes at the
(m − l + 1)-th layer. Due to the different radius used per
layer, we need to enumerate the necessary conditions from
the first layer to the (m− l + 1)-th layer in evaluating Nl. Nl

is expressed as

Nl =
∑
sm

l

1{Bm(sm)<d̃0(m), ··· , Bm(sm)+···+Bl(sm
l )<d̃0(l)}. (45)

Our next step is to get the lower bound of E[Nl]. The
following lemma is useful for this step.

Lemma 5: The volume vol(xn
1 ) of non-negative values

x1, x2, ..., xn satisfying the following condition

x1 < a1

x1 + x2 < a2

· · ·
x1 + x2 + · · ·+ xn < an (46)

is always larger than the volume vol′(xn
1 ) satisfying

x1

a1
+

x2

a2
+ · · · xn

an
< 1 (47)

when 0 < a1 < a2 < · · · < an.

2The ML solution can be found in m steps and m − 1 more steps are
needed for termination so that E[N ] ∼ 2m−1 for very high SNR scenarios.

3Since (42) is the lower bound, even if d0 < ( 4ξ
3τ2 (L2 − 1) + 1)σ2

v and
hence E[N ] ≥ 0, it does not necessarily guarantee the small complexity in
a rigorous sense.

Proof: Multiplying a1 into (47)

x1 < a1 − (
a1

a2
x2 + · · · a1

an
xn) < a1

Thus the interval of x1 satisfying (47) is smaller than (46). In
a similar way, multiplying a2 into (47) then

x1 + x2 < a2 − (
a2

a1
− 1)x1 − a2

a3
x3 − · · · − a2

an
xn < a2

where a2
a1

> 1. By repeating this way, one can easily show that
the interval of xk satisfying (46) is always larger than that of
(47).
Using Lemma 5, we can get the lower bound of E[Nl].

Lemma 6: The expected complexity at the (m − l + 1)-th
layer E[Nl] is lower bounded by

E[Nl] ≥ Lm−l+1 ·

max

(
0, 1−

(
m∑

k=l

1
d̃0(k)

)
(

2m

3τ2
(L2 − 1)σ2

h + σ2
v)

)
(48)

Proof: See Appendix C.

Using Lemma 6, we can get the lower bound of the expected
complexity of the PTP-SD algorithm.

Theorem 7: The expected complexity E[N ] is lower
bounded by

E[N ] ≥
m∑

l=1

Lm−l+1 ·

max

(
0, 1− (m− l + 1)( 4ξ

3τ2 (L2 − 1) + 1)σ2
v

d̄′l

)
(49)

Proof: By denoting 1
d̄′l

= 1
m−l+1

∑m
i=l

1
d̃0(i)

, (48) is
rewritten as

E[Nl] ≥ Lm−l+1 ·

max

(
0, 1− (m− l + 1)

(
2m
3τ2 (L2 − 1)σ2

h + σ2
v

)

d̄′l

)

Using (37) and noting that E[N ] =
∑m

l=1 E(Nl ), we get
(49).

It is interesting to compare (42) and (49), which are the
lower bounds for the SD and PTP-SD algorithms, respectively.
The term 1

d0
of the SD algorithm is replaced by the arithmetic

mean of 1
d̃0(l)

, ..., 1
d̃0(m)

in the PTP-SD algorithm, i.e.,

1
d̄′l

=
1

m− l + 1

m∑

i=l

1
d̃0(i)

(50)

=
1

m− l + 1

m∑

i=l

1
d0 − βi−1

(51)

where β0 = 0. Since the complexity decreases with d̄′l and also
recall that β is an increasing function of Pε, we can deduce
that the complexity is reduced by increasing Pε. Notice also
that as discussed in Section III.B, Pε = 0 will result in the
same expression for (42) and (49).
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V. SIMULATION AND DISCUSSIONS

