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Abstract. In this paper, a novel multi-scale nonlinear structure tensor based 
corner detection algorithm is proposed to improve effectively the classical Har-
ris corner detector. By considering both the spatial and gradient distances of 
neighboring pixels, a nonlinear bilateral structure tensor is constructed to ex-
amine the image local pattern. It can be seen that the linear structure tensor 
used in the original Harris corner detector is a special case of the proposed bila-
teral one by considering only the spatial distance. Moreover, a multi-scale fil-
tering scheme is developed to tell the trivial structures from true corners based 
on their different characteristics in multiple scales. The comparison between 
the proposed approach and four representative and state-of-the-art corner detec-
tors shows that our method has much better performance in terms of both detec-
tion rate and localization accuracy. 
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1   Introduction 

Corner detection is a critical task in various machine vision and image processing 
systems because corners play an important role in describing object unique features 
for recognition and identification. Applications that rely on corners include motion 
tracking, object recognition, 3D object modeling, and stereo matching, etc. 

Considerable research has been carried out on corner detection. One of the earliest 
successful corner detectors can be Harris corner detector [1]. Harris et al. [1] calcu-
lated the first-order derivatives of the image along horizontal and vertical directions, 
with which a 22 structure tensor was formed. The corner detection was accom-
plished by analyzing the eigenvalues of the structure tensor at each pixel. However, 
computing derivatives is sensitive to noise, and the Harris corner detector has poor 
localization performance because it needs to smooth the derivatives for noise reduc-
tion. Thus, several methods [2-3] have been proposed to improve its performance.  
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Apart from Harris corner detector and its variants, many other corner detectors 
have also been proposed by researchers. Kitchen and Rosenfeld [4] proposed a cor-
nerness measure based on the change of gradient direction along an edge contour 
multiplied by the local gradient magnitude. Smith and Brady [5] proposed the 
SUSAN scheme. In SUSAN, a circular mask is taken around the examined pixel and 
this pixel is considered as the nucleus of the mask. Then “USAN” (Univalue Segment 
Assimilating Nucleus) is defined as an area of the mask which has the similar bright-
ness as the nucleus. Smith et al. [5] assumed that the USAN would reach a minimum 
when the nucleus lies on a corner point. Wang and Brady [6] proposed a corner de-
tection algorithm based on the measurement of surface curvature. In [7] and [8], 
Mokhtarian et al. proposed two CSS (Curvature Scale Space) based corner detectors. 
In these two algorithms, edge contours are first extracted and then corners are de-
tected as the positions with high curvatures on edge contours. In [9], Zheng et al.’s 
cornerness measure was simply the gradient module of the image gradient direction.  

This paper presents a novel effective evolution of the classical Harris corner detec-
tor. In the original Harris corner detector, an isotropic Gaussian kernel is used to 
smooth each of the four elements in the 22 structure tensor over a local window 
before calculating the eigenvalues. Such a smoothing operation will have two disad-
vantages. First, some weak corners will be smoothed out. Second, the localization 
accuracy is much degraded. Inspired by the success of bilateral filters [10] in image 
denoising, which consider both the spatial and the intensity similarities in averaging 
neighboring pixels for noise removal, in this paper we construct a nonlinear bilateral 
structure tensor and use it to detect corner points. 

The basic idea of the proposed method lies in that both the spatial and gradient dis-
tances should be involved in smoothing the structure tensor elements. The neighbor-
ing pixels that have shorter spatial and gradient distances to the given one should 
have higher weights in the averaging. In this way, a nonlinear structure tensor, which 
is adaptive to image local structures, could be constructed and hence the image local 
pattern could be better distinguished. It can be seen that the classical Harris corner 
detector is a special case of the proposed method by exploiting only the spatial dis-
tance in the structure tensor smoothing. However, the proposed nonlinear structure 
tensor has much higher sensitivity to corner-like fine structures than the linear struc-
ture tensor. Therefore, it may respond strongly to some trivial feature points in the 
image. In order to get rid of the possible false corners detected at fine image scales, 
we propose a multi-scale filtering scheme based on the different characteristics of true 
corners and trivial structures in multiple scales.  

