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Abstract This paper develops a decentralized fuzzy control scheme for MIMO nonlinear second

order systems with application to robot manipulators via a combination of genetic algorithms

(GAs) and fuzzy systems. The controller for each degree of freedom (DOF) consists of a feedfor-

ward fuzzy torque computing system and a feedback fuzzy PD system. The feedforward fuzzy sys-

tem is trained and optimized off-line using GAs, whereas not only the parameters but also the

structure of the fuzzy system is optimized. The feedback fuzzy PD system, on the other hand, is used

to keep the closed-loop stable. The rule base consists of only four rules per each DOF. Furthermore,

the fuzzy feedback system is decentralized and simplified leading to a computationally efficient con-

trol scheme. The proposed control scheme has the following advantages: (1) it needs no exact

dynamics of the system and the computation is time-saving because of the simple structure of

the fuzzy systems and (2) the controller is robust against various parameters and payload uncertain-

ties. The computational complexity of the proposed control scheme has been analyzed and com-

pared with previous works. Computer simulations show that this controller is effective in

achieving the control goals.
ª 2013 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University.
1. Introduction

In many practical applications where high performance trajec-
tory tracking is required, the control scheme in Fig. 1 is
35572.
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commonly used to enable the independent design of the feed-

forward and the feedback control [1].
The feedforward control uFF is applied to achieve the de-

sired tracking performance of the output h, whereas the feed-

back control is designed such that the system R is
appropriately stabilized and robustified against model uncer-
tainties. In comparison with the broad spectrum of available

design methods for feedback control, only few methods are
known for a systematical feedforward control design, which
forms a contrast to the respective demand in industry. The rea-

son for this methodological gab is related to the system inver-
sion required in the course of the feedforward control design
and to the respective difficulties arising with nonlinear systems
aculty of Engineering, Alexandria University.
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Figure 2 An articulated two-link manipulator.
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Figure 1 Structure of the control scheme with system R,
feedback control RFB, and feedforward control RFF.
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[2]. Feedforward can also be made from disturbances [3,4], but
this problem is different from feedforward from the set-point,

and it is not treated in this paper.
Generally speaking, multiple-input multiple-output

(MIMO) systems usually have characteristics of nonlinear

dynamics coupling. Therefore, the difficulty in controlling
MIMO systems is how to overcome the coupling effects between
the degrees of freedom.The computational burden and dynamic
uncertainty associated with MIMO systems make model-based

decoupling impractical for real-time control. Adaptive control
has been studied for many decades to deal with constant or
slowly changing unknown parameters. Applications include

manipulators, ship steering, aircraft control, and process con-
trol. Although the perfect knowledge of the inertia parameters
can be relaxed via adaptive technique, its real practical useful-

ness is not really clear and the obtained controllers may be
too complicated to be easily implemented [5]. Also, because
many design parameters, like learning rates and initialization
of the parameters to be adapted, have to be considered in con-

troller construction, most existing methodologies have limita-
tions. Moreover, owing to the different characteristics among
design parameters, attaining a complete learning, while consid-

ering an overall performance goal, is an extremely difficult task.
Fuzzy controllers have demonstrated excellent robustness

in both simulations and real-life applications [6]. They are able

to function well even when the controlled system differs from
the system model used by the designer. A customary for this
phenomenon is that fuzzy sets, with their gradual membership

property, are less sensitive to errors than crisp sets. Another
explanation is that a design based on the ‘‘computing with
words’’ paradigm is inherently robust; the designer forsakes
some mathematical rigor but gains a very general model which

remains valid even when the system parameters and structure
vary.

However, it has been proved that standard fuzzy logic con-

trollers are not suitable for loop controllers [7]. This fact is re-
ferred to that there are many tuning parameters in membership
functions and control rules. Furthermore, standard fuzzy logic

controller has a long computation time since it performs fuzz-
ification, inference, and defuzzification processes in determin-
ing control inputs. Thus, it is difficult for control inputs of

standard fuzzy logic control to be computed within the sam-
pling time of a loop controller. For this reason, complexity
reduction of fuzzy feedback controllers was the topic of many
researchers [7,8].

In this paper, we focus on the design of appropriate fuzzy
systems in feedforward and feedback paths. In the feedforward
path, the capabilities of GAs are used off-line to determine the

optimal parameters and structure of fuzzy systems which can
approximate the inverse dynamics of the system. No
mathematical model is needed. In the feedback path, a stable
fuzzy feedback controller is designed based on the Lyapunov
synthesis. Only four rules constitute the rule base for each
DOF. Furthermore, the fuzzy feedback controller is decentral-

ized and simplified leading to a computationally efficient fuzzy
control scheme. A primary version of this feedback controller
has been introduced in [9] by the author of this paper. In this

paper, we revisit it and design an adaptive mechanism to deter-
mine its gains adaptively. To demonstrate the proposed ap-
proach, we use the example of robotics because it is a well-

known example of nonlinear MIMO second order systems.
The paper is outlined as follows: in Section 2, the robot

model and the nominal value of its parameter are introduced.
This model is used to generate simulation data instead of

experimental data from real robot platform. Section 3 explains
the fuzzy models of the inverse dynamics of the robot. The
models are two input one output fuzzy systems. They are used

in the feedforward path. In Section 4, we explain how GAs can
be used off-line to optimally determine parameters and struc-
ture of the fuzzy systems. In Section 5, the fuzzy feedback con-

troller is derived based on the Lyapunov direct method.
Furthermore, the controller is simplified, i.e., it has a closed
form mathematical relation with only three parameters need

to be tuned and the controller gain is adaptively determined
online so as to minimize a performance index. Section 6 dis-
cusses the computational complexity of the proposed control
scheme in comparison with previous works. Simulation results

are demonstrated in Section 7. Finally, some concluding re-
marks are given in Section 8.