A. Simulation Setup

In this section, we observe the performance and complexity
of the proposed PTP-SD algorithm over the SD algorithm as
well as the MMSE equalizer. We also present the comparison
between PTP-SD and IRA [13]. The simulation setup is based
on the L2-QAM transmission over MIMO (multiple-input
multiple-output) systems in Rayleigh fading channel, where
the H matrix is modeled by independent Gaussian random
variables. We use 2 × 2, 4 × 4, and 10 × 10 MIMO system
and the levels of QAM are L = 4 (16-QAM), L = 8 (64-
QAM), and L = 2 (QPSK), respectively. The PTP-SD and
the reference SD algorithm in our study employs the depth-
first search and the SE enumeration. Hence, we set the initial
radius to d0 = ∞ and update it whenever a new candidate s
is found (i.e., if d0 ≥ ||y′ − Rs ||2). In addition, we consider
four different pruning probabilities (Pε = 0.05, 0.1, 0.2, and
0.4) for observing the trade-off between the performance
and complexity. As a metric for measuring performance and
complexity, we employ the symbol error rate (SER) and the
average number of nodes visited. We set our target SER to
10−2 and run at least 20, 000 channel realization for each SNR
point.

B. Simulations

We first consider a 2 × 2 MIMO system with 16-QAM
modulation. In this case, L = 4 and m = 4 after conversion
to the real number signal model. Hence, the worst case
complexity becomes 44 = 256. As shown in Fig. 4(a), as
SNR increases, the SD algorithm provides considerable gain
over the MMSE equalizer resulting in more than 3 dB gain at
SER of 10−1. The SD and PTP-SD algorithms, however, lie
on top of each other so that the performance loss of the PTP-
SD algorithm is negligible for all the pruning probabilities we
tested. Figure 4(b) plots the average number of nodes visited
for the SD and PTP-SD algorithms. Generally, we observe that
the complexity of the PTP-SD algorithm is smaller than that
of the SD algorithm and becomes smaller as Pε increases. For
example, the complexity reduction at SNR= 12 dB is around
25% with Pε = 0.4. When the SNR increases, as discussed
in Section IV-A, the SD algorithm tends to track the ML path
directly so that the complexity benefit of the PTP-SD becomes
smaller.

Next, we consider a 4 × 4 MIMO system with 64-QAM
modulation, which results in m = 8 and L = 8 in the real
number signal model. The worst case complexity becomes
Lm = 16, 777, 216. As shown in Fig. 5(a), the performance
gain of the SD algorithm over the MMSE equalizer is notice-
ably better than that of the 2 × 2 MIMO system providing
almost 6 dB gain at SER of 10−1. In addition, we see
that the performance difference between the SD and PTP-SD
algorithms is negligible till Pε = 0.2. Even at Pε = 0.4,
the performance loss of PTP-SD is around 0.4 dB. The
complexity curves in Fig. 5(b) shows similar but better results
than the 2 × 2 scenario so that the PTP-SD algorithm shows
considerable savings, particularly at low and mid SNR. The
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Fig. 4. Performance and complexity of SD algorithms for 2 × 2 MIMO
system with 16-QAM modulation: (a) SER and (b) complexity.

complexity reduction for Pε = 0.2 and 0.4 at 20 dB SNR are
28 and 33%, respectively.

We also examine the 10 × 10 MIMO system with QPSK
modulation (m = 20 and L = 2). Although the worst case
complexity is smaller than the previous case (220 < 88), the
complexity increase is substantial as shown in Fig. 6(b) since
the SE enumeration is less efficient for QPSK modulation than
64-QAM modulation,. For this case where the depth is far
larger than the width of the tree (m À L), pruning operations
become more effective. In fact, as seen from Fig. 5(b), the
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Fig. 5. Performance and complexity of SD algorithms for 4 × 4 MIMO
system with 64-QAM modulation: (a) SER and (b) complexity.

complexity reduction of the PTP-SD for the 10×10 system is
noticeably larger than that for the 4×4 system resulting in 76%
and 50% reduction in the complexity at 6 dB and 10 dB SNR,
respectively, for Pε = 0.2. The price is the performance loss
so that 0.7 dB loss is observed at the target SER. Note that to
achieve the performance close to ML receiver, one can choose
smaller Pε at the expense of slight increase in complexity.
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Fig. 6. Performance and complexity of SD algorithms for 10× 10 MIMO
system with QPSK modulation: (a) SER and (b) complexity.