The rest of the paper is organized as follows. Section 2 briefly reviews the Harris 
corner detector. Section 3 presents the new corner detector in detail. Experimental 
results are presented in section 4 and the conclusion is made in section 5. 

2   Harris Corner Detector 

Harris corner detector [1] has been very widely used in machine vision applications. 
Consider a 2D gray-scale image I. Denote by W∈I an image patch centered on (x0, 



y0). The sum of square differences between W and a shifted window W(△x, △y) is calcu-
lated as 
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By approximating the shifted patch using a Taylor expansion truncated to the first 
order terms, we have: 
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derivatives of image I along horizontal and vertical directions at pixel (xi, yi). 
In practice matrix A is computed by averaging the tensor product I I    ( I  

denotes the gradient image of I) over the window W with a weighting function K , 
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Usually K  is set as a Gaussian function 
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0 0( ) ( )i i id x x y y     and ρ is the standard deviation of the Gaussian kernel. 

    Aρ is symmetric and positive semi-definite. Its main modes of variation correspond 
to the partial derivatives in orthogonal directions and they are reflected by the eigen-
values λ1 and λ2 of Aρ. The two eigenvalues can form a rotation-invariant description 
of the local pattern. Under the situation of corner detection, three distinct cases are 
considered. 1) Both the eigenvalues are small. This means that the local area is flat 
around the examined pixel. 2) One eigenvalue is large and the other one is small. The 
local neighborhood is ridge-shaped. 3) Both the eigenvalues are rather large. This 
indicates that a small shift in any direction can cause significant change of the image 
at the examined pixel. Thus a corner is detected at this pixel.  

Harris suggested that the exact eigenvalue computation can be avoided by calcu-
lating the response function  

2( ) ( ) ( )R A det A k trace A      (4) 
where det(Aρ) is the determinant of Aρ, trace(Aρ) is the trace of Aρ, and k is a tunable 
parameter. 

3   Bilateral Structure Tensor Based Corner Detection 

This section presents the proposed multi-scale nonlinear bilateral structure tensor 
based corner detector in detail. Our algorithm differs from the original Harris corner 
detector mainly in two aspects. First, a nonlinear structure tensor is constructed to 



substitute for the linear one used in the Harris corner detector; second, a multi-scale 
filtering scheme is proposed to filter out the false and trivial corners detected at small 
scales.  

3.1   Construction of the Bilateral Structure Tensor 

The structure tensor for a gray level image I is a 22 symmetric matrix that contains 
in each element the orientation and intensity information in a local area. Denote by 

I   the gradient image of I. The initial matrix field can be computed as the tensor 
product 0J I I    . To incorporate the neighboring structural information into the 

given position, an averaging kernel could be used to smooth each element of J0. 
Usually a Gaussian kernel Kρ with standard deviation  is employed for this purpose: 

 0*J K J   (5) 
where symbol “*” means convolution. Since convolution is a linear operator, the 
structure tensor Jρ is referred to as linear structure tensor [11]. It is a symmetric, posi-
tive semi-definite matrix. Comparing Eq. (3) with Eq. (5), we see that the matrix Aρ in 
Harris corner detector is actually the linear structure tensor Jρ at pixel (x0, y0). 

In Harris corner detector [1], the “cornerness” of a pixel (x,y) is totally determined 
by its local structure tensor Jρ(x,y). However, the smoothing kernel Kρ has two prob-
lems. First, the isotropic smoothing operation will smooth some weak corner features 
out so that the detection capability is decreased. Second, the localization accuracy of 
detected corner points will be reduced, which is a well-known problem of the Harris 
corner detector. Intuitively, if the local structure tensor can better preserve the local 
structural information at (x,y), the cornerness measured from it should be more relia-
ble and accurate.  