2. Robot modeling and the control statement

Without the loss of generality, we take the two-link rigid robot
shown in Fig. 2, as an example to demonstrate the proposed

control scheme. The inverse dynamic model is expressed as
[10,11]:

u ¼MðhÞ€hþ Cðh; _hÞ _hþ GðhÞ ð1Þ

where h e Rn is the joint angular position vector of the robot;
u e Rn is the vector of applied joint torque (or force);
M(h) e Rn·n is the inertia matrix, positive definite;

Cðh; _hÞ _h 2 Rn is the effect of Coriolis and centrifugal torque;
and G(h) e Rn is the gravitational torque. The physical
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properties of the above model can be found in [12]; however,

they are not needed here.
For the robot shown in Fig. 2 (1) can be rewritten as:

u1

u2

� �
M11 M12

M21 M22

� �
€h1

€h2

� �
þ �h _h2 �hð _h1 þ _h2Þ

h _h1 0

" #
_h1

_h2

� �

þ
G1

G2

� �

where

M11 ¼ a1 þ 2a3 cosðh2Þ þ 2a4 sinðh2Þ;M22 ¼ a2;

M21 ¼M12 ¼ a2 þ a3 cosðh2Þ þ a4 sinðh2Þ;
h ¼ a3 sinðh2Þ � a4 cosðh2Þ;G1 ¼ b1 cosðh1Þ þ b2 cosðh1 þ h2Þ;
G2 ¼ b2 cosðh1 þ h2Þ

with

a1 ¼ I1 þm1l
2
c1 þ Ie þmel

2
ce þmel

2
1; a2 ¼ Ie þmel

2
ce;

a3 ¼ mel1lce cosðdeÞ; a4 ¼ mel1lce sinðdeÞ
b1 ¼ m1glc1 þmegl1; b2 ¼ meglce

The nominal parameters of the two-link manipulator are cho-

sen as follows:

m1 ¼ 5 kg; me ¼ 2:5 kg; l1 ¼ 1:0 m; lc1 ¼ 0:5 m; lce

¼ 0:5 m; de ¼ 30�; I1 ¼ 0:36 kg m2; Ie ¼ 0:24 kg m2

Position control or also the so-called regulation problem is one
of the most relevant issues in the operation of robot manipula-
tors. This is a particular case of the motion control or trajec-

tory control. The primary goal of motion control in joint
space is to make the robot joints track a given time-varying de-
sired joint position, hd ¼ ½hd

1; h
d
2�

T
. Several control architectures

related to robot control can be found in literature ranging
from the simple PD, learning based, adaptive, and adaptive/
learning hybrid controllers. The reader is referred to [12,13]
and the references included. The main advantage of the PD

controller is that it can easily be implemented on simple micro-
controller architectures. On the other hand, the performance
obtained from PD controllers is not satisfying for most of

the sensitive applications [13,14]. Most of the other aforemen-
tioned types of controllers suffer from the complexities and the
huge number of calculations needed to be carried out online.

3. Decentralized fuzzy system-based identification

It should be noticed that, for a planned trajectory, the desired

torque depends not only on the trajectory, geometric, and iner-
tia parameters of the link itself, but also on the parameters of
the other links and the payload at the end effector; see (1). In
order to model the dynamics of each link with a fuzzy system,

it is necessary to choose proper input and output variables.
For the computation to be as simple as possible, it is necessary
to select a non-interactive fuzzy system. Here, only position

and velocity are selected as two input variables and naturally
the feedforward torque is selected as the output. Thus, the fuz-
zy rules are expressed in the following form:

If hdðkÞ is Ai
1 and _hdðkÞ is Ai

2 then ud is uiFF ð2Þ

where Ai
1 and Ai

2 are the fuzzy sets for hd and _hd, uiFF is the crisp

output of each fuzzy rule, and k is the time instant. The fuzzy
system in (2) is called Sugeno zero-order model. Here, we call it

as standard fuzzy system since it is widely used in the literature
[7,15–17]. If the rule base has M rules altogether, the final out-
put of the fuzzy model is calculated as follows:

uFFðkÞ ¼
PM

i¼1½wiðkÞuio�PM
i¼1w

iðkÞ
ð3Þ

wiðkÞ ¼ Ai
1ðh

dðkÞÞ � Ai
2ð _hdðkÞÞ ð4Þ

It has been proven [7] that the fuzzy system in (3) can approx-

imate continuous function to an arbitrary degree of accuracy
provided that enough number of rules are considered. In Sec-
tion 4, the fuzzy system (3) is trained off-line and the optimal

rule base is determined. Note that, the premise variables do not
appear in the consequence part of the rules, because it is found
that they do not make much sense for improving the precision

of the fuzzy model. What is worse, they sometimes complicate
the algorithm seriously [16,18].

Naturally, the performance of the fuzzy model is dependent
on the structure and the parameters of the fuzzy rule base re-

sulted from some kind of learning procedure. Given a set of in-
put–output data, the premise and consequence parameters can
be determined by use of a complex search algorithms, recursive

least square algorithm, and hybrid systems [16]. As mentioned
earlier, in this paper, GAs are used to establish the feedforward
fuzzy systems, which is the subject of the following Section.