C. Comparisions with IRA

In this subsection, we compare the PTP-SD with IRA
method [12], [13]. The ε and δ parameters for the radius sched-
ule of the IRA are chosen based on Table V in [13]. Although
the two methods are similar in principle, the resulting sphere
radius per layer is distinct since the radius selection of the
PTP-SD is developed from the pruning probability and that
of the IRA is derived from the probability that the detected
symbol is not the ML solution. Further, since the IRA relies
on pre-defined radius schedule and the radius of the PTP-SD is
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updated whenever a new candidate is found, we observe the
clear difference in the performance and complexity. Indeed,
as displayed in Fig. 5, 6, and 7, PTP-SD has a benefit in
complexity while the IRA is closer to the ML performance.
Also, it is interesting to note that the speed of complexity
reduction for the IRA is faster than that of the PTP-SD, in
particular for large system, so that the IRA method seems to
be useful for high SNR regime (e.g., m ≥ 20 and required
SER < 10−3). This is intuitively reasonable since the Babai
point can be a loose initial point for large systems so that
properly designed fixed radius schedule might be better than
the dynamic radius update with an arbitrary large initial radius.
However, since the complexity of the PTP-SD is smaller than
the IRA when SER > 10−3, PTP-SD might be more useful
for communication systems operating at low and middle SNR
regimes.

D. Simulation vs. Lower Bound Analysis

Finally, we compare the simulation results and lower bound
analysis in Section IV. In Fig. 8, we plotted the results for sys-
tem with 20× 20 MIMO and QPSK modulation. We observe
that the lower bound results are somewhat loose possibly due
to the simplification in the derivation (e.g., Markov inequality).
We can, however, see the agreement between the lower bound
analysis and the simulation for the relative difference between
SD and PTP-SD. In the low and mid SNR regime, the amount
of reduction in complexity is considerable and it becomes
smaller as the SNR increases. Since the simulation below the
tested SNR range (< 10 dB) is extremely time consuming,
derived expressions can be used as a tool for checking the
advantage of the PTP-SD over the SD algorithm.

VI. CONCLUDING REMARKS

In this paper, we investigated a reduced complexity SD
algorithm referred to as probabilistic tree pruning sphere de-
coding (PTP-SD). Motivated by the fact that the SD algorithm
does not fully utilize the sphere constraint during the early
layers of sphere search, we employed a probabilistic noise
constraint that tightens the sphere constraint at each layer. This
strengthens the ability to prune the branches unlikely to be
chosen as the ML solution. From the simulation, we observed
that the performance loss of the PTP-SD algorithm over
the SD algorithm is negligible while providing considerable
reduction in complexity. Other than the MIMO applications
we considered in this paper, the PTP-SD algorithm can be
extended to many applications requiring lower complexity
such as MLSE for multi-dimensional constellation systems,
MIMO MAP detectors with a priori feedback information [24],
or multi-stage decoding [27]. Also, PTP-SD can be combined
with preprocessing techniques such as the basis reduction and
detection ordering [5], [25], [26] to achieve further reduction
in complexity.
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Fig. 7. Performance and complexity of SD algorithms for 20× 20 MIMO
system with QPSK modulation: (a) SER and (b) complexity.

APPENDIX A
PROOF OF LEMMA 3

From (19), we have Bi(̃sm
i , ṽm

i , sm
i ) =

(
∑m

k=i rik(s̃k − sk) + ṽk)2 and thus

E[Bi(̃sm
i , ṽm

i , sm
i )] = E

[
(

m∑

k=i

rik(s̃k − sk) + ṽk)2
]

=
m∑

k=i

E[r2
ik]E[(s̃k − sk)2] + σ2

v

(a)
=

2
3τ2

(L2 − 1)
m∑

k=i

E[r2
ik] + σ2

v (52)
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where (a) is from Lemma 2.
Since Pl(̃sm

l , ṽm
l , sm

l ) =
∑m

i=l Bi(̃sm
i , ṽm

i , sm
i ), we fur-

ther have

E[Pl(̃sm
l , ṽm

l , sm
l )] = E[

m∑

i=l

Bi(̃sm
i , ṽm

i , sm
i )]