 

Fig. 1: Weight distributions in a neighborhood of a corner pixel. (a) An artificial image with 
an ideal corner (red circle); (b) weights distribution by using the Gaussian kernel Kρ; (c) 
weights distribution by using the proposed bilateral weighting function Nρ,σ. 

 
As an early denoising technique, Gaussian smoothing is simple but it will over-

blur the image details. The Gaussian weighting kernel only uses the notation of spa-
tial location in the weights assignment. The greater the spatial distance from a neigh-
boring pixel to the central pixel, the smaller the averaging weight will be assigned. 
The intensity similarity between the pixels is not exploited in Gaussian smoothing. In 
[10], the bilateral filter was proposed, which employs both the spatial and intensity 



similarities between pixels in averaging weight design. It has been shown that bilater-
al filtering could significantly improve the edge structure preservation while remov-
ing noise [10]. 

Inspired by the success of bilateral filters in image denoising, in this paper we 
construct a bilateral structure tensor for better corner detection performance. There 
are two basic factors in the formation of a local pattern: the relative positions between 
neighboring pixels and the intensity variations between them. Therefore, in the 
smoothing of J0, we should consider both the spatial distance and the gradient dis-
tance in the averaging weight assignment. In the original Harris corner detector, only 
the spatial distance is considered by applying a Gaussian smoothing kernel Kρ to 

I I   . In this paper, we will also involve the gradient distance in the smoothing of 
I I   . 

Here, the gradient distance from the position (xi, yi) to the central position (x0, y0) 
is defined as: 
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The spatial distance from (xi, yi) to (x0, y0) is the same as in the original Harris corner 
detector: 
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By considering both the spatial and gradient distances into the assignment of averag-
ing weight, we define the following bilateral weighting function for each pixel (xi, yi)
∈W: 
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where  and  are the parameters to control the decaying speeds over spatial and 
gradient distances, and 
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is the normalization factor.   
Fig. 1 shows an example to illustrate the weight distributions by using the Gaus-

sian kernel Kρ and the proposed function Nρ,σ. Fig. 1-a is an artificial image with an 
ideal corner in the center, which is marked by a red circle. The size of local window 
W for smoothing is set as 2121. Figs. 1-b and 1-c illustrate the weight distributions 
for the pixels within W by using the Gaussian kernel Kρ and the proposed bilateral 
weighting function Nρ,σ, respectively. It is clearly seen that Kρ is isotropic and is inde-
pendent of the image local structure, while Nρ,σ is anisotropic and is adaptive to the 
image local pattern. In this example, the edge pixels have higher weights than the 
non-edge pixels because they are more similar to the examined corner pixel in terms 
of gradient. Meanwhile, for the pixels lying on the same edge, the ones near to the 
corner pixel have higher weights than the others because they have shorter spatial 
distances to the corner point. 

With the nonlinear bilateral weighting function Nρ,σ, the nonlinear bilateral struc-
ture tensor is defined as: 
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The corner detection is based on the analysis of the above defined nonlinear bilateral 
structure tensor Aρ,σ. Similar to the original Harris corner detector, we calculate the 
response function R(Aρ,σ) = det(Aρ,σ)−k·trace2(Aρ,σ) to determine if a corner point exists 
in the current position. 

3.2   Multi-scale Filtering 

Because the proposed nonlinear bilateral structure tensor Aρ,σ incorporates the local 
gradient information in the structure tensor construction, it could achieve much high-
er true detection and localization accuracies than the linear structure tensor used in 
the original Harris corner detector. However, it is also sensitive to some trivial struc-
tures. Due to digitization in the square grid, in discrete images often the ramp edges 
will show corner-like trivial structures in a fine scale. Those trivial structures will be 
enhanced by the proposed nonlinear structure tensor Aρ,σ and they may be falsely 
detected as true corners. Fig. 2-a shows an example. We can see many false detec-
tions along the ramp edge by using Aρ,σ. To solve this problem, we propose a multi-
scale filtering scheme to filter out those small scale trivial structures.  

