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Abstract

Cluster analysis is one of attractive data mining technique that use in many fields. One popular class of data clustering
algorithms is the center based clustering algorithm. K-means used as a popular clustering method due to its simplicity and
high speed in clustering large datasets. However, K-means has two shortcomings: dependency on the initial state and con-
vergence to local optima and global solutions of large problems cannot found with reasonable amount of computation
effort. In order to overcome local optima problem lots of studies done in clustering. Over the last decade, modeling the
behavior of social insects, such as ants and bees, for the purpose of search and problem solving has been the context of
the emerging area of swarm intelligence. Honey-bees are among the most closely studied social insects. Honey-bee mating
may also be considered as a typical swarm-based approach to optimization, in which the search algorithm is inspired by the
process of marriage in real honey-bee. Honey-bee has been used to model agent-based systems. In this paper, we proposed
application of honeybee mating optimization in clustering (HBMK-means). We compared HBMK-means with other heu-
ristics algorithm in clustering, such as GA, SA, TS, and ACO, by implementing them on several well-known datasets. Our
finding shows that the proposed algorithm works than the best one.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Data mining, extracting interesting and valuable information such as trends, features, or patterns from hid-
den predictive data, is the multidisciplinary field that is at the intersection of statistics, machine learning, data-
base management, and data visualization, to provide a new perspective on data analysis.

Clustering analysis, which is the subject of active research in several fields such as statistics, pattern recog-
nition, machine learning, and data mining, is to partition a given set of data or objects into clusters (or called
groups, classes). It also applied in a large variety of applications, for example, image segmentation, objects and
character recognition, document retrieval, etc [17]. There are many methods applied in clustering analysis, like
0096-3003/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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hierarchical clustering, partition-based clustering, density-based clustering, and artificial intelligence-based
clustering.

One popular class of data clustering algorithms is the center based clustering algorithm. K-means used as a
popular clustering method due to its simplicity and high speed in clustering large datasets [6]. However,
K-means has two shortcomings: dependency on the initial state and convergence to local optima [20] and glo-
bal solutions of large problems cannot found with reasonable amount of computation effort [7]. In order to
overcome local optima problem lots of studies done in clustering.

Mualik and Bandyopadhyay [22] proposed a genetic algorithm based method to solve the clustering prob-
lem and experiment on synthetic and real life datasets to evaluate the performance. The results showed that
GA-based method might improve the final output of K-means.

Krishna and Murty [11] proposed a novel approach called genetic K-means algorithm for clustering anal-
ysis. It defines a basic mutation operator specific to clustering called distance-based mutation. Using finite
Markov chain theory, it proved that GKA converge to the best-known optimum.

In [21] Selim and Al-Sultan discussed the solution of the clustering problem usually solved by the K-means
algorithm. The problem known to have local minimum solutions, which are usually what the K-means algo-
rithm obtains. The simulated annealing approach for solving optimization problems described and proposed
for solving the clustering problem. The parameters of the algorithm discussed in detail and it shown that the
algorithm converges to a global solution of the clustering problem.

According to [5], researchers considered a clustering problem where a given data set partitioned into a cer-
tain number of natural and homogeneous subsets such that each subset is composed of elements similar to one
another but deferent from those of any other subset. For the clustering problem, a heuristic algorithm
exploited by combining the tabu search heuristic with two complementary functional procedures, called pack-
ing and releasing procedures. The algorithm numerically tested for its electiveness in comparison with refer-
ence works including the tabu search algorithm, the K-means algorithm and the simulated annealing
algorithm.

Over the last decade, modeling the behavior of social insects, such as ants and bees, for the purpose of
search and problem solving has been the context of the emerging area of swarm intelligence. Using ant colony
is a typical successful swarm-based optimization approach, where the search algorithm inspired by the behav-
ior of real ants.

Kuo et al. [17] proposed a novel clustering method, ant K-means (AK) algorithm. AK algorithm modifies
the K-means as locating the objects in a cluster with the probability, which updated by the pheromone, while
the rule of updating pheromone is according to total within cluster variance (TWCV).