=
m∑

i=l

E[Bi(̃sm
i , ṽm

i , sm
i )]

(a)
=

2
3τ2

(L2 − 1)
m∑

i=l

m∑

k=i

E[r2
ik] + (m− l + 1)σ2

v

(b)
=

2
3τ2

(L2 − 1)
m∑

k=l

k∑

i=l

E[r2
ik] + (m− l + 1)σ2

v

(c)

≤ 2
3τ2

(L2 − 1)
m∑

k=l

E[||Rk||2] + (m− l + 1)σ2
v

(d)
=

2
3τ2

(L2 − 1)
m∑

k=l

E[||Hk||2] + (m− l + 1)σ2
v

=
2m

3τ2
(L2 − 1)(m− l + 1)σ2

h + (m− l + 1)σ2
v

where Rk and Hk are the k-th columns of R and H matrices,
respectively. Note that (a) is from (52) and (b) is the change
of the summation indices over the lower triangular portion of
R matrix. (c) is from the fact that

E[||Rk||2] =
k∑

i=1

E[r2
ik] ≥

k∑

i=l

E[r2
ik], (53)

and (d) is because Rk = QT Hk and hence E[||Rk||2] =
E[||QT Hk||2] = E[||Hk||2].

APPENDIX B
PROOF OF LEMMA 6

From (45), we have

E[Nl] = E[
∑
sm

l

1{Bm<d̃0(m),··· ,Bm+···+Bl<d̃0(l)} ]

(a)
=

∑
sm

l

Pr(Bm < d̃0(m), · · · , Bm + · · ·+ Bl < d̃0(l))

(b)

≥
∑
sm

l

Pr(
Bm

d̃0(m)
+

Bm−1

d̃0(m− 1)
+ · · ·+ Bl

d̃0(l)
< 1)

where the random variables (̃sm
l , ṽm

l ) are omitted for nota-
tional convenience and (a) is by (40). Since βk−1 is decreasing
for the same pruning probability for all layers, d̃0(k) =
d0−βk−1 becomes an increasing sequence and thus (b) holds
by Lemma 5. Since Bm

d̃0(m)
+ Bm−1

d̃0(m−1)
+ · · ·+ Bl

d̃0(l)
is a function

of sm
l , s̃m

l , and ṽm
l , we hereby denote it as g(sm

l , s̃m
l , ṽm

l ).
Then, we have

E[Nl] ≥
∑
sm

l

Pr( g(sm
l , s̃m

l , ṽm
l ) < 1)

≥ Lm−l+1Pr( g(sm
l , s̃m

l , ṽm
l ) < 1) (54)

Similar to Lemma 1, by using the Markov inequality, (54)
becomes

E[Nl] ≥ Lm−l+1 max(0, 1− E[g(sm
l , s̃m

l , ṽm
l )]). (55)

Recall from (19) that

E[Bi(̃sm
i , ṽm

i , sm
i )] =

2
3τ2

(L2 − 1)
m∑

k=i

E[r2
ik] + σ2

v (56)

and hence we have

E[ g(̃sm
l , ṽm

l , sm
l )] =

m∑

i=l

E[Bi(̃sm
i , ṽm

i , sm
i )]

d̃0(i)

=
2

3τ2
(L2 − 1)

m∑

i=l

m∑

k=i

E[r2
ik]

d̃0(i)
+ σ2

v

m∑

i=l

1
d̃0(i)

=
2

3τ2
(L2 − 1)

m∑

k=l

k∑

i=l

E[r2
ik]

d̃0(i)
+ σ2

v

m∑

i=l

1
d̃0(i)

(a)

≤ 2
3τ2

(L2 − 1)
m∑

k=l

k∑

i=l

E[r2
ik]

d̃0(k)
+ σ2

v

m∑

i=l

1
d̃0(i)

(b)

≤ 2
3τ2

(L2 − 1)
m∑

k=l

E[||Rk||2]
d̃0(k)

+ σ2
v

m∑

i=l

1
d̃0(i)

=
2

3τ2
(L2 − 1)

m∑

k=l

E[||Hk||2]
d̃0(k)

+ σ2
v

m∑

i=l

1
d̃0(i)

=
2m

3τ2
(L2 − 1)σ2

h

m∑

k=l

1
d̃0(k)

+ σ2
v

m∑

i=l

1
d̃0(i)

where Rk and Hk are the k-th columns of R and H matrices,
respectively. Notice that (a) is true because d̃0(k) = d0 −
βk−1 ≤ d̃0(i) = d0 − βi−1 for i ≤ k and (b) is by (53). This
completes the proof.