  
                (a)                                   (b)   (c) 
Fig. 2: (a) Corner candidates before multi-scale filtering; (b) final corner detection result after 
multi-scale filtering; (c) Relative cornerness ratio (RCR) curves of two true corners (blue 
curves) and two trivial corners (red curves); 
 

Suppose that we have obtained some corner candidates with the proposed nonli-
near structure tensor. We will distinguish the trivial corner-like structures from the 
true corners by their different cornerness characteristics at multiple image scales. The 
images at different scales can be obtained by smoothing the original image I with a 
series of Gaussian kernels Kς with different standard deviations ς. By increasing the 
values of ς, a fine to coarse scale space can be formed. The underlying principle for 
our multi-scale filtering scheme is as follows. If a trivial structure is detected as a 
corner at a fine scale, the cornerness of this point should decrease rapidly with the 
increase of scale ς because it will be smoothed out by Kς. On the contrary, if a true 
corner point is detected at a fine scale, the cornerness of it will decrease smoothly 
with the increase of ς because it will appear in a wide range of scales.  



Denote by R0 the cornerness of a corner candidate measured by Eq. (4) at the fin-
est scale 0, and by Rς its cornerness measured at scale ς. We define the relative cor-
nerness ratio (RCR) as 

0/r R R   (11) 
Fig. 2-c shows the RCR curves of two true corner points (blue curves) and two trivial 
corner points (red curves). From this figure we can clearly see that the RCR of false 
corners will decay much faster than the RCR of true corners. 

Based on the different behaviors of true corners and trivial corners in the scale 
space, we are able to tell them to remove false and trivial corners. Suppose we use L 
scales in the multi-scale filtering. A candidate corner point is recognized as a true 
corner point if  
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where T is a threshold. Fig. 2-b shows the final corner detection result after multi-
scale filtering (L=3). We see that many false corners detected in Fig. 2-a are removed 
in Fig. 2-b without affecting the true corners. 

4   Experimental Results 

The experiments were performed on 3 standard test images. The ground truth corner 
points were manually labeled. For the artificial test image (refer to Fig. 4-a3), it is 
easy to identify these reference corners and the locations of corners can be accurately 
located. However, for real test images blocks (refer to Fig. 4-a1) and house (refer to 
Fig. 4-a2), it is nearly impossible to give absolutely accurate corner locations. There-
fore, we only computed the localization accuracy for the artificial test image, while 
computed the detection accuracy for all the three test images. The code of the pro-
posed algorithm can be found at 
http://www.comp.polyu.edu.hk/~cslzhang/MBST_CD/.  

The proposed corner detector was compared with four representative algorithms: 
Harris [1], SUSAN [5], Enhanced CSS [8] and the nonlinear structure tensor based 
method [11]. In [11], the authors proposed two different ways to construct a nonlinear 
structure tensor: one is by isotropic diffusion and the other is by anisotropic diffusion. 
In this paper, we compared the result given by the isotropic diffusion because it 
achieves similar result to that by anisotropic diffusion but has much less computa-
tional cost. We refer to it as INLST for short in the following. For the four methods 
used in comparison, we tuned the parameters so that the best corner detection results 
were obtained.  