In [16] presents an ant colony optimization, methodology for optimally clustering N objects into k clusters.
The algorithm employs distributed agents who mimic the way real ants find a shortest path from their nest to
food source and back. They compared result with other heuristic algorithms in clustering, GA, Tabu search,
SA. They showed that their algorithms are better than other algorithms in performance and time.

Honey-bees are among the most closely studied social insects. Honey-bee mating may also be considered as
a typical swarm-based approach to optimization, in which the search algorithm is inspired by the process of
marriage in real honey-bee. Honey bee has been used to model agent-based systems [1]. In a recent work,
Abbass [8,9] developed an optimization algorithm based on the honey-bee marriage process.

Bozorg Haddad and Afshar [15] presented an optimization algorithm based on honeybee mating that suc-
cessfully applied to a single reservoir optimization problem with discrete decision variables. Later, Bozorg
Haddad et al. [14] applied the same algorithm to three benchmark mathematical problems.

In [2] the honey bee mating optimization algorithm is presented and tested with a nonlinear, continues con-
strained problem with continues decision and state variables to demonstrate the efficiency of the algorithm in
handling the single reservoir operation optimization problems. They showed that the performance of the
model is quite comparable with the result of the well-developed traditional linear programming solvers.

This paper presents application of honey-bee mating optimization (HBMO) algorithm for clustering.
The paper organized as follow: in Section 2 we discussed cluster analysis problems. Section 3 introduce
honeybee mating nature and application of honey-bee mating algorithm in clustering, and then in Section 4
experimental result of proposed clustering algorithm in comparison with other heuristics clustering algorithms
showed.
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2. Clustering

Data clustering, which is an NP-complete problem of finding groups in heterogeneous data by minimizing
some measure of dissimilarity, is one of the fundamental tools in data mining, machine learning and pattern
classification solutions [13]. Clustering in N-dimensional Euclidean space RN is the process of partitioning a
given set of n points into a number, say k, of groups (or, clusters) based on some similarity (distance) metric in
clustering procedure is Euclidean distance, which derived from the Minkowski metric (Eqs. (1) and (2)).
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In this study, we will also use Euclidian metric as a distance metric. The existing clustering algorithms can
be simply classified into the following two categories: hierarchical clustering and partitional clustering. The
most class of popular class of partitional clustering methods is the center based clustering algorithms [23].

The K-means algorithms, is one of the most widely used center based clustering algorithms [6].
To find K centers, the problem is defined as an optimization (minimization) of a performance function,

Perf(X, C), defined on both the data items and the center locations. A popular performance function for mea-
suring goodness of the k clustering is the total within-cluster variance or the total mean-square quantization
error (MSE), Eq. (3) [23]
PerfðX ;CÞ ¼
XN

i¼1

Minfkxi � clk2jl ¼ 1; . . . ;Kg: ð3Þ
The steps of the K-means algorithm are as follow [22]:

Step 1: Choose K cluster centers randomly from n points.
Step 2: Assign each point to clusters.
Step 3: Compute new cluster centers.
Step 4: If termination criteria satisfied, stop otherwise continues from step 2.

Note that in case the process close not terminates at step 4 normally, then it executed for a mutation fixed
number of iterations.
3. Application of honey-bee mating optimization algorithm in clustering

3.1. Honey-bee modeling

A honeybee colony typically consists of a single egg-laying long-lived queen, anywhere from zero to several
thousands drones (depending on the season) and usually 10,000–60,000 workers [9]. Queens are specialized in
egg laying. A colony may contain one queen or more during its life cycle, which named monogynous and/or
polygynous colonies, respectively. Only the queen bee is fed ‘‘royal jelly,’’ which is a milky-white colored, jelly-
like substance ‘‘Nurse bees’’ secrete this nourishing food from their glands, and feed it to their queen. The diet
of royal jelly makes the queen bee bigger than any other bee in the hive. A queen bee may live up to 5 or 6
years, whereas worker bees and drones never live more than 6 months. There usually several hundred drones
that live with the queen and worker bees. Mother Nature has given the drones’ just one task, which is to pro-
vide the queen with some sperm. After the mating process, the drones die [10].