4. Optimal selection of fuzzy systems using genetic algorithm

Genetic algorithms are derivative-free stochastic optimization

methods based loosely on the concepts of natural selection
and evolutionary processes. Their popularity can be attributed
to their freedom from dependence on functional derivatives,

and they are less likely to get trapped in local minima, which
inevitably are present in any practical optimization applica-
tion. Eventually, GAs can be used to determine the optimal
parameters and structure of a fuzzy system given some opti-

mality criterion.
The solution of an optimization problem begins with a set

of potential solutions (fuzzy systems) or chromosomes (usually

in the form of bit strings) that are randomly selected. The en-
tire set of these chromosomes comprises a population. The
chromosomes evolve during several iterations or generations.

New generations (offsprings) are generated utilizing the cross-
over, mutation, and elitism technique. Crossover involves
splitting two chromosomes and then combining one-half of

each chromosome with the other pair. Mutation involves flip-
ping a single bit of a chromosome. Elitism is a policy of always
keeping a certain number of best members when each new
population is generated. The chromosomes are then evaluated

employing a certain fitness criteria, and the best ones are kept
while the others are discarded. This process repeats until one
chromosome has the best fitness and is taken as the optimum

solution of the problem. Fig. 3 is a schematic diagram illustrat-
ing how a fuzzy system can be trained using GAs. A compre-
hensive review about GAs can be found in [19]. Refs. [20,21]

also give other examples of using GAs to identify the fuzzy
model parameters.

As the performance of a GA depends on its parameters, a
parametric study has been carried out to determine the optimal
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Figure 3 Implementation flow chart of genetic algorithm.

Table 1 Ranges of the premise and consequent parameters for

the two fuzzy models.

Parameters Range

Premise parameters for fuzzy models 1 and 2

c11; c
1
2 0:1

c21; c
2
2 1:2

c31; c
3
2 2:3

c41; c
4
2 3:4

r1
1 � � � r4

1;r
1
2 � � �r4

2 0.1:3

Consequent parameters

Fuzzy model 1 uiFF, i ¼ 1 : 16 �20:80
Fuzzy model 2 uiFF, i ¼ 1 : 16 �20:50
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set of parameters. These parameters are the population size,
number of generations, number of bits of each variable,

crossover rate, and the mutation rate. They are problem-
dependent and should be selected carefully in order to achieve
good results. For the problem under consideration, the follow-

ing parameters are found to give the best results:

(a) number of generations is 150,
(b) population size is 50,

(c) single point crossover with a rate of 0.90,
(d) bitwise mutation with a rate of 0.1, and
(e) number of bits which represent each variable is 16.

It should be pointed out that in training the feedforward
fuzzy system, the algorithm does not require full knowledge

of the robot inverse model because the optimization is com-
pletely data-driven. In practice, the training data can be ob-
tained by experimentation or by establishment of an ideal

model. This is theoretically feasible and helpful for training
and checking of the fuzzy system, despite that the derived
model is not the same as the real one. In computer simulation,
we need a model to emulate the behavior of a robot to collect

data. The robot model (1) in Section 2 with the nominal
parameter values mentioned that there are used to emulate
the robot motion. At the training stage, no parameter varia-

tions and nonlinear friction are considered. The trajectory
for off-line training is chosen as follows:

hd
1 ¼ 0:5pð1� etÞ and hd

2 ¼ pð1� etÞ ð5Þ

At first, both input variables in each joint are partitioned into
four subsets and thus 16 fuzzy rules in the standard form of (2)

are set up for each joint. Then, GA is used to tune the param-
eters of the fuzzy model within suitable ranges. In order to re-
duce the dimension of the searching space, the length of each

gene should be limited as short as possible. To this end, each
parameter to be optimized is normalized to a certain range.
The tuning ranges of the two fuzzy models are given in
Table 1.

4.1. Parameter learning using genetic algorithm

During the training phase using GAs, the following quadratic

form of performance index is established, so that the feedfor-
ward fuzzy model can realize the mapping of the robot inverse

dynamics:

J ¼
PP

k¼1 u
dðkÞ � uFFðkÞ½ �2

P
ð6Þ

where ud(k) and uFF(k) are the desired torque computed from
the model (system (1) or experimental data) and the torque
computed from feedforward fuzzy model, respectively, and P

is the number of training samples. Since GAs guide the optimal
solution to the direction of maximizing the fitness value, it is
necessary to map the objective function (6) to the fitness func-

tion form by

F ¼ 1

1þ J
ð7Þ

where J is the performance index defined in (6) and 1 is intro-
duced at the denominator to prevent the fitness function from

becoming infinitely large.
The membership functions in fuzzy system (2) are taken as

Gaussian which has the following form:

Ai
jðxÞ ¼ exp

� x� cij

� �2
ri
j

0
B@

1
CA; j ¼ 1; 2; . . . ; 4 ð8Þ

where cij and ri
j are the center and width of the Gaussian func-

tion. Here, the membership function in (8) is denoted as ðcij; ri
jÞ.

GAs represent the parameters for the given problem by the
chromosome S which may contain one or more substring(s).

Each chromosome, therefore, contains a possible solution to
the problem. A possible coding of the parameters to be tuned
can be arranged as follows:

Sk ¼ c11c
2
1 � � � cn1r1

1r
2
1 � � � rn

1c
1
2c

2
2 � � � cn2r1

2r
2
2 � � � rn

2u
1
FFu

2
FF � � � uMFF;

k ¼ 1; 2; . . . ;N

where, M = n2 is the number of rules and N is the number of
chromosomes in the generation.