IEEE TRANSACTION ON SIGNAL PROCESSING 12

ACKNOWLEDGMENT

The authors would like to thank R. Gowaikar, W. Zhao,
and J. Choi for helpful discussions, and the associate editor
and the anonymous reviewers and for their careful reading
and valuable suggestions that improved the presentation of the
paper.

REFERENCES

[1] U. Fincke and M. Pohst, “Improved methods for calculating vectors of
short length in a lattice, including a complexity analysis,” Mathematics
of Computation, vol. 44, pp. 463-471, 1985.

[2] M. Pohst, “On the computation of lattice vectors of minimal length,
successive minima and reduced basis with applications,” ACM SIGSAM,
vol. 15, pp. 37-44, 1981.

[3] E. Viterbo, E. Biglieri, “A universal lattice decoder,” in GRETSI 14-eme
Colloque, Jun-les-pins France, Sept. 1993.

[4] C. P. Schnorr and M. Euchner, “Lattice basis reduction: Improved prac-
ticcal algorithms and solving subset sum problems,” Math. Programming,
vol. 66, pp. 181-191, 1994.

[5] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in
lattices,” IEEE Trans. Inform. Theory, vol. 48, pp. 2201-2214, Aug. 2002.

[6] M. O. Damen, H. Gamel, and G. Caire, “On maximum-likelihood
detection and the search for the closest lattice point,” IEEE Trans. Inform.
Theory, vol. 49, pp. 2389-2402, Oct. 2003.

[7] E. Viterbo, J. Boutros, “A universal lattice code decoder for fading
channels,” IEEE Trans. Inform. Theory, vol. 45, pp. 1639-1642, July 1999.

[8] M. O. Damen, A. Chkeif, and J. C. Belfiore, “Lattice codes decoder for
space-time codes,” IEEE Commun. Lett., vol. 4, pp. 161-163, May 2000.

[9] B. Hassibi and H. Vikalo, “The expected complexity of sphere decoding
Part I: Theory,” IEEE Trans. Signal Proc., vol. 53, pp. 2806-2818, Aug.
2005.

[10] H. Vikalo and B. Hassibi, “On the sphere-decoding algorithm II. Gener-
alizations, second-order statistics, and applications to communications,”
IEEE Trans. Signal Proc., vol. 53, pp. 2819-2834, Aug. 2005.

[11] W. Zhao and G. B. Giannakis, “Sphere decoding algorithms with
improved radius search,” IEEE Trans. Commun., vol. 53, no. 7, pp. 1104-
1109, July 2005.

[12] R. Gowaikar and B. Hassibi, “Efficient Statistical Pruning for Maximum
Likelihood Decoding”, IEEE ICASSP, Vol. 5, pp. 49-52, 2003.

[13] R. Gowaikar and B. Hassibi, “Statistical Pruning for Near-Maximum
Likelihood Decoding”, IEEE Trans. Sig. Proc., vol. 55, no. 6, pp. 2661-
2675, June 2007.

[14] E. Telatar, “Capacity of multi-antenna Gaussian channels,”. European
Trans. on Telecommunications, vol. 10 pp. 585-596, Nov. 1999.

[15] G. J. Foschini and M. J. Gans, “On Limits of Wireless Communication a
Fading Environment when Using Multiple Antennas,” Wireless Personal
Communications, vol. 6, pp. 311-335, March 1998.

[16] D. Gesbert, M. Shafi, D. Shiu, P. Smith, and A. Naguib, “From theory
to practice: an overview of MIMO space-time coded wireless systems,”
IEEE J. Select. Areas Commun., vol. 21, pp. 281-302, April 2003.

[17] L. Babai, On Lovasz’ lattice reduction and the nearest lattice point
problem, Combinatorica, vol. 6, pp. 1-13, 1986.