Drones are the fathers of the colony. They are haploid and act to amplify their mothers’ genome without
altering their genetic composition, except through mutation. Therefore, drones considered as agents that prop-
agate one of their mother’s gametes and function to enable females to act genetically as males. Workers spe-
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cialized in brood care and sometimes lay eggs. Broods arise either from fertilized or unfertilized eggs. The for-
mer represent potential queens or workers, whereas the latter represent prospective drones [2].

In the marriage process, the queen(s) mate during their mating flights far from the nest. A mating flight
starts with a dance performed by the queen who then starts a mating flight during which the drones follow
the queen and mate with her in the air. In each mating, sperm reaches the spermatheca and accumulates there
to form the genetic pool of the colony [19].

Each time a queen lays fertilized eggs, she randomly retrieves a mixture of the sperm accumulated in the
spermatheca to fertilize the egg [18].

The queen is pursued by a large swarm of drones (drone comets), when copulation occurs. Insemination
ends with the eventual death of the drone, and the queen receiving the ‘‘mating sign.’’ The queen mates multi-
ple times but the drone, inevitably, only once. These features make bee mating the most spectacular mating
among insects [2].

The mating flight may considered as a set of transitions in a state-space (the environment) where the queen
moves between the different states in some speed and mates with the drone encountered at each state proba-
bilistically. At the start of the flight, the queen initialized with some energy content and returns to her nest
when the energy is within some threshold from zero to full spermatheca. [2].

In developing the algorithm, the functionality of workers is restricted to brood care and therefore, each
worker may be represented as a heuristic which acts to improve and/or take care of a set of broods (i.e., as
feeding the future queen with royal jelly). A drone mates with a queen probabilistically using an annealing
function as follows [9]:
ProbðQ;DÞ ¼ exp½�Dðf Þ=SðtÞ�; ð4Þ

where Prob ðQ;DÞ is the probability of adding the sperm of drone D to the spermatheca of queen Q (that is,
the probability of a successful mating); D(f) is the absolute difference between the fitness of D (i.e., f(D)) and
the fitness of Q (i.e., f (Q)); and S(t) the speed of the queen at time t. It is apparent that this function acts as an
annealing function, where the probability of mating is high when the queen is still at the beginning of her mat-
ing flight, therefore her speed is high, or when the fitness of the drone is as good as the queen’. After each
transition in space, the queen’s speed and energy decays according to the following equations:
Sðt þ 1Þ ¼ aðtÞ � SðtÞ; ð5Þ

where a is a factor 2 ½0; 1� and is the amount of speed reduction after each transition.

Workers that used to improve the brood’s genotype may represent a set of different heuristics. The rate of
improvement in the brood’s genotype, as result of a heuristic application to that brood, defines the heuristic
fitness value.

The fitness of the resulting genotype is determined by evaluating the value of the objective function of the
brood genotype and/or its normalized value. It is important to note that a brood has only one genotype.

Thus, an HBMO algorithm maybe constructed with the following five main stages:

• The algorithm starts with the mating flight, where a queen (best solution) selects drones probabilistically to
form the spermatheca (list of drones). A drone then selected from the list randomly for the creation of
broods.

• Creation of new broods (cluster centers) by crossover the drone’s genotypes with the queens.
• Use of workers (heuristics) to conduct local search on broods (trial solutions).
• Adaptation of worker’s fitness, based on the amount of improvement achieved on broods.
• Replacement of weaker queens by fitter broods.