After the training is completed, the fuzzy models for joint 1

and joint 2 resulted from the best chromosomes are shown in
Tables 2 and 3, respectively. For instance, the first rule in Ta-
ble 1 can be read as follows:

If hdðkÞ is ð0:08; 0:24Þ and _hdðkÞ is ð0:22; 0:59Þ then uFF is

� 4:18

The graphical representations of the two fuzzy models are de-
picted in Fig. 4. These figures show the complexity of a system



Table 2 Standard rule base of joint 1.

IF THEN IF THEN

hd _hd uiFF hd _hd uiFF

(0.08,0.24) (0.22,0.59) �4.18 (2.81,1.51) (0.22,0.59) 25.30

(0.08,0.24) (1.82,1.94) 52.40 (2.81,1.51) (1.82,1.94) �13.56
(0.08,0.24) (2.14,0.58) 75.82 (2.81,1.51) (2.14,0.58) 36.86

(0.08,0.24) (3.93,1.70) 56.30 (2.81,1.51) (3.93,1.70) �13.07
(1.70,2.30) (0.22,0.59) �19.67 (3.32,2.93) (0.22,0.59) �16.70
(1.70,2.30) (1.82,1.94) 57.24 (3.32,2.93) (1.82,1.94) �1.54
(1.70,2.30) (2.14,0.58) 79.38 (3.32,2.93) (2.14,0.58) 41.87

(1.70,2.30) (3.93,1.70) 50.36 (3.32,2.93) (3.93,1.70) 27.07

Table 3 Standard rule base of joint 2.

IF THEN IF THEN

hd _hd uiFF hd _hd uiFF

(0.23,1.15) (0.47,1.35) �19.51 (2.87,2.96) (0.47,1.35) �15.84
(0.23,1.15) (1.53,2.31) 17.32 (2.87,2.96) (1.53,2.31) �16.07
(0.23,1.15) (2.13,0.35) 18.14 (2.87,2.96) (2.13,0.35) 6.87

(0.23,1.15) (3.40,0.68) �3.13 (2.87,2.96) (3.40,0.68) 14.28

(1.57,1.34) (0.47,1.35) �15.83 (3.45,0.87) (0.47,1.35) 11.51

(1.57,1.34) (1.53,2.31) �11.22 (3.45,0.87) (1.53,2.31) 18.43

(1.57,1.34) (2.13,0.35) �10.22 (3.45,0.87) (2.13,0.35) 39.34

(1.57,1.34) (3.40,0.68) 37.54 (3.45,0.87) (3.40,0.68) 8.08

Figure 4 The output surfaces of the two fuzzy models.
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which can be represented by relatively simple fuzzy counter-
part. Fig. 5 shows the approximating results of the fuzzy mod-
els. The average approximating errors are 0.8725 and 0.4146,
respectively.

Because the performance of the fuzzy systems is evaluated
by the approximating precision, the above fuzzy models with
standard structure are acceptable. However, during simulation

tests, it is found that the average firing rates of the two rule
bases are relatively low. They are 42% for the first fuzzy model
and 43% for the second one. It means that the fuzzy systems

are not compact enough and the structure of the fuzzy rule
bases needs to be optimized. This choice is reasonable since
it leads to a reduced number of arithmetic operations which
is needed to be performed online. Structure optimization is
the subject of the coming Subsection.

4.2. Structure optimization using genetic algorithms

In this Subsection, the structure and parameters of the fuzzy

rules are simultaneously optimized using GAs. To this end,
each fuzzy system (chromosome) contains two substrings.
The first substring, which has the same form illustrated as in

the previous Subsection, is to optimize the parameters of the
fuzzy model. The second substring encodes the structure of
the fuzzy rule base, such that one integer number represents
one membership (MF) in the space of input variable in



Figure 6 Example of the second substring of a chromosome.
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question. Similar to the work of [18], the MFs of each input
variable are numbered in ascending order according to their
centers, i.e., a number ‘‘1’’ represents the MF with the lowest
center and ‘‘4’’ for biggest one, since each variable is supposed

to have at most four subspaces. The second substring may take
one of the following numbers: 0, 1, 2, 3, and 4. Number ‘‘0’’
implies that this variable does not appear in the premise of

the rule. If both variables take a value of ‘‘0’’ in the second
substring, then this rule is deleted from the rule base. It is also
possible that more than one rule in the rule base has the same

premise. In this case, only the rule that appears first is kept, so
that the rules are logically accepted. An example of the second
substring is shown in Fig. 6.

The corresponding fuzzy rules are

R1 : If hdðkÞ is ðc31; r3
1Þ and _hdðkÞ is ðc12; r1

2Þ then uFF is u1FF

R2 : If hdðkÞ is ðc21; r2
1Þ then uFF is u2FF

..

.

R16 : ðDeletedÞ

The following performance index is used to optimize both the
parameters and structure of the fuzzy models:

J ¼
PP

k¼0 u
dðkÞ � uFFðkÞ½ �

P
þ kJS ð9Þ
Table 4 The optimized fuzzy rule base for joint 1.