The proposed method has several parameters. The parameter ρ (referring to Eq. 
(8)) is adaptively determined based on the size of window W, i.e. the spatial range, 
according to the 3-sigma principle of Gaussian function. Similarly, the parameter σ 
(referring to Eq. (8)) is fixed by the range of dg 

i  (referring to Eq. (6)), i.e. the gradient 
range, according to the 3-sigma principle. In the multi-scale filtering, we empirically 
find that it is insensitive to the scale selection and usually 3~5 scales are enough. 
Thus, in our experiments we used 3 scales and the same threshold for all the test im-



ages: ς1=0.6, ς2=1.0, ς3=1.4 and T=1.0 (referring to Eq. (11) and Eq. (12)). Finally, 
the parameters left to set are the window size W and coefficient k (referring to Eq. 
(4)). In this paper they were set as follows: for the artificial test image, W=55 and 
k=0.04; for the blocks test image, W=2121 and k=0.02; and for the house test image, 
W=1313 and k=0.02. 

Denote by Cref the set of reference (ground truth) corners and by Cdet the set of de-
tected corners by a particular detector. Denote by dmax the maximal acceptable dis-
tance between the reference corner and the detected corner. In this paper, we set  
dmax=4(pixels). For a pair of corner points i refC C  and j detC C , if the distance di,j  

between Ci and Cj is minimum for ,i j  and ,i j maxd d , then Cj is labeled as a “cor-

rect” detection of Ci. Otherwise, Ci is labeled as “missed”. The corners labeled as 
“missed” in Cref are considered as true corners but not detected, and the remaining 
corners in Cdet are considered to be the “false” detections. The localization error is the 
average of all the distances di,j for the corners detected correctly. 

The experimental results are summarized in Table 1 and Fig. 4. The classical Har-
ris corner detector performs moderately well with respect to the true detection rate. 
However, it loses some weak corners, which can be clearly seen in Fig. 4-b1 and Fig. 
4-b2. SUSAN performs very well on the artificial test image whereas its performance 
on the natural images is not so good. For the enhanced CSS method, its detection rate 
and localization accuracy heavily depend on the output of the contour extraction. If 
an actual connected contour is broken up by the contour extraction step, more false 
corner points would be detected since the algorithm regards the line endings as corner 
points. Table 1 shows that INLST has better localization performance than Harris, 
SUSAN and Enhanced CSS. However, it is sensitive to noise and trivial structures 
and has much false detection. The proposed method performs the best in terms of 
both detection rate and localization accuracy.  

Table 1. Evaluation results on test images. 

 
Among the tested detectors, SUSAN is the fastest one. The proposed method is 

slower than the other ones because it needs to compute the weight function Nρ,σ for 
each pixel. In the future we will investigate how to reduce the computational cost 
without sacrificing much the accuracy. For example, since there is much spatial re-
dundancy of an image, we may use the same Nρ,σ for a block of pixels instead of com-
puting it pixel by pixel. 

Method 
artificial blocks house 

cor-
rect 

miss
-ed 

false 
location 

error 
cor-
rect 

missed false 
cor-
rect 

missed false 

Harris 78 0 0 1.1347 52 8 3 57 20 46 
SUSAN 78 0 0 1.0982 48 12 15 62 15 27 

Enhanced CSS 76 2 3 1.6992 55 5 8 50 27 11 
INLST 78 1 52 0.6235 55 5 5 57 20 12 

Proposed 78 0 0 0.4187 57 3 0 64 13 4 



5   Conclusions 

In this paper, we proposed a new corner detection algorithm by constructing a nonli-
near bilateral structure tensor, which exploits both the spatial distances and the gra-
dient distances from the neighboring pixels to the central pixel to be examined. 
Moreover, in order to remove the trivial corner-like structures, a multi-scale filtering 
scheme was developed. Experimental results on some standard test images show the 
effectiveness of the proposed corner detector in terms of both detection rate and loca-
lization accuracy. However, it should be noted that the computational cost of the 
proposed algorithm is higher than the other detectors. It can be a choice when the 
speed of corner detection is not a great concern but the accuracy is of the most impor-
tance.  
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Fig. 4: Experimental results on 3 test images. (ai) ground truth; (bi) Harris; (ci) SUSAN; (di) 
enhanced CSS; (ei) INLST; (fi) the proposed method. 

 