The algorithm starts with three user-defined parameters and one predefined parameter. The predefined
parameter is the number of workers (W), representing the number of heuristics encoded in the program. How-
ever, the predefined parameter may be used as a parameter to alter the number of active heuristics if required;
that is, the user may choose the first heuristic, where W is less than or equal to the total number of heuristics
encoded in the program. The three user-defined parameters are the number of queens, the queen’s sperma-
theca size representing the maximum number of mating per queen in a single mating flight, and the number
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of broods that will be born by all queens. The speed of each queen at the start of each mating flight initialized
at random. A set of queens then initialized at random. A randomly selected heuristic then used to improve the
genotype of each queen, assuming that a queen is usually a good bee. A number of mating flights are under-
taken. In each mating flight, all queens fly based on the speed of each, where speed generated at random for
each queen before each mating flight commences. At the start of a mating flight, a drone generated randomly
and the queen positioned over that drone. The transition made by the queen in space based on her speed that
represents the probability of flipping each gene in the drone’s genome. At the start of a mating flight, the speed
may be higher and the queen may make very large steps in space. While the energy of the queen decreases, her
speed decreases, and as a result, the neighborhood covered by the queen, decreases. At each step in the space,
the queen mates with the drone encountered at that step using the probabilistic rule in Eq. (4). If the mating is
successful (i.e., the drone passes the probabilistic decision rule), the drone’s sperm is stored in the queen’s sper-
matheca. To sum up, the algorithm starts with a mating flight where a queen selects a drone with a predefined
probabilistic rule. By cross-overing the drone’s genotypes with the queen’s, a new brood (trial solution) is
formed which later can be improved, employing workers to conduct local search.

When all queens complete their mating flight, they start breeding. For a required number of broods, a
queen selected in proportion to her fitness and mated with a randomly selected sperm from her spermatheca.
A worker chosen in proportion to its fitness to improve the resultant brood. After all broods have been gen-
erated, they are sorted according to their fitness. The best brood replaces the worst queen until there is no
brood that is better than any of the queens are. Remaining broods then killed and a new mating flight begins
until all assigned mating flights are completed or convergence criteria met. The main steps of the HBMO algo-
rithm presented in Fig. 1. In addition, a full-scale computational flowchart illustrated in Fig. 2.

3.2. Application of HBM algorithm in clustering

The search capability of HBM algorithm used in this article for the purpose of appropriately determining a
fixed number of K cluster centers in RN; thereby suitably clustering the set of n unlabelled points the clustering
metric that has been adopted is the sum of the Euclidean distance of the points of the points from their respec-
tive cluster centers. The steps of the proposed algorithm are shown in Fig. 2, there are now described in detail.
Fig. 1. The HBMO algorithm [9].



 

Yes No 

Random generation of a set of initial solutions 

Rank the initial enters based on performance function, keeps the best one 
and predefined number of solutions 

Use simulated annealing to select the set of solutions from the search space to make 
a mating pool for possible information exchange between the best present solution 
and the selected trial solutions 

Generate new set of solutions by employing different predefined crossover operators 
and heuristic functions between the best present solution and the trial solutions 
according to their fitness values 

Improve the newly generated set of solutions employing different heuristic 
functions and mutation operators according to their fitness values 

Updating the fitness value of the heuristic functions for next iteration, 
giving more chance to the more effective heuristic function in solution 
improvement 

Is the new best 
solution better than 
the previous one? 

Keep the 
previous best 
solution 

Substitute the 
best solution 

Termination 
criteria satisfied. Finish 

All previous trial solutions discarded and new trial solutions generated 
using: 

a) Remaining generated solution, b)random generation 

Start 

Define the model input parameters: 
a) Algorithm parameters, b) model parameters  

Fig. 2. HBM algorithm representation.
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Step 1: String representation

A chromosome has used to represent a candidate solution to a problem where each gene in the chro-
mosome represents a parameter of the candidate solution. In this study, a chromosome regarded as a
set of K initial cluster centers and each gene is a cluster center dimension. Specifically, a chromosome
can be represented as C ¼ ½c1 . . . cj . . . cK � where cj is the jth gene and K is total number of genes. Fig. 3,
illustrate a chromosome encoding example. C1 ¼ ð2; 5; 1Þ;C2 ¼ ð6; 3; 2Þ; C3 ¼ ð5; 7; 4Þ.