IF THEN

hd _hd uiFF

(0.43,0.19) (0.60,0.80) 56.38

– (0.60,0.80) �7.57
(1.38,2.01) (3.13,2.58) 65.13

(1.38,2.01) (2.37,1.51) 66.76

(1.38,2.01) (1.70,0.48) 74.86
where k is the weighting constant, and JS is the penalty for

model complexity and is expressed as:

JS ¼
The total number of rules in the rule base

The average number of active rules
ð10Þ

In this work, k is set to 0.1 for joint 1 and 0.4 for joint 2. A rule
is considered as active one when the wi in (4) is greater than

0.05.Simulation results show that the optimized rule bases
for joint 1 and joint 2 have 9 and 11 rules, respectively, and
the firing rates are raised to about 84% and 75%, respectively.
The rule bases for the two joints are listed in Tables 4 and 5,

and the graphical representation of the two rules is depicted
in Fig. 7. The approximating results are demonstrated in
Fig. 8. The average approximating errors are 0.9267 and

0.5349, respectively. So that, it can be concluded that the
approximating errors are relatively small, which means that
structure optimization is quite reasonable.

5. Decentralized fuzzy feedback control

The performance of any fuzzy logic controller is greatly depen-

dent on its inference rules. In most cases, the closed-loop con-
trol performance and stability are enhanced if more rules are
added to the rule base of the fuzzy controller. However, a large

set of rules requires more online computational time and more
parameters need to be adjusted. Adjustment of the fuzzy sys-
tem may be achieved using GAs [21,22]. However, GAs cannot
be used online and perfect mathematical model or experimen-

tal data should be available.
In this Section, a robust PD-type fuzzy feedback controller

is driven for a class of MIMO second order nonlinear systems

with application to tracking control problem of robotic manip-
ulators [9]. The rule base consists of only four rules per each
DOF. The approach implements fuzzy partition to the state

variables based on Lyapunov synthesis. The resulting control
law is stable and able to exploit the dynamic variables of the
system in a linguistic manner.

5.1. Construction of fuzzy feedback controllers

In this Subsection, we apply the fuzzy synthesis to the design of
stable controllers. To this end, consider a class of MIMO non-

linear second order systems whose dynamic equation can be
expressed as:

€xðtÞ ¼ fðx; _x; uFBÞ; ð11Þ

where fðx; _x; uFBÞ is an unknown continuous function, uFB is

the feedback control input, and xðtÞ ¼ ½x1; x2; . . . ; xn�T is the

state vector and _x ¼ dx
dt
¼ ½ _x1; _x2; . . . ; _xn�T. We now seek a

smooth Lyapunov function V:Rn fi Rn for the continuous
IF THEN

hd _hd uiFF

(0.43,0.19) (2.37,1.51) 1.72

(2.84,1.55) (0.60,0.80) �12.05
– (1.70,0.48) 54.35

(1.38,2.01) – �9.70



Table 5 The optimized fuzzy rule base for joint 2.

IF THEN IF THEN

hd _hd uiFF hd _hd uiFF

(0.43,0.19) – 15.63 (2.85,1.55) – �9.58
(0.43,0.19) (2.37,1.51) �15.43 – (2.37,1.51) �18.40
(1.38,2.01) (0.60,0.80) �3.17 (0.43,0.19) (0.60,0.80) 7.92

(0.43,0.19) (1.70,0.48) 28.68 (2.85,1.55) (2.37,1.51) �17.59
(1.38,2.01) – �10.11 (0.43,0.19) (3.13,2.58) 19.38

– (0.60,0.80) 10.86 – – –

Figure 7 The output surfaces of the two fuzzy models after structure optimization.
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feedback model (1) that is positive definite, i.e., V(x) > 0 when
x „ 0 and V(x) = 0 when x = 0, and grows to infinity:
V(x) fi1 as xTx fi1. Obviously, this holds for a generalized
Lyapunov candidate function of the following quadratic form:

Vðx; tÞ ¼ 1

2
xTxþ 1

2
_xT _x ð12Þ

Differentiating (12) with respect to time gives

_Vðx; tÞ ¼ x1 _x1 þ x2 _x2 þ � � � þ xn _xn þ _x1€x1 þ _x2€x2 þ � � � þ _xn€xn

From which
_Vðx; tÞ ¼ ðx1 _x1 þ _x1€x1Þ þ ðx2 _x2 þ _x2€x2Þ þ � � � þ ðxn _xn þ _xn€xnÞ

This is equal to

_Vðx; tÞ ¼ _V1 þ _V2 þ � � � þ _Vn ð13Þ

where

_Viðx; tÞ ¼ xi _xi þ _xi€xi; i ¼ 1; 2; . . . ; n

Then, the standard results in Lyapunov stability theory imply

that the dynamic system (11) has a stable equilibrium x = xe if
each _Vi in (13) is 6 0 along the system trajectories. To achieve
this, we have chosen the control uFBi

ðxÞ to be proportional to
€xi.

Next, our controller design is achieved if we determine a
fuzzy control uFBi

ðxÞ so that:

_Viðx; tÞ ¼ xi _xi þ ai _xiuFBi
ðxÞ 6 0; i ¼ 1; 2; . . . ; n ð14Þ

where ai is a positive constant. The results of Wang [23] state
that a fuzzy system that would approximate (14) exists. To this

end, one would consider the state vector x(t) and _xðtÞ to be the
inputs to the fuzzy system. The output of the fuzzy system is
the feedback control uFB. A possible form of the control rules
is:

IF xi is ðlmÞ and=or _xi is ðlmÞTHEN uFBi
is ðlmÞ; i

¼ 1; 2; . . . ; n

where the (lv) are linguistic values (e.g., positive and negative).