[18] S. M. Ross, Probability Models, Academic Press, 2000.
[19] J. Jalden and B. Ottersten, “On the complexity of sphere decoding in

digital communications,” IEEE Trans. Signal Proc., vol. 53, pp. 1474-
1484, April 2005.

[20] B. Hassibi, “An efficient square-root algorithm for BLAST,” in Proc.
Int. Conf. Acoustic, Speech, Signal Processing, June 2000, pp. 5-9.

[21] D. Wubben, R. Bohnke, V. Kuhn, and K. Kammeyer, “MMSE extension
of V-BLAST based on sorted QR decomposition,” in Proc. IEEE VTC,
Oct. 2003, pp. 508-512.

[22] G. H. Golub and C. Van Loan, Matrix Computations, The John Hopkins
University Press, 1993.

[23] T. K. Moon, W. C. Striling, Mathematical methods and algorithms for
signal processing, Prentice Hall, 1999.

[24] B. M. Hochwald and S. Brink, “Achieving near-capacity on a multiple-
antenna channels,” IEEE Trans. on Comm., vol. 51, pp. 389-399, March
2003.

[25] W. Zhao and G. B. Giannakis, “Reduced complexity closest point
decoding algorithms for random lattices,” IEEE Trans. Wireless Commun.,
vol. 5, no. 1, pp. 101-111, Jan. 2006.

[26] A. D. Murugan, H. El Gamal, M. O. Damen, and G. Caire, “A
unified framework for tree search decoding: rediscovering the sequential
decoder,” IEEE Trans. Inform. Theory, Mar. 2006.

[27] T. Cui and C. Tellambura, “Approximate ML detection for MIMO
systems using multistage sphere decoding,” IEEE Sig. Proc. Letters, vol.
12, pp. 222-225, March 2005.

PLACE
PHOTO
HERE

Byonghyo Shim (Member, IEEE) received the B.S.
and M.S. degrees in control and instrumentation
engineering from Seoul National University, Korea,
in 1995 and 1997, respectively and the M.S. degree
in mathematics and the Ph.D. degree in electrical
and computer engineering from the University of
Illinois at Urbana-Champaign, in 2004 and 2005,
respectively.

From Sept. 1997 to June 2000, He was an Officer
and an Full-time Lecturer in the department of elec-
tronics engineering at Korean AirForce Academy,

and from Jan. 2005 to Sept. 2007, he was a Staff Engineer in the modem group
at Qualcomm Inc., Inc., San Diego. Since Sept. 2007, he has been an Assistant
Professor in the Dept. of Computer Science at Korea University, Seoul, Korea.
He has also held short-term research position in DSP group of LG electronics
and DSP R&D center of Texas instruments. His research interests include
signal processing for communication, estimation and detection, and applied
linear algebra.

Dr. Shim was the recipient of 2005 M. E. Van Valkenburg research award
from ECE department of University of Illinois. He is a member of Sigma Xi
and Tau Beta Pi.

PLACE
PHOTO
HERE

Insung Kang (Member, IEEE) was born in Pusan,
Korea, in 1960. He received the B.S. degree in
control and instrumentation engineering from Seoul
National University, Korea, in 1982, the M.S. degree
in electrical engineering from the University of Day-
ton, OH, in 1993, and the Ph.D. degree in electrical
and computer engineering from Purdue University,
IN, in 1997, respectively.

From 1982 to 1992, he was a Research Engineer
and Manager at a subsidiary of LG Electronics Inc.
working on many projects including super conduc-

tive MRI-CT and H.261-based video phone. From 1997 to 2000, he was
with the Network Solutions Sector of Motorola, Inc., where he worked on
WCDMA base station system. From 2000 to 2002, he was with Sorrento
Telecom, Inc., where he designed the CDMA2000 mobile station receivers.
From 2003 to 2006, he was with Via Telecom, Inc., where he designed the
CDMA2000 EVDV mobile station receiver. Since August 2006, he has been
with Qualcomm, Inc. where he is working on LTE, WIMAX, and DVB-H
system. His current research interests include MIMO receiver design, iterative
decoding, and interference cancellation.