C1 C3C2

2 5 1 6 3 2 5 7 4

Fig. 3. A chromosome-encoding example.
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Step 2: Define the model inputs parameters

The algorithm starts with three user-defined parameters and one predefined parameter. The prede-
fined parameter is the number of worker (W), representing the number of heuristics encoded in the
program. However, the predefined parameter may be used as a parameter to alter the number of
active heuristics if required; that is, the user may choose the first heuristic, where W is less than or
equal to the total number of heuristics encoded in the program.The user-defined parameters are num-
ber of queens, the queen’s spermatheca size representing the maximum number of broods that will be
born by all queens. The speed of each queen at the start of each mating flight initialized at random,

Step 3: Random generation of a set of initial solutions

In this stage, a set of initial cluster centers generated randomly from the dataset points. Each solution
represents K cluster centers as shown in Fig. 1.

Step 4: Selection of queen

After generation of a set of initial solutions mentioned in the previous stage, rank the initial solutions
based on performance function and set the best one as queen.

Step 5: Mating flight

Use simulated annealing to select the set of solutions from the search space to make a mating pool for
possible information exchange between the best present solution (queen) and the selected trial
solutions.

Step 6: Breeding process

Generate new set of solutions by employing predefined crossover operators and heuristic functions
between the present solutions and the trial solution according to their fitness values. In this study,
we adopt intermediate crossover. It creates children by taking a weighted average of parents. You
can specify the weights by a single parameter, Ratio, which can be a scalar or a raw vector of length
number of variables. The default is a vector of all 1’s. The function creates the child from parent 1 and
parent 2 using the following formula.
Child ¼ parent 1þ ran �Ratio � ðparent 2� parent 1Þ: ð6Þ
If all the entries of Ratio lie in the range [0, 1], the children produced are within the hypercube defined
by placing the parents apposite vertices. If ratio is not in that range, the children might lie outside the
hypercube. If ratio is a scalar, then all the children lie on the line between the parents.
Step 7: feeding selected broods and queen with the royal jelly by workers

Improve the newly generated set of solutions employing different heuristic functions and mutation
operators according to their fitness values. For binary representation of chromosomes, a bit position
mutated by simply flipping its value. Since we are considering floating point representation in this arti-
cle, we use the following mutation. A number d in the range [0, 1] generated with uniform distribution.
If the value at a gene position is v, after mutation it becomes:
v� 2 � d � v; v 6¼ 0;

v� 2 � d; v ¼ 0:

The + or � sign occurs with equal probability. Note that we could have implemented mutation as

v� d � v:
However, one problem with this form is that if the values at a particular position in all the chromo-
somes of a population become positive (or negative), then we will never be able to generate a new
chromosome having a negative (or positive) value at the position. In order to overcome this limita-
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tion, we have incorporated a factor of 2 while implementing mutation other form like
B

E

v� ðdþ eÞ � v;

where 0 < e < 1 would also have satisfied our purpose.
Step 8: If the new best solution is, better than the queen replace it with queen.
Speed of Queen at the start of a mating flight Set Tmax

Speed of Queen at the end of a mating flight Set Tmin

Speed reduction schema  Set t 
Number of iteration Set P 

Set T= Tmax

Number of workers Set w 
Number of broods Set b 

egin 
Generate m Drones with k length randomly from X matrices, and set them as D 
matrices 
Calculate their objective function  
Select the best drone and set it as Q (Queen) 
Repeat  

Repeat 
Select a Di  from D randomly  
Calculate Δ (f)=|f(Q)-f(Di| 
Generate r randomly,  
If exp(-D(f)/T)>r  

Add Di to spermatheca S 
Else T=t*T 

Until Capacity of spermatheca completed  or T=Tmin 

Repeat 
Select a crossover function from list W,  according to its  
probability 
Select a Si randomly and generate new solution by crossover Si

and Q and set it as Bi

Calculate crossover fitness 
Update probability matrices of crossover function selection 