These rules constitute the rule base for a Mamdani-type fuzzy
controller.
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In the above formulation, two basic assumptions have been
made. They are the following:

� The knowledge of the state vector. It is assumed to be avail-
able from measurements.
� The control input, uFB is proportional to €x. This assumption

can be justified for a large class of second order nonlinear
mechanical systems [23–26]. For instance, here in robotics,
it means that the acceleration of links is proportional to

the input torque.

These two assumptions represent the basic knowledge
about the system which is needed to derive the control rules.

Clearly, the exact mathematical model is not needed.
In the coming Subsection, we use this approach to design a

PD-type fuzzy feedback tracking controller.

5.2. Fuzzy feedback tracking control

Robots are familiar examples of trajectory-following mechan-

ical systems. Their nonlinearities and strong coupling of the ro-
bot dynamics present a challenging control problem. In
practice, the load may vary while performing different tasks,

the friction coefficients may change in different configurations,
and some neglected nonlinearities as backlash may appear.
Therefore, the control objective is to design a stable fuzzy con-
troller, so that the link movement follows the desired trajectory

in spite of such effects.
Consider a class of robots whose vector of generalized coor-

dinates is denoted by h = [h1,h2, . . .,hn]
T where hi, i = 1, . . ., n

are the joint parameters. We consider the state variables of the
robot as h(t) and _hðtÞ, which are usually available as feedback
signals. Define the tracking error vectors e(t) and _eðtÞ as:

eðtÞ ¼ hðtÞ � hdðtÞ; and _eðtÞ ¼ _hðtÞ � _hdðtÞ ð15Þ

where hd and _hd are vectors of the desired joint position and
velocity, respectively. Throughout this work, we assume that

hd and its derivative are available for online control computa-
tion. In robot tracking tasks, the desired position history is
generally planned ahead of time and its derivatives can be eas-

ily obtained.
We now apply the approach presented in the previous Sub-

section in order to find a fuzzy controller that achieves track-
ing to the robotic system under consideration. To this end, let

us choose the following Lyapunov function candidate

V ¼ 1

2
ðeTeþ _eT _eÞ ð16Þ

Differentiating with respect to time and using (13) gives

_Vi ¼ ei _ei þ _ei€ei

To enforce asymptotic stability, it is required to find uFB so
that

_Vi ¼ ei _ei þ _ei€ei � 0 ð17Þ

in some neighborhood of the equilibrium of (16). Taking the
control uFB to be proportional to €e, Eq. (17) can be rewritten

as:

_Vi ¼ ei _ei þ ai _eiuFBi
6 0 ð18Þ
where ai is positive constant, i = 1, . . ., n. Sufficient conditions
for (18) to hold can be stated as follows:

(a) if for each i e [1, . . ., n], ei and _ei have opposite signs and

aiuFBi is zero, inequality (18) holds;
(b) if ei and _ei are both positive, then (18) will hold if aiuFBi is

negative; and

(c) if ei and _ei are both negative, then (18) will hold if aiuFBi is
positive. i e [1, . . ., n] denotes the joint number.

Using these observations and assuming that ai is positive
small number, one can easily obtain the four rules listed below
in Table 6.

In this table, P and N denote respectively positive and neg-
ative errors; uP, uN, and uZ are respectively positive, negative,
and zero control inputs. These rules are simply the fuzzy par-
titions of ei, _ei and uFBi

which follow directly from the stabiliz-

ing conditions of the Lyapunov function (16).
In concluding words, the presented approach transforms

classical Lyapunov synthesis from the world of exact mathe-

matical quantities to the world of words [26]. This combina-
tion provides us with a solid analytical basis from which the
rules are obtained and justified. Relative to other works, this

number of rules is quite small. For example, in [8], the rule
base of a two-link robot consists of 625 rules. After introduc-
ing a rule base reduction approach, the authors in [8] reach to a
rule base consists of 160 rules, which is hard to be imple-

mented. Otherwise, the results obtained here contradict the
conclusions of a recent survey on the industrial applications
of fuzzy controllers. The authors’ opinion there in [27] is that

all fuzzy control applications should be tackled in the model-
based design manner. They think that this is the way that en-
ables systematic analyses of the structural properties of the

fuzzy controllers such as stability, controllability, parametric
sensitivity, and robustness. Remember that here, we did not
use any information about the system model.

To complete the design, we must specify the fuzzy system
with which the fuzzy feedback computes the control signal.
Here, we use different fuzzy system than that mentioned in
Section 3. The Gaussian membership defining the linguistic

terms in the rule base is chosen as follows:

lpositiveðxÞ ¼ Gðx; azÞ ¼ e�ðx�azÞ
2

lnegativeðxÞ ¼ Gðx;�azÞ

lzeroðxÞ ¼ Gðx; 0Þ
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where az > 0 and z stands for control variable, the product for

‘‘and’’ and center of gravity inferencing. For some positive
constant ki, i e [1, . . ., n] denotes the joint number, the above
four rules can be represented by the following mathematical

expression:

uFBi
¼ Gðei; a1iÞð�kiÞ þ Gðei;�a1iÞðkiÞ

Gðei; a1iÞ þ Gðei;�a1iÞ

þ Gð _ei; a2iÞð�kiÞ þ Gð _ei;�a2iÞðkiÞ
Gð _ei; a2iÞ þ Gð _ei;�a2iÞ

in more details
uFBi
¼ �ki

expð�ðei � a1iÞ2Þ � expð�ðei þ a1iÞ2Þ
expð�ðei � a1iÞ2Þ þ expð�ðei þ a1iÞ2Þ

þ expð�ð _ei � a2iÞ2Þ � expð�ð _ei þ a2iÞ2Þ
expð�ð _ei � a2iÞ2Þ þ expð�ð _ei þ a2iÞ2Þ

" #
from which

uFBi
¼�ki

expð2a1ieiÞ� expð�2a1ieiÞ
expð2a1ieiÞþ expð�2a1ieiÞ

þ expð2a2i _eiÞ� expð�2a2i _eiÞ
expð2a2i _eiÞþ expð�2a2i _eiÞ

� �

This yields the fuzzy feedback controller

uFBi
¼ �ki½tanhð2a1ieiÞ þ tanhð2a2i _eiÞ�; i ¼ 1; . . . ; n ð19Þ

In (19), the inputs are the error in position ei and the error in

velocity _ei and the output is the control input of joint i; i.e., it is
a PD-type fuzzy feedback controller. The following remarks
are in order:

� The fuzzy controller in (19) is a special case of fuzzy sys-
tems, where Gaussian membership functions are used to
introduce the input variables (ei and _ei) to the fuzzy net-

work. Also, the fuzzification and defuzzification methods
used in this study are not unique; see [16] for other alterna-
tives. For example, using different membership functions

(e.g., triangular, trapezoidal, etc.) will result in a different
fuzzy controller. However, the controller in (19) is a simple
one and the closed form relation between the inputs and the

output makes it computationally inexpensive.
� Only three parameters per each DOF need to be tuned,
namely, they are ki, a1i and a2i. This greatly simplifies the

tuning procedure since the search space is quite small rela-
tive to other works. For instance, the fuzzy controller in [28]
needs 45 parameters to be tuned for a one DOF system.
� This controller is inherently bounded since jtanhðxÞj 6 1.

� Each joint has independent control input uFBi ; i
¼ 1; 2; . . . ; n.
� In the case of robotic control, this controller can be

regarded as output feedback controller since the joint’s
position and velocity are usually the outputs.
Figure 9 Configuration of the proposed decentralized fuzzy

control scheme of joint i.
Finally, the fuzzy PD gain, i.e., ki, i e [1, . . ., n] is chosen
so as to minimize the following quadratic performance
index:

Ji ¼
1

2
ri½uFBi

ðkÞ�2
n o

ð20Þ

where input ri is a constant. According to the gradient method,
the learning algorithm of the parameter ki in the feedback fuz-

zy controller (19) can be derived as follows:
Dki ¼ �
@Ji
@ki
¼ � @Ji@uFBi

@uFBi
@ki

¼ �riuFBi
½tanhð2c1ieiÞ þ tanhð2c2i _eiÞ�

ð21Þ

Thus, the fuzzy feedback controller uses the ei, _ei and uFBi
to

compute (21) and update the control gain ki given that

ki(0) „ 0. The overall closed-loop control system is shown in
Fig. 9, where ui ¼ uFBi

þ uFFi is the total input to joint i.

6. Computational aspects

In general, control algorithms for closed-loop control should
have a small number of tuning parameters and short computa-

tion time due to limited memory of low-cost microprocessors.
This Section discusses the complexity aspects of the feedfor-
ward and feedback computation of the control scheme pro-

posed in this paper. The computational complexity of the
feedback controller is compared with that of a self-tuning fuz-
zy controller proposed in [29]. Also, torque computing meth-
ods based on robot inverse dynamics are compared with the

feedforward system. It is shown that the proposed control
scheme is computationally very efficient.

Naturally, the computational burden can be evaluated in

terms of required mathematical multiplication and addition
operations. The proposed control scheme in this paper consists
of two components: a feedforward torque compensation sys-

tem and a fuzzy PD feedback controller. For the first compo-
nent, i.e., the feedforward fuzzy system, the calculation has
three stages: computation of the membership functions, com-

putation of the contribution of each rule, and computation
of the final output of the fuzzy system. The results are given
in Table 7, where n is the DOF of the manipulator. With re-
spect to the standard fuzzy system followed in this paper, each
Table 7 Computational complexity of the fuzzy feedforward

system.

Inverse

dynamics

Standard fuzzy

system

Optimal

fuzzy system

(average)

Addition 117n � 24 56n 33n

Multiplication 103n � 21 33n 25n



Table 8 Computational complexity of the fuzzy feedback

controller.

Self-tuning fuzzy

controller [29]

The proposed

fuzzy controller

Addition 97n 6n

Multiplication 113n 15n 0 1 2 3 4 5
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variable is supposed to have at most four subsets and therefore

there are eight fuzzy membership functions involved for each
joint. For the optimized fuzzy system, we list the total number
of the addition and multiplication operation of the two fuzzy

systems obtained in Section 4 divided by two. This manipula-
tion has been adapted because the two fuzzy systems have dif-
ferent number of rules and membership functions in each rule
base. So that, the average number of arithmetic operations is

presented in the last column. It is obvious that the number
of arithmetic calculations of the optimized fuzzy system is
the lowest compared with that of the inverse dynamic model

and the standard fuzzy system. In comparison with the con-
ventional torque computing method, Table 7 demonstrates
that the computation burden of the proposed fuzzy torque

computing system is significantly low.
The computation of the fuzzy feedback controller can also

be divided into two parts: computation of (19) and computa-

tion of the adaptive gain; ki (21). For the sake of comparison,
Table 8 demonstrates the computational complexity of our
scheme with the self-tuning fuzzy controller proposed in [29].
The comparison is fair since the feedback controller in [29] is

essentially a PD fuzzy controller with self-tuning mechanism.
In [29], the rule base has been transformed to a decision table
and is used by a back-propagation algorithm to adjust the scal-

ing factors of the fuzzy system. The difference resides in the
fact that the rule base in [29] consists of 49 rules for one
DOF system and the mapped elements (e and _e) are obtained

by interpolation. Furthermore, the tuning procedure is com-
posed of two stages and some learning steps are needed by
the second stage, while the tuning system using (21) is much

simpler. Simulation results, in the coming Section, show that
it is also efficient.