Until Number of broods equal to b 

Begin  
Select a mutation function from list W, according to its 
probability 
Mutation Bi and set it as Ei 

If f(Ei)>f(Q)   swap Ei and Q 
Else keep the previous solution 
Calculate mutation fitness 
Update probability matrices of mutation function selection 

End 

Generate new drones list randomly  

Until  the termination criteria satisfied 
nd 

•
•
•
•
•
•
•

Fig. 4. Pseudo code for HBM clustering Algorithm.
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Step 9: Check the termination criteria

If the termination criteria satisfied finish the algorithm, else discard all previous trial solutions and
generate new trial solutions. Then go to step 5 until all assigned iteration (mating flights) completed
or convergence criteria met.
The pseudo code for application of HBM algorithm in clustering illustrate in Fig. 4.

4. Experimental result

In this section, we present a set of experiments that shows goodness of our algorithm. We have done our
experiments on a Pentium IV, 2.8 GHz, 512 GB RAM computer and we have coded with Matlab 7.0 software.
We run all five algorithms on three different datasets. The datasets are all well-known iris, wine and breast-
cancer datasets taken from Machine Learning Laboratory [4].

DataSet1: This is the Iris data set, which is perhaps the best-known database to found in the pattern rec-
ognition literature. Fisher’s paper is a classic in the field and referenced frequently to this day. The data set
contains three classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly
separable from the other 2; the latter are not linearly separable from each other. There are 150 instances with
four numeric attributes in iris data set. There is no missing attribute value. The attributes of the iris data set
are; sepal length in cm, sepal width in cm, petal length in cm and petal width in cm.

DataSet2: This is the wine data set, which also taken from MCI laboratory. These data are the results of a
chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The
analysis determined the quantities of 13 constituents found in each of the three types of wines. There are
178 instances with 13 numeric attributes in wine data set. All attributes are continuous. There is no missing
attribute value.

DataSet3: This is the Wisconsin Breast Cancer Database (January 8, 1991) which also taken from MCI lab-
oratory. There are 699 instances with 10 numeric attributes in data set. Attributes 2 through 10 have been used
to represent instances. Each instance has one of two possible classes: benign or malignant. There are 16 miss-
ing attribute values in data set.

To evaluate the performance of the HBM algorithm in clustering, we have compared it with several typical
stochastic algorithms including the ACO algorithm [16], the simulated annealing approach [18], the genetic
algorithms [3], and the tabu search approach [12]. The effectiveness of stochastic algorithms is greatly
Table 1
Result obtained by the five algorithms for 10 different runs on dataset 1

Method Function value Function evaluation CPU time (s)

Fbest Faverage Fworst

HBM 96.752047 96.95316 97.757625 11214 35.25
ACO 97.100777 97.171546 97.808466 10998 33.72
GA 113.986503 125.197025 139.778272 38128 105.53
TS 97.365977 97.868008 98.569485 20201 72.86
SA 97.100777 97.134625 97.263845 29103 95.92

Table 2
Result obtained by the five algorithms for 10 different runs on dataset 2

Method Function Value Function Evaluation CPU time (s)

Fbest Faverage Fworst

HBM 16257.284378 16257.284378 16257.284378 7238 55.18
ACO 16530.533807 16530.533807 16530.533807 9306 68.29
GA 16530.533807 16530.533807 16530.533807 33551 226.68
TS 16666.226987 16785.459275 16837.535670 22716 161.45
SA 16530.533807 16530.533807 16530.533807 7917 57.28
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dependent on the generation of initial solutions. Therefore, foe every dataset, algorithms performed 10 times
individually for their own effectiveness tests, each time with randomly generated initial solutions.

The comparison of results for each dataset based on the bet solution found in 10 distinct runs of each algo-
rithm, the average number of evaluations required and the convergence processing time taken to attain the
best solution.