7. Simulation results

The purpose of the simulation is to investigate the robustness
of the proposed control scheme. The robot system considered
in the simulation is the two-link robot presented in Section 2.

Through the simulations, the physical insight of the behavior is
revealed. In the coming results, it is assumed that initial posi-
tions of joints h1(0) = h2(0) = 0� rad and the robot is at rest,

i.e., the initial velocities of joints _h1ð0Þ ¼ _h2ð0Þ ¼ 0� rad=s.
This initialization imposes a large initial velocity error since
_e1ð0Þ ¼ �p=2; _e2ð0Þ ¼ �p rad=s. One can expect uneasy tran-

sient stage.
The input torque shown in Figs. 10 and 11 shows the evo-

lution of the tracking errors. They show that the errors have
converged to zero. Note that the transient period is less than

0.5 s. Otherwise, it is interesting to notice how the control
gains evolve with time. Fig. 12 depicts the evolution of these
parameters with time. They have been initialized as k1(0) =

k2(0) = 100 N m.
In order to observe how the controller behaves in the pres-
ence of various uncertainties, three types of uncertainties are

considered, such as, parameter variations, unmodeled nonlin-
ear friction, and unknown payloads.

7.1. Parameter variations

By parameter variations, we mean here the masses of the links.
It is assumed that they vary randomly with time every 0.3 s.

The mass of the base link varies in the range of 5 fi 7 kg
(the nominal mass is 5 kg) and the mass of the elbow link
2 fi 5 kg (the nominal mass is 2.5 kg). Fig. 13 depicts their var-
iation with respect to time and Fig. 14 shows the correspond-

ing tracking errors. It can be noticed that with respect to
previous results, there is little or no change has taken place
during the transient and the steady state periods. However, it

has been noticed that increasing the range of variations of
the masses has resulted in unstable system. Results of these
tests are not presented here. However, this can be explained

that under such situations, the torque computed from the
trained feedforward fuzzy systems is no longer near the nom-
inal torque.

7.2. Unmodeled friction

At the off-line training stage of our simulation, we obtain the
training samples from the robot model in (1), which does not
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consider the nonlinear friction. In order to examine the perfor-
mance of the controller in the presence of unmodeled nonlin-

ear friction, the following unmodeled nonlinear friction is
added at the control stage:

F ¼ Fd þ Fs

where Fd and Fs are the dynamic and static friction torque,

respectively. They can be expressed by:

Fd ¼
d1 cosðx1Þ 0

0 d2 cosðx2Þ

� �
_x1

_x2

� �
and Fs ¼

c1sgnð _x1Þ
c2sgnð _x2Þ

� �

We use d1 = 50, d2 = 30 and c1 = 18, c2 = 12. Results are

shown in Figs. 15 and 16. It can be noticed that the transient
period has increased relative to the cases when the friction was
not considered. Also, the input torque is relatively higher dur-
ing this period. Nevertheless, convergence of the tracking er-

rors has been achieved.
7.3. Unknown payload

In robot systems, the unknown payload is one of the major dy-
namic uncertainties. Compared with the parameter uncertain-
ties and unmodeled friction, the influence of unknown payload

is much greater. The coming results are obtained when the
mass and inertia of the base and elbow links (carrying the pay-
load) have been increased to 150%. This increase in the mass

and inertia of the two links is supposed to be unknown.
Fig. 17 shows that input torque is relatively high. Also, the
tracking errors exhibit larger overshoot during the transient

period, Fig. 18. However, convergence of errors to a narrow
region close to zero has taken place.

8. Conclusions

In this paper, a decentralized fuzzy control scheme for robot
manipulator is developed. The controller for each joint has a

feedforward fuzzy torque computing system and a feedback
fuzzy PD controller. The online computational burden for
nonlinear feedforward compensation is greatly relaxed due to
the simple structure of the fuzzy systems. GAs are applied to
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fuzzy system training because they are fully data-driven and
are able to optimize both structure and parameters of the fuzzy
system simultaneously. The training samples can be collected

by doing experiments or by establishing an ideal model. Simu-
lation results show that the proposed control scheme works
well, even if the ideal model is not in concordance with the real

inverse dynamics.
An important feature of this study is that it has transferred

the proposed fuzzy feedback controller to a closed form rela-

tion between the inputs and the output, leading to a computa-
tionally efficient fuzzy logic controller. The rule base consists
of only four rules and has a PD-like structure. The gains are
tuned online based on the gradient method. This feedback con-

troller is inherently bounded; the upper and lower bounds can
be arbitrary selected by suitably adjust its parameters. Various
simulation results prove that the proposed controller is effec-

tive. Finally, it can be concluded that using the proposed con-
trol approach presents a convenient option for controlling a
large class of nonlinear MIMO second order systems.
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