The solution quality is also given in terms of the average and worst values of the clustering metric (Favg,
Fworst, respectively) after 10 different runs for each of the five algorithms. Tables 1–3 show these results.

For clustering problem, on iris dataset results given in Table 1, show that the HBM provide the optimum
value of 96.752047, the ACO and SA methods obtain 97.100777. The HBM was able to find the optimum 8
times as compared to that of nine times obtained by ACO and five times obtained by SA. The ACO required
the least number of function evaluation (10998) and the processing time (33.72). The result obtained for the
clustering problem, dataset 2 given in Table 2. The HBM find the optimum solution of 16246.352467 and the
ACO, SA and GA methods provide 16530.533807. The HBM, ACO, SA and GA methods found the optimum
solution in all their 10 runs. The function evaluation and the execution time taken by the HBM algorithm are
less than other algorithms.
Table 3
Result obtained by the five algorithms for 10 different runs on dataset 3

Method Function value Function evaluation CPU time (s)

Fbest Faverage Fworst

HBM 10099.297958 10100.13 10107.646802 23268 99.35
ACO 10111.827759 10112.126903 10114.819200 25626 102.15
GA 10116.294861 10128.823145 10148.389608 45003 153.24
TS 10249.72917 10354.315021 10438.780449 29191 114.01
SA 10111.827759 10114.045265 10115.934358 28675 108.22

Table 4
Values of parameters of each of five algorithms

HBM ACO GA TS SA

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

Number of
queens

1 Ants (R) 50 Population
size

50 Tabu list
size

25 Probability
threshold

0.98

Number of
drones

150 Probability
threshold for
maximum trail
(q0)

0.98 Crossover
rate

0.8 Number of
trial
solutions

40 Initial
temperature

5

Capacity of
spermatheca

50 Local search
probability (pls)

0.01 Mutation
rate

0.001 Probability
threshold

0.98 Temperature
multiplier

0.98

Speed of
Queen at
first of flight

Randomly
2 [0.5 1]

Evaporation
rate (q)

0.01 Maximum
number of
iterations

1000 Maximum
number of
iterations

1000 Final
temperature

0.01

Minimum
speed of
Queen

Randomly
2 [0 1]

Maximum
number of
iterations
(itermax)

1000 Number of
iterations
detect steady
state

100

Speed
reduction
schema
(cooling
schema)

0.98 Maximum
number of
iterations

30000

Cross over
ratio

1.5

Maximum
number of
iterations

1000
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The HBM algorithm for the human thyroid disease dataset, provide the optimum solution of 10099.297958
to this problem with success rate of 90% during 10 runs. In terms of the function, evaluations and the process-
ing time the HBM performed better than other clustering algorithms as can observed from Table 3.

Shelokar et al. [16] performed several simulations to find the algorithmic parameters that result into the best
performance of ACO, GA, SA and TS algorithms in terms of the equality of solution found, the function eval-
uations and the processing time required. In this study, we used their algorithmic parameters. In addition, we
performed several simulations to find the algorithmic parameters for HBM algorithm. Algorithmic parameters
for all algorithms illustrated in Table 4.

The result illustrate that the proposed HBM optimization approach can be considered as a viable and an
efficient heuristic to find optimal or near optimal solutions to clustering problems of allocating N objects to k

clusters.

5. Conclusion

In summary, honey-bee mating optimization algorithm to solve clustering problems developed in this
paper. Honey-bees are among the most closely studied social insects. Honey-bee mating may also be consid-
ered as a typical swarm-based approach to optimization, in which the search algorithm is inspired by the pro-
cess of marriage in real honey-bee.

Honey bee has been used to model agent-based systems. The HBM algorithm for data clustering can be
apply when the number of clusters known a priori and are crisp in nature. To evaluate the performance of
the HBM algorithm, it compared with other stochastic algorithms viz. ant colony, genetic algorithm, simu-
lated annealing and tabu search. The algorithm implemented and tested on several real datasets; preliminary
computational experience is very encouraging in terms of the quality of solution found, the average number of
function evaluation and the processing time required.
